author | wenzelm |
Thu, 08 Nov 2001 17:44:55 +0100 | |
changeset 12103 | b9bba87e1d78 |
parent 6509 | 9f7f4fd05b1f |
child 14854 | 61bdf2ae4dc5 |
permissions | -rw-r--r-- |
1477 | 1 |
(* Title: FOLP/IFOLP.thy |
1142 | 2 |
ID: $Id$ |
1477 | 3 |
Author: Martin D Coen, Cambridge University Computer Laboratory |
1142 | 4 |
Copyright 1992 University of Cambridge |
5 |
||
6 |
Intuitionistic First-Order Logic with Proofs |
|
7 |
*) |
|
8 |
||
0 | 9 |
IFOLP = Pure + |
10 |
||
3942 | 11 |
global |
12 |
||
0 | 13 |
classes term < logic |
14 |
||
15 |
default term |
|
16 |
||
283 | 17 |
types |
18 |
p |
|
19 |
o |
|
0 | 20 |
|
283 | 21 |
arities |
22 |
p,o :: logic |
|
0 | 23 |
|
1477 | 24 |
consts |
0 | 25 |
(*** Judgements ***) |
1477 | 26 |
"@Proof" :: "[p,o]=>prop" ("(_ /: _)" [51,10] 5) |
27 |
Proof :: "[o,p]=>prop" |
|
0 | 28 |
EqProof :: "[p,p,o]=>prop" ("(3_ /= _ :/ _)" [10,10,10] 5) |
29 |
||
30 |
(*** Logical Connectives -- Type Formers ***) |
|
1477 | 31 |
"=" :: "['a,'a] => o" (infixl 50) |
32 |
True,False :: "o" |
|
2714 | 33 |
Not :: "o => o" ("~ _" [40] 40) |
1477 | 34 |
"&" :: "[o,o] => o" (infixr 35) |
35 |
"|" :: "[o,o] => o" (infixr 30) |
|
36 |
"-->" :: "[o,o] => o" (infixr 25) |
|
37 |
"<->" :: "[o,o] => o" (infixr 25) |
|
0 | 38 |
(*Quantifiers*) |
1477 | 39 |
All :: "('a => o) => o" (binder "ALL " 10) |
40 |
Ex :: "('a => o) => o" (binder "EX " 10) |
|
41 |
Ex1 :: "('a => o) => o" (binder "EX! " 10) |
|
0 | 42 |
(*Rewriting gadgets*) |
1477 | 43 |
NORM :: "o => o" |
44 |
norm :: "'a => 'a" |
|
0 | 45 |
|
648
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
lcp
parents:
283
diff
changeset
|
46 |
(*** Proof Term Formers: precedence must exceed 50 ***) |
1477 | 47 |
tt :: "p" |
48 |
contr :: "p=>p" |
|
49 |
fst,snd :: "p=>p" |
|
50 |
pair :: "[p,p]=>p" ("(1<_,/_>)") |
|
51 |
split :: "[p, [p,p]=>p] =>p" |
|
52 |
inl,inr :: "p=>p" |
|
53 |
when :: "[p, p=>p, p=>p]=>p" |
|
54 |
lambda :: "(p => p) => p" (binder "lam " 55) |
|
55 |
"`" :: "[p,p]=>p" (infixl 60) |
|
648
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
lcp
parents:
283
diff
changeset
|
56 |
alll :: "['a=>p]=>p" (binder "all " 55) |
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
lcp
parents:
283
diff
changeset
|
57 |
"^" :: "[p,'a]=>p" (infixl 55) |
1477 | 58 |
exists :: "['a,p]=>p" ("(1[_,/_])") |
0 | 59 |
xsplit :: "[p,['a,p]=>p]=>p" |
60 |
ideq :: "'a=>p" |
|
61 |
idpeel :: "[p,'a=>p]=>p" |
|
62 |
nrm, NRM :: "p" |
|
63 |
||
3942 | 64 |
local |
65 |
||
0 | 66 |
rules |
67 |
||
68 |
(**** Propositional logic ****) |
|
69 |
||
70 |
(*Equality*) |
|
71 |
(* Like Intensional Equality in MLTT - but proofs distinct from terms *) |
|
72 |
||
1477 | 73 |
ieqI "ideq(a) : a=a" |
3836 | 74 |
ieqE "[| p : a=b; !!x. f(x) : P(x,x) |] ==> idpeel(p,f) : P(a,b)" |
0 | 75 |
|
76 |
(* Truth and Falsity *) |
|
77 |
||
78 |
TrueI "tt : True" |
