| author | haftmann | 
| Fri, 22 Feb 2008 12:01:57 +0100 | |
| changeset 26113 | ba5909699cc3 | 
| parent 23767 | 7272a839ccd9 | 
| child 30198 | 922f944f03b2 | 
| permissions | -rw-r--r-- | 
| 13853 | 1 | (* Title: HOL/UNITY/ProgressSets | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 2003 University of Cambridge | |
| 5 | ||
| 6 | Progress Sets. From | |
| 7 | ||
| 8 | David Meier and Beverly Sanders, | |
| 9 | Composing Leads-to Properties | |
| 10 | Theoretical Computer Science 243:1-2 (2000), 339-361. | |
| 13861 | 11 | |
| 12 | David Meier, | |
| 13 | Progress Properties in Program Refinement and Parallel Composition | |
| 14 | Swiss Federal Institute of Technology Zurich (1997) | |
| 13853 | 15 | *) | 
| 16 | ||
| 17 | header{*Progress Sets*}
 | |
| 18 | ||
| 16417 | 19 | theory ProgressSets imports Transformers begin | 
| 13853 | 20 | |
| 13866 | 21 | subsection {*Complete Lattices and the Operator @{term cl}*}
 | 
| 22 | ||
| 13853 | 23 | constdefs | 
| 13861 | 24 | lattice :: "'a set set => bool" | 
| 25 |    --{*Meier calls them closure sets, but they are just complete lattices*}
 | |
| 26 | "lattice L == | |
| 27 | (\<forall>M. M \<subseteq> L --> \<Inter>M \<in> L) & (\<forall>M. M \<subseteq> L --> \<Union>M \<in> L)" | |
| 13853 | 28 | |
| 29 | cl :: "['a set set, 'a set] => 'a set" | |
| 30 |    --{*short for ``closure''*}
 | |
| 13861 | 31 |    "cl L r == \<Inter>{x. x\<in>L & r \<subseteq> x}"
 | 
| 13853 | 32 | |
| 13861 | 33 | lemma UNIV_in_lattice: "lattice L ==> UNIV \<in> L" | 
| 34 | by (force simp add: lattice_def) | |
| 13853 | 35 | |
| 13861 | 36 | lemma empty_in_lattice: "lattice L ==> {} \<in> L"
 | 
| 37 | by (force simp add: lattice_def) | |
| 13853 | 38 | |
| 13861 | 39 | lemma Union_in_lattice: "[|M \<subseteq> L; lattice L|] ==> \<Union>M \<in> L" | 
| 40 | by (simp add: lattice_def) | |
| 13853 | 41 | |
| 13861 | 42 | lemma Inter_in_lattice: "[|M \<subseteq> L; lattice L|] ==> \<Inter>M \<in> L" | 
| 43 | by (simp add: lattice_def) | |
| 13853 | 44 | |
| 13861 | 45 | lemma UN_in_lattice: | 
| 46 | "[|lattice L; !!i. i\<in>I ==> r i \<in> L|] ==> (\<Union>i\<in>I. r i) \<in> L" | |
| 13853 | 47 | apply (simp add: Set.UN_eq) | 
| 13861 | 48 | apply (blast intro: Union_in_lattice) | 
| 13853 | 49 | done | 
| 50 | ||
| 13861 | 51 | lemma INT_in_lattice: | 
| 52 | "[|lattice L; !!i. i\<in>I ==> r i \<in> L|] ==> (\<Inter>i\<in>I. r i) \<in> L" | |
| 13853 | 53 | apply (simp add: INT_eq) | 
| 13861 | 54 | apply (blast intro: Inter_in_lattice) | 
| 13853 | 55 | done | 
| 56 | ||
| 13861 | 57 | lemma Un_in_lattice: "[|x\<in>L; y\<in>L; lattice L|] ==> x\<union>y \<in> L" | 
| 13853 | 58 | apply (simp only: Un_eq_Union) | 
| 13861 | 59 | apply (blast intro: Union_in_lattice) | 
| 13853 | 60 | done | 
| 61 | ||
| 13861 | 62 | lemma Int_in_lattice: "[|x\<in>L; y\<in>L; lattice L|] ==> x\<inter>y \<in> L" | 
| 13853 | 63 | apply (simp only: Int_eq_Inter) | 
| 13861 | 64 | apply (blast intro: Inter_in_lattice) | 
| 13853 | 65 | done | 
| 66 | ||
| 13861 | 67 | lemma lattice_stable: "lattice {X. F \<in> stable X}"
 | 
| 68 | by (simp add: lattice_def stable_def constrains_def, blast) | |
| 13853 | 69 | |
| 13861 | 70 | text{*The next three results state that @{term "cl L r"} is the minimal
 | 
| 71 |  element of @{term L} that includes @{term r}.*}
 | |
| 72 | lemma cl_in_lattice: "lattice L ==> cl L r \<in> L" | |
| 73 | apply (simp add: lattice_def cl_def) | |
| 13853 | 74 | apply (erule conjE) | 
| 75 | apply (drule spec, erule mp, blast) | |
| 76 | done | |
| 77 | ||
| 13861 | 78 | lemma cl_least: "[|c\<in>L; r\<subseteq>c|] ==> cl L r \<subseteq> c" | 
| 13853 | 79 | by (force simp add: cl_def) | 
| 80 | ||
| 81 | text{*The next three lemmas constitute assertion (4.61)*}
 | |
| 13861 | 82 | lemma cl_mono: "r \<subseteq> r' ==> cl L r \<subseteq> cl L r'" | 
| 83 | by (simp add: cl_def, blast) | |
| 84 | ||
| 85 | lemma subset_cl: "r \<subseteq> cl L r" | |
| 86 | by (simp add: cl_def, blast) | |
| 87 | ||
| 13874 | 88 | text{*A reformulation of @{thm subset_cl}*}
 | 
| 89 | lemma clI: "x \<in> r ==> x \<in> cl L r" | |
| 90 | by (simp add: cl_def, blast) | |
| 91 | ||
| 92 | text{*A reformulation of @{thm cl_least}*}
 | |
| 93 | lemma clD: "[|c \<in> cl L r; B \<in> L; r \<subseteq> B|] ==> c \<in> B" | |
| 94 | by (force simp add: cl_def) | |
| 95 | ||
| 13861 | 96 | lemma cl_UN_subset: "(\<Union>i\<in>I. cl L (r i)) \<subseteq> cl L (\<Union>i\<in>I. r i)" | 
| 13853 | 97 | by (simp add: cl_def, blast) | 
| 98 | ||
| 13861 | 99 | lemma cl_Un: "lattice L ==> cl L (r\<union>s) = cl L r \<union> cl L s" | 
| 100 | apply (rule equalityI) | |
| 101 | prefer 2 | |
| 102 | apply (simp add: cl_def, blast) | |
| 103 | apply (rule cl_least) | |
| 104 | apply (blast intro: Un_in_lattice cl_in_lattice) | |
| 105 | apply (blast intro: subset_cl [THEN subsetD]) | |
| 106 | done | |
| 13853 | 107 | |
| 13861 | 108 | lemma cl_UN: "lattice L ==> cl L (\<Union>i\<in>I. r i) = (\<Union>i\<in>I. cl L (r i))" | 
| 13853 | 109 | apply (rule equalityI) | 
| 13866 | 110 | prefer 2 apply (simp add: cl_def, blast) | 
| 13853 | 111 | apply (rule cl_least) | 
| 13861 | 112 | apply (blast intro: UN_in_lattice cl_in_lattice) | 
| 13853 | 113 | apply (blast intro: subset_cl [THEN subsetD]) | 
| 114 | done | |
| 115 | ||
| 13874 | 116 | lemma cl_Int_subset: "cl L (r\<inter>s) \<subseteq> cl L r \<inter> cl L s" | 
| 117 | by (simp add: cl_def, blast) | |
| 118 | ||
| 13861 | 119 | lemma cl_idem [simp]: "cl L (cl L r) = cl L r" | 
| 13853 | 120 | by (simp add: cl_def, blast) | 
| 121 | ||
| 13861 | 122 | lemma cl_ident: "r\<in>L ==> cl L r = r" | 
| 13853 | 123 | by (force simp add: cl_def) | 
| 124 | ||
| 13874 | 125 | lemma cl_empty [simp]: "lattice L ==> cl L {} = {}"
 | 
| 126 | by (simp add: cl_ident empty_in_lattice) | |
| 127 | ||
| 128 | lemma cl_UNIV [simp]: "lattice L ==> cl L UNIV = UNIV" | |
| 129 | by (simp add: cl_ident UNIV_in_lattice) | |
| 130 | ||
| 13853 | 131 | text{*Assertion (4.62)*}
 | 
| 13861 | 132 | lemma cl_ident_iff: "lattice L ==> (cl L r = r) = (r\<in>L)" | 
| 13853 | 133 | apply (rule iffI) | 
| 134 | apply (erule subst) | |
| 13861 | 135 | apply (erule cl_in_lattice) | 
| 13853 | 136 | apply (erule cl_ident) | 
| 137 | done | |
| 138 | ||
| 13861 | 139 | lemma cl_subset_in_lattice: "[|cl L r \<subseteq> r; lattice L|] ==> r\<in>L" | 
| 140 | by (simp add: cl_ident_iff [symmetric] equalityI subset_cl) | |
| 141 | ||
| 142 | ||
| 13866 | 143 | subsection {*Progress Sets and the Main Lemma*}
 | 
| 13888 | 144 | text{*A progress set satisfies certain closure conditions and is a 
 | 
| 145 | simple way of including the set @{term "wens_set F B"}.*}
 | |
| 13866 | 146 | |
| 13861 | 147 | constdefs | 
| 148 | closed :: "['a program, 'a set, 'a set, 'a set set] => bool" | |
| 149 | "closed F T B L == \<forall>M. \<forall>act \<in> Acts F. B\<subseteq>M & T\<inter>M \<in> L --> | |
| 150 | T \<inter> (B \<union> wp act M) \<in> L" | |
| 151 | ||
| 152 | progress_set :: "['a program, 'a set, 'a set] => 'a set set set" | |
| 153 | "progress_set F T B == | |
| 13870 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 154 |       {L. lattice L & B \<in> L & T \<in> L & closed F T B L}"
 | 
| 13861 | 155 | |
| 156 | lemma closedD: | |
| 157 | "[|closed F T B L; act \<in> Acts F; B\<subseteq>M; T\<inter>M \<in> L|] | |
| 14150 | 158 | ==> T \<inter> (B \<union> wp act M) \<in> L" | 
| 13861 | 159 | by (simp add: closed_def) | 
| 160 | ||
| 13866 | 161 | text{*Note: the formalization below replaces Meier's @{term q} by @{term B}
 | 
| 162 | and @{term m} by @{term X}. *}
 | |
| 163 | ||
| 164 | text{*Part of the proof of the claim at the bottom of page 97.  It's
 | |
| 165 | proved separately because the argument requires a generalization over | |
| 166 | all @{term "act \<in> Acts F"}.*}
 | |
| 13861 | 167 | lemma lattice_awp_lemma: | 
| 13866 | 168 |   assumes TXC:  "T\<inter>X \<in> C" --{*induction hypothesis in theorem below*}
 | 
| 169 |       and BsubX:  "B \<subseteq> X"   --{*holds in inductive step*}
 | |
| 13861 | 170 | and latt: "lattice C" | 
| 13866 | 171 | and TC: "T \<in> C" | 
| 172 | and BC: "B \<in> C" | |
| 173 | and clos: "closed F T B C" | |
| 174 | shows "T \<inter> (B \<union> awp F (X \<union> cl C (T\<inter>r))) \<in> C" | |
| 13861 | 175 | apply (simp del: INT_simps add: awp_def INT_extend_simps) | 
| 176 | apply (rule INT_in_lattice [OF latt]) | |
| 177 | apply (erule closedD [OF clos]) | |
| 13866 | 178 | apply (simp add: subset_trans [OF BsubX Un_upper1]) | 
| 179 | apply (subgoal_tac "T \<inter> (X \<union> cl C (T\<inter>r)) = (T\<inter>X) \<union> cl C (T\<inter>r)") | |
| 13874 | 180 | prefer 2 apply (blast intro: TC clD) | 
| 13861 | 181 | apply (erule ssubst) | 
| 13866 | 182 | apply (blast intro: Un_in_lattice latt cl_in_lattice TXC) | 
| 13861 | 183 | done | 
| 184 | ||
| 13866 | 185 | text{*Remainder of the proof of the claim at the bottom of page 97.*}
 | 
| 13861 | 186 | lemma lattice_lemma: | 
| 13866 | 187 |   assumes TXC:  "T\<inter>X \<in> C" --{*induction hypothesis in theorem below*}
 | 
| 188 |       and BsubX:  "B \<subseteq> X"   --{*holds in inductive step*}
 | |
| 13861 | 189 | and act: "act \<in> Acts F" | 
| 190 | and latt: "lattice C" | |
| 13866 | 191 | and TC: "T \<in> C" | 
| 192 | and BC: "B \<in> C" | |
| 193 | and clos: "closed F T B C" | |
| 194 | shows "T \<inter> (wp act X \<inter> awp F (X \<union> cl C (T\<inter>r)) \<union> X) \<in> C" | |
| 195 | apply (subgoal_tac "T \<inter> (B \<union> wp act X) \<in> C") | |
| 196 | prefer 2 apply (simp add: closedD [OF clos] act BsubX TXC) | |
| 13861 | 197 | apply (drule Int_in_lattice | 
| 13866 | 198 | [OF _ lattice_awp_lemma [OF TXC BsubX latt TC BC clos, of r] | 
| 13861 | 199 | latt]) | 
| 200 | apply (subgoal_tac | |
| 13866 | 201 | "T \<inter> (B \<union> wp act X) \<inter> (T \<inter> (B \<union> awp F (X \<union> cl C (T\<inter>r)))) = | 
| 202 | T \<inter> (B \<union> wp act X \<inter> awp F (X \<union> cl C (T\<inter>r)))") | |
| 13861 | 203 | prefer 2 apply blast | 
| 204 | apply simp | |
| 13866 | 205 | apply (drule Un_in_lattice [OF _ TXC latt]) | 
| 13861 | 206 | apply (subgoal_tac | 
| 13866 | 207 | "T \<inter> (B \<union> wp act X \<inter> awp F (X \<union> cl C (T\<inter>r))) \<union> T\<inter>X = | 
| 208 | T \<inter> (wp act X \<inter> awp F (X \<union> cl C (T\<inter>r)) \<union> X)") | |
| 209 | apply simp | |
| 210 | apply (blast intro: BsubX [THEN subsetD]) | |
| 13861 | 211 | done | 
| 212 | ||
| 213 | ||
| 13866 | 214 | text{*Induction step for the main lemma*}
 | 
| 13861 | 215 | lemma progress_induction_step: | 
| 13866 | 216 |   assumes TXC:  "T\<inter>X \<in> C" --{*induction hypothesis in theorem below*}
 | 
| 13861 | 217 | and act: "act \<in> Acts F" | 
| 13866 | 218 | and Xwens: "X \<in> wens_set F B" | 
| 13861 | 219 | and latt: "lattice C" | 
| 13866 | 220 | and TC: "T \<in> C" | 
| 221 | and BC: "B \<in> C" | |
| 222 | and clos: "closed F T B C" | |
| 13861 | 223 | and Fstable: "F \<in> stable T" | 
| 13866 | 224 | shows "T \<inter> wens F act X \<in> C" | 
| 13861 | 225 | proof - | 
| 13866 | 226 | from Xwens have BsubX: "B \<subseteq> X" | 
| 227 | by (rule wens_set_imp_subset) | |
| 228 | let ?r = "wens F act X" | |
| 229 | have "?r \<subseteq> (wp act X \<inter> awp F (X\<union>?r)) \<union> X" | |
| 230 | by (simp add: wens_unfold [symmetric]) | |
| 231 | then have "T\<inter>?r \<subseteq> T \<inter> ((wp act X \<inter> awp F (X\<union>?r)) \<union> X)" | |
| 232 | by blast | |
| 233 | then have "T\<inter>?r \<subseteq> T \<inter> ((wp act X \<inter> awp F (T \<inter> (X\<union>?r))) \<union> X)" | |
| 234 | by (simp add: awp_Int_eq Fstable stable_imp_awp_ident, blast) | |
| 235 | then have "T\<inter>?r \<subseteq> T \<inter> ((wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X)" | |
| 236 | by (blast intro: awp_mono [THEN [2] rev_subsetD] subset_cl [THEN subsetD]) | |
| 237 | then have "cl C (T\<inter>?r) \<subseteq> | |
| 238 | cl C (T \<inter> ((wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X))" | |
| 239 | by (rule cl_mono) | |
| 240 | then have "cl C (T\<inter>?r) \<subseteq> | |
| 241 | T \<inter> ((wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X)" | |
| 242 | by (simp add: cl_ident lattice_lemma [OF TXC BsubX act latt TC BC clos]) | |
| 243 | then have "cl C (T\<inter>?r) \<subseteq> (wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X" | |
| 244 | by blast | |
| 245 | then have "cl C (T\<inter>?r) \<subseteq> ?r" | |
| 246 | by (blast intro!: subset_wens) | |
| 247 | then have cl_subset: "cl C (T\<inter>?r) \<subseteq> T\<inter>?r" | |
| 248 | by (simp add: Int_subset_iff cl_ident TC | |
| 249 | subset_trans [OF cl_mono [OF Int_lower1]]) | |
| 250 | show ?thesis | |
| 251 | by (rule cl_subset_in_lattice [OF cl_subset latt]) | |
| 13861 | 252 | qed | 
| 253 | ||
| 13888 | 254 | text{*Proved on page 96 of Meier's thesis.  The special case when
 | 
| 255 |    @{term "T=UNIV"} states that every progress set for the program @{term F}
 | |
| 256 |    and set @{term B} includes the set @{term "wens_set F B"}.*}
 | |
| 13861 | 257 | lemma progress_set_lemma: | 
| 13870 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 258 | "[|C \<in> progress_set F T B; r \<in> wens_set F B; F \<in> stable T|] ==> T\<inter>r \<in> C" | 
| 13861 | 259 | apply (simp add: progress_set_def, clarify) | 
| 260 | apply (erule wens_set.induct) | |
| 261 |   txt{*Base*}
 | |
| 262 | apply (simp add: Int_in_lattice) | |
| 263 |  txt{*The difficult @{term wens} case*}
 | |
| 264 | apply (simp add: progress_induction_step) | |
| 265 | txt{*Disjunctive case*}
 | |
| 266 | apply (subgoal_tac "(\<Union>U\<in>W. T \<inter> U) \<in> C") | |
| 267 | apply (simp add: Int_Union) | |
| 268 | apply (blast intro: UN_in_lattice) | |
| 269 | done | |
| 270 | ||
| 13866 | 271 | |
| 272 | subsection {*The Progress Set Union Theorem*}
 | |
| 273 | ||
| 274 | lemma closed_mono: | |
| 275 | assumes BB': "B \<subseteq> B'" | |
| 276 | and TBwp: "T \<inter> (B \<union> wp act M) \<in> C" | |
| 277 | and B'C: "B' \<in> C" | |
| 278 | and TC: "T \<in> C" | |
| 279 | and latt: "lattice C" | |
| 280 | shows "T \<inter> (B' \<union> wp act M) \<in> C" | |
| 281 | proof - | |
| 282 | from TBwp have "(T\<inter>B) \<union> (T \<inter> wp act M) \<in> C" | |
| 283 | by (simp add: Int_Un_distrib) | |
| 284 | then have TBBC: "(T\<inter>B') \<union> ((T\<inter>B) \<union> (T \<inter> wp act M)) \<in> C" | |
| 285 | by (blast intro: Int_in_lattice Un_in_lattice TC B'C latt) | |
| 286 | show ?thesis | |
| 287 | by (rule eqelem_imp_iff [THEN iffD1, OF _ TBBC], | |
| 288 | blast intro: BB' [THEN subsetD]) | |
| 289 | qed | |
| 290 | ||
| 291 | ||
| 292 | lemma progress_set_mono: | |
| 293 | assumes BB': "B \<subseteq> B'" | |
| 294 | shows | |
| 295 | "[| B' \<in> C; C \<in> progress_set F T B|] | |
| 296 | ==> C \<in> progress_set F T B'" | |
| 297 | by (simp add: progress_set_def closed_def closed_mono [OF BB'] | |
| 298 | subset_trans [OF BB']) | |
| 299 | ||
| 300 | theorem progress_set_Union: | |
| 13874 | 301 | assumes leadsTo: "F \<in> A leadsTo B'" | 
| 302 | and prog: "C \<in> progress_set F T B" | |
| 13870 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 303 | and Fstable: "F \<in> stable T" | 
| 13866 | 304 | and BB': "B \<subseteq> B'" | 
| 305 | and B'C: "B' \<in> C" | |
| 306 | and Gco: "!!X. X\<in>C ==> G \<in> X-B co X" | |
| 307 | shows "F\<squnion>G \<in> T\<inter>A leadsTo B'" | |
| 13870 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 308 | apply (insert prog Fstable) | 
| 13866 | 309 | apply (rule leadsTo_Join [OF leadsTo]) | 
| 310 | apply (force simp add: progress_set_def awp_iff_stable [symmetric]) | |
| 311 | apply (simp add: awp_iff_constrains) | |
| 312 | apply (drule progress_set_mono [OF BB' B'C]) | |
| 313 | apply (blast intro: progress_set_lemma Gco constrains_weaken_L | |
| 314 | BB' [THEN subsetD]) | |
| 315 | done | |
| 316 | ||
| 13870 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 317 | |
| 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 318 | subsection {*Some Progress Sets*}
 | 
| 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 319 | |
| 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 320 | lemma UNIV_in_progress_set: "UNIV \<in> progress_set F T B" | 
| 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 321 | by (simp add: progress_set_def lattice_def closed_def) | 
| 
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
 paulson parents: 
13866diff
changeset | 322 | |
| 13874 | 323 | |
| 324 | ||
| 13885 | 325 | subsubsection {*Lattices and Relations*}
 | 
| 13874 | 326 | text{*From Meier's thesis, section 4.5.3*}
 | 
| 327 | ||
| 328 | constdefs | |
| 329 |   relcl :: "'a set set => ('a * 'a) set"
 | |
| 13885 | 330 |     -- {*Derived relation from a lattice*}
 | 
| 13874 | 331 |     "relcl L == {(x,y). y \<in> cl L {x}}"
 | 
| 13885 | 332 | |
| 333 |   latticeof :: "('a * 'a) set => 'a set set"
 | |
| 334 |     -- {*Derived lattice from a relation: the set of upwards-closed sets*}
 | |
| 335 |     "latticeof r == {X. \<forall>s t. s \<in> X & (s,t) \<in> r --> t \<in> X}"
 | |
| 336 | ||
| 13874 | 337 | |
| 338 | lemma relcl_refl: "(a,a) \<in> relcl L" | |
| 339 | by (simp add: relcl_def subset_cl [THEN subsetD]) | |
| 340 | ||
| 341 | lemma relcl_trans: | |
| 342 | "[| (a,b) \<in> relcl L; (b,c) \<in> relcl L; lattice L |] ==> (a,c) \<in> relcl L" | |
| 343 | apply (simp add: relcl_def) | |
| 344 | apply (blast intro: clD cl_in_lattice) | |
| 345 | done | |
| 346 | ||
| 347 | lemma refl_relcl: "lattice L ==> refl UNIV (relcl L)" | |
| 348 | by (simp add: reflI relcl_def subset_cl [THEN subsetD]) | |
| 349 | ||
| 350 | lemma trans_relcl: "lattice L ==> trans (relcl L)" | |
| 351 | by (blast intro: relcl_trans transI) | |
| 352 | ||
| 13885 | 353 | lemma lattice_latticeof: "lattice (latticeof r)" | 
| 354 | by (auto simp add: lattice_def latticeof_def) | |
| 355 | ||
| 356 | lemma lattice_singletonI: | |
| 357 |      "[|lattice L; !!s. s \<in> X ==> {s} \<in> L|] ==> X \<in> L"
 | |
| 358 | apply (cut_tac UN_singleton [of X]) | |
| 359 | apply (erule subst) | |
| 360 | apply (simp only: UN_in_lattice) | |
| 361 | done | |
| 362 | ||
| 363 | text{*Equation (4.71) of Meier's thesis.  He gives no proof.*}
 | |
| 364 | lemma cl_latticeof: | |
| 365 | "[|refl UNIV r; trans r|] | |
| 366 |       ==> cl (latticeof r) X = {t. \<exists>s. s\<in>X & (s,t) \<in> r}" 
 | |
| 367 | apply (rule equalityI) | |
| 368 | apply (rule cl_least) | |
| 369 | apply (simp (no_asm_use) add: latticeof_def trans_def, blast) | |
| 370 | apply (simp add: latticeof_def refl_def, blast) | |
| 371 | apply (simp add: latticeof_def, clarify) | |
| 372 | apply (unfold cl_def, blast) | |
| 373 | done | |
| 374 | ||
| 375 | text{*Related to (4.71).*}
 | |
| 13874 | 376 | lemma cl_eq_Collect_relcl: | 
| 377 |      "lattice L ==> cl L X = {t. \<exists>s. s\<in>X & (s,t) \<in> relcl L}" 
 | |
| 13885 | 378 | apply (cut_tac UN_singleton [of X]) | 
| 379 | apply (erule subst) | |
| 13874 | 380 | apply (force simp only: relcl_def cl_UN) | 
| 381 | done | |
| 382 | ||
| 13885 | 383 | text{*Meier's theorem of section 4.5.3*}
 | 
| 384 | theorem latticeof_relcl_eq: "lattice L ==> latticeof (relcl L) = L" | |
| 385 | apply (rule equalityI) | |
| 386 | prefer 2 apply (force simp add: latticeof_def relcl_def cl_def, clarify) | |
| 387 | apply (rename_tac X) | |
| 388 | apply (rule cl_subset_in_lattice) | |
| 389 | prefer 2 apply assumption | |
| 390 | apply (drule cl_ident_iff [OF lattice_latticeof, THEN iffD2]) | |
| 391 | apply (drule equalityD1) | |
| 392 | apply (rule subset_trans) | |
| 393 | prefer 2 apply assumption | |
| 394 | apply (thin_tac "?U \<subseteq> X") | |
| 395 | apply (cut_tac A=X in UN_singleton) | |
| 396 | apply (erule subst) | |
| 397 | apply (simp only: cl_UN lattice_latticeof | |
| 398 | cl_latticeof [OF refl_relcl trans_relcl]) | |
| 399 | apply (simp add: relcl_def) | |
| 400 | done | |
| 401 | ||
| 402 | theorem relcl_latticeof_eq: | |
| 403 | "[|refl UNIV r; trans r|] ==> relcl (latticeof r) = r" | |
| 23767 | 404 | by (simp add: relcl_def cl_latticeof) | 
| 13885 | 405 | |
| 13874 | 406 | |
| 407 | subsubsection {*Decoupling Theorems*}
 | |
| 408 | ||
| 409 | constdefs | |
| 410 | decoupled :: "['a program, 'a program] => bool" | |
| 411 | "decoupled F G == | |
| 412 | \<forall>act \<in> Acts F. \<forall>B. G \<in> stable B --> G \<in> stable (wp act B)" | |
| 413 | ||
| 414 | ||
| 415 | text{*Rao's Decoupling Theorem*}
 | |
| 416 | lemma stableco: "F \<in> stable A ==> F \<in> A-B co A" | |
| 417 | by (simp add: stable_def constrains_def, blast) | |
| 418 | ||
| 419 | theorem decoupling: | |
| 420 | assumes leadsTo: "F \<in> A leadsTo B" | |
| 421 | and Gstable: "G \<in> stable B" | |
| 422 | and dec: "decoupled F G" | |
| 423 | shows "F\<squnion>G \<in> A leadsTo B" | |
| 424 | proof - | |
| 425 |   have prog: "{X. G \<in> stable X} \<in> progress_set F UNIV B"
 | |
| 426 | by (simp add: progress_set_def lattice_stable Gstable closed_def | |
| 427 | stable_Un [OF Gstable] dec [unfolded decoupled_def]) | |
| 428 | have "F\<squnion>G \<in> (UNIV\<inter>A) leadsTo B" | |
| 429 | by (rule progress_set_Union [OF leadsTo prog], | |
| 430 | simp_all add: Gstable stableco) | |
| 431 | thus ?thesis by simp | |
| 432 | qed | |
| 433 | ||
| 434 | ||
| 435 | text{*Rao's Weak Decoupling Theorem*}
 | |
| 436 | theorem weak_decoupling: | |
| 437 | assumes leadsTo: "F \<in> A leadsTo B" | |
| 438 | and stable: "F\<squnion>G \<in> stable B" | |
| 439 | and dec: "decoupled F (F\<squnion>G)" | |
| 440 | shows "F\<squnion>G \<in> A leadsTo B" | |
| 441 | proof - | |
| 442 |   have prog: "{X. F\<squnion>G \<in> stable X} \<in> progress_set F UNIV B" 
 | |
| 443 | by (simp del: Join_stable | |
| 444 | add: progress_set_def lattice_stable stable closed_def | |
| 445 | stable_Un [OF stable] dec [unfolded decoupled_def]) | |
| 446 | have "F\<squnion>G \<in> (UNIV\<inter>A) leadsTo B" | |
| 447 | by (rule progress_set_Union [OF leadsTo prog], | |
| 448 | simp_all del: Join_stable add: stable, | |
| 449 | simp add: stableco) | |
| 450 | thus ?thesis by simp | |
| 451 | qed | |
| 452 | ||
| 453 | text{*The ``Decoupling via @{term G'} Union Theorem''*}
 | |
| 454 | theorem decoupling_via_aux: | |
| 455 | assumes leadsTo: "F \<in> A leadsTo B" | |
| 456 |       and prog: "{X. G' \<in> stable X} \<in> progress_set F UNIV B"
 | |
| 457 | and GG': "G \<le> G'" | |
| 458 |                --{*Beware!  This is the converse of the refinement relation!*}
 | |
| 459 | shows "F\<squnion>G \<in> A leadsTo B" | |
| 460 | proof - | |
| 461 | from prog have stable: "G' \<in> stable B" | |
| 462 | by (simp add: progress_set_def) | |
| 463 | have "F\<squnion>G \<in> (UNIV\<inter>A) leadsTo B" | |
| 464 | by (rule progress_set_Union [OF leadsTo prog], | |
| 465 | simp_all add: stable stableco component_stable [OF GG']) | |
| 466 | thus ?thesis by simp | |
| 467 | qed | |
| 468 | ||
| 469 | ||
| 470 | subsection{*Composition Theorems Based on Monotonicity and Commutativity*}
 | |
| 471 | ||
| 13888 | 472 | subsubsection{*Commutativity of @{term "cl L"} and assignment.*}
 | 
| 13874 | 473 | constdefs | 
| 474 | commutes :: "['a program, 'a set, 'a set, 'a set set] => bool" | |
| 475 | "commutes F T B L == | |
| 476 | \<forall>M. \<forall>act \<in> Acts F. B \<subseteq> M --> | |
| 477 | cl L (T \<inter> wp act M) \<subseteq> T \<inter> (B \<union> wp act (cl L (T\<inter>M)))" | |
| 478 | ||
| 479 | ||
| 13888 | 480 | text{*From Meier's thesis, section 4.5.6*}
 | 
| 13885 | 481 | lemma commutativity1_lemma: | 
| 13874 | 482 | assumes commutes: "commutes F T B L" | 
| 483 | and lattice: "lattice L" | |
| 484 | and BL: "B \<in> L" | |
| 485 | and TL: "T \<in> L" | |
| 486 | shows "closed F T B L" | |
| 487 | apply (simp add: closed_def, clarify) | |
| 488 | apply (rule ProgressSets.cl_subset_in_lattice [OF _ lattice]) | |
| 15102 | 489 | apply (simp add: Int_Un_distrib cl_Un [OF lattice] Un_subset_iff | 
| 13874 | 490 | cl_ident Int_in_lattice [OF TL BL lattice] Un_upper1) | 
| 491 | apply (subgoal_tac "cl L (T \<inter> wp act M) \<subseteq> T \<inter> (B \<union> wp act (cl L (T \<inter> M)))") | |
| 492 | prefer 2 | |
| 15102 | 493 | apply (cut_tac commutes, simp add: commutes_def) | 
| 13874 | 494 | apply (erule subset_trans) | 
| 495 | apply (simp add: cl_ident) | |
| 496 | apply (blast intro: rev_subsetD [OF _ wp_mono]) | |
| 497 | done | |
| 498 | ||
| 13888 | 499 | text{*Version packaged with @{thm progress_set_Union}*}
 | 
| 13885 | 500 | lemma commutativity1: | 
| 501 | assumes leadsTo: "F \<in> A leadsTo B" | |
| 502 | and lattice: "lattice L" | |
| 503 | and BL: "B \<in> L" | |
| 504 | and TL: "T \<in> L" | |
| 505 | and Fstable: "F \<in> stable T" | |
| 506 | and Gco: "!!X. X\<in>L ==> G \<in> X-B co X" | |
| 507 | and commutes: "commutes F T B L" | |
| 508 | shows "F\<squnion>G \<in> T\<inter>A leadsTo B" | |
| 509 | by (rule progress_set_Union [OF leadsTo _ Fstable subset_refl BL Gco], | |
| 510 | simp add: progress_set_def commutativity1_lemma commutes lattice BL TL) | |
| 511 | ||
| 512 | ||
| 513 | ||
| 13874 | 514 | text{*Possibly move to Relation.thy, after @{term single_valued}*}
 | 
| 515 | constdefs | |
| 516 |   funof :: "[('a*'b)set, 'a] => 'b"
 | |
| 517 | "funof r == (\<lambda>x. THE y. (x,y) \<in> r)" | |
| 518 | ||
| 519 | lemma funof_eq: "[|single_valued r; (x,y) \<in> r|] ==> funof r x = y" | |
| 520 | by (simp add: funof_def single_valued_def, blast) | |
| 521 | ||
| 522 | lemma funof_Pair_in: | |
| 523 | "[|single_valued r; x \<in> Domain r|] ==> (x, funof r x) \<in> r" | |
| 524 | by (force simp add: funof_eq) | |
| 525 | ||
| 526 | lemma funof_in: | |
| 527 |      "[|r``{x} \<subseteq> A; single_valued r; x \<in> Domain r|] ==> funof r x \<in> A" 
 | |
| 528 | by (force simp add: funof_eq) | |
| 529 | ||
| 530 | lemma funof_imp_wp: "[|funof act t \<in> A; single_valued act|] ==> t \<in> wp act A" | |
| 531 | by (force simp add: in_wp_iff funof_eq) | |
| 532 | ||
| 533 | ||
| 534 | subsubsection{*Commutativity of Functions and Relation*}
 | |
| 535 | text{*Thesis, page 109*}
 | |
| 536 | ||
| 13885 | 537 | (*FIXME: this proof is an ungodly mess*) | 
| 13888 | 538 | text{*From Meier's thesis, section 4.5.6*}
 | 
| 13885 | 539 | lemma commutativity2_lemma: | 
| 13874 | 540 | assumes dcommutes: | 
| 541 | "\<forall>act \<in> Acts F. | |
| 542 | \<forall>s \<in> T. \<forall>t. (s,t) \<in> relcl L --> | |
| 543 | s \<in> B | t \<in> B | (funof act s, funof act t) \<in> relcl L" | |
| 544 | and determ: "!!act. act \<in> Acts F ==> single_valued act" | |
| 545 | and total: "!!act. act \<in> Acts F ==> Domain act = UNIV" | |
| 546 | and lattice: "lattice L" | |
| 547 | and BL: "B \<in> L" | |
| 548 | and TL: "T \<in> L" | |
| 549 | and Fstable: "F \<in> stable T" | |
| 550 | shows "commutes F T B L" | |
| 15102 | 551 | apply (simp add: commutes_def del: Int_subset_iff, clarify) | 
| 13874 | 552 | apply (rename_tac t) | 
| 553 | apply (subgoal_tac "\<exists>s. (s,t) \<in> relcl L & s \<in> T \<inter> wp act M") | |
| 13885 | 554 | prefer 2 | 
| 555 | apply (force simp add: cl_eq_Collect_relcl [OF lattice], simp, clarify) | |
| 13874 | 556 | apply (subgoal_tac "\<forall>u\<in>L. s \<in> u --> t \<in> u") | 
| 557 | prefer 2 | |
| 558 | apply (intro ballI impI) | |
| 559 | apply (subst cl_ident [symmetric], assumption) | |
| 560 | apply (simp add: relcl_def) | |
| 561 | apply (blast intro: cl_mono [THEN [2] rev_subsetD]) | |
| 562 | apply (subgoal_tac "funof act s \<in> T\<inter>M") | |
| 563 | prefer 2 | |
| 564 | apply (cut_tac Fstable) | |
| 565 | apply (force intro!: funof_in | |
| 566 | simp add: wp_def stable_def constrains_def determ total) | |
| 567 | apply (subgoal_tac "s \<in> B | t \<in> B | (funof act s, funof act t) \<in> relcl L") | |
| 568 | prefer 2 | |
| 569 | apply (rule dcommutes [rule_format], assumption+) | |
| 570 | apply (subgoal_tac "t \<in> B | funof act t \<in> cl L (T\<inter>M)") | |
| 571 | prefer 2 | |
| 572 | apply (simp add: relcl_def) | |
| 573 | apply (blast intro: BL cl_mono [THEN [2] rev_subsetD]) | |
| 574 | apply (subgoal_tac "t \<in> B | t \<in> wp act (cl L (T\<inter>M))") | |
| 575 | prefer 2 | |
| 576 | apply (blast intro: funof_imp_wp determ) | |
| 577 | apply (blast intro: TL cl_mono [THEN [2] rev_subsetD]) | |
| 578 | done | |
| 579 | ||
| 13885 | 580 | |
| 13888 | 581 | text{*Version packaged with @{thm progress_set_Union}*}
 | 
| 13885 | 582 | lemma commutativity2: | 
| 583 | assumes leadsTo: "F \<in> A leadsTo B" | |
| 584 | and dcommutes: | |
| 585 | "\<forall>act \<in> Acts F. | |
| 586 | \<forall>s \<in> T. \<forall>t. (s,t) \<in> relcl L --> | |
| 587 | s \<in> B | t \<in> B | (funof act s, funof act t) \<in> relcl