|
79 |
FalseE "a:False ==> contr(a):P" |
|
80 |
||
81 |
(* Conjunction *) |
|
82 |
||
83 |
conjI "[| a:P; b:Q |] ==> <a,b> : P&Q" |
|
84 |
conjunct1 "p:P&Q ==> fst(p):P" |
|
85 |
conjunct2 "p:P&Q ==> snd(p):Q" |
|
86 |
||
87 |
(* Disjunction *) |
|
88 |
||
89 |
disjI1 "a:P ==> inl(a):P|Q" |
|
90 |
disjI2 "b:Q ==> inr(b):P|Q" |
|
3836 | 91 |
disjE "[| a:P|Q; !!x. x:P ==> f(x):R; !!x. x:Q ==> g(x):R |
1149 | 92 |
|] ==> when(a,f,g):R" |
0 | 93 |
|
94 |
(* Implication *) |
|
95 |
||
3836 | 96 |
impI "(!!x. x:P ==> f(x):Q) ==> lam x. f(x):P-->Q" |
0 | 97 |
mp "[| f:P-->Q; a:P |] ==> f`a:Q" |
98 |
||
99 |
(*Quantifiers*) |
|
100 |
||
3836 | 101 |
allI "(!!x. f(x) : P(x)) ==> all x. f(x) : ALL x. P(x)" |
102 |
spec "(f:ALL x. P(x)) ==> f^x : P(x)" |
|
0 | 103 |
|
3836 | 104 |
exI "p : P(x) ==> [x,p] : EX x. P(x)" |
105 |
exE "[| p: EX x. P(x); !!x u. u:P(x) ==> f(x,u) : R |] ==> xsplit(p,f):R" |
|
0 | 106 |
|
107 |
(**** Equality between proofs ****) |
|
108 |
||
109 |
prefl "a : P ==> a = a : P" |
|
110 |
psym "a = b : P ==> b = a : P" |
|
111 |
ptrans "[| a = b : P; b = c : P |] ==> a = c : P" |
|
112 |
||
3836 | 113 |
idpeelB "[| !!x. f(x) : P(x,x) |] ==> idpeel(ideq(a),f) = f(a) : P(a,a)" |
0 | 114 |
|
115 |
fstB "a:P ==> fst(<a,b>) = a : P" |
|
116 |
sndB "b:Q ==> snd(<a,b>) = b : Q" |
|
117 |
pairEC "p:P&Q ==> p = <fst(p),snd(p)> : P&Q" |
|
118 |
||
3836 | 119 |
whenBinl "[| a:P; !!x. x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q" |
120 |
whenBinr "[| b:P; !!x. x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q" |
|
6509 | 121 |
plusEC "a:P|Q ==> when(a,%x. inl(x),%y. inr(y)) = a : P|Q" |
0 | 122 |
|
3836 | 123 |
applyB "[| a:P; !!x. x:P ==> b(x) : Q |] ==> (lam x. b(x)) ` a = b(a) : Q" |
124 |
funEC "f:P ==> f = lam x. f`x : P" |
|
0 | 125 |
|
3836 | 126 |
specB "[| !!x. f(x) : P(x) |] ==> (all x. f(x)) ^ a = f(a) : P(a)" |
0 | 127 |
|
128 |
||
129 |
(**** Definitions ****) |
|
130 |
||
1477 | 131 |
not_def "~P == P-->False" |
0 | 132 |
iff_def "P<->Q == (P-->Q) & (Q-->P)" |
133 |
||
134 |
(*Unique existence*) |
|
135 |
ex1_def "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)" |
|
136 |
||
137 |
(*Rewriting -- special constants to flag normalized terms and formulae*) |
|
1477 | 138 |
norm_eq "nrm : norm(x) = x" |
139 |
NORM_iff "NRM : NORM(P) <-> P" |
|
0 | 140 |
|
141 |
end |
|
142 |
||
143 |
ML |
|
144 |
||
145 |
(*show_proofs:=true displays the proof terms -- they are ENORMOUS*) |
|
146 |
val show_proofs = ref false; |
|
147 |
||
148 |
fun proof_tr [p,P] = Const("Proof",dummyT) $ P $ p; |
|
149 |
||
150 |
fun proof_tr' [P,p] = |
|
151 |
if !show_proofs then Const("@Proof",dummyT) $ p $ P |
|
152 |
else P (*this case discards the proof term*); |
|
153 |
||
154 |
val parse_translation = [("@Proof", proof_tr)]; |
|
155 |
val print_translation = [("Proof", proof_tr')]; |
|
156 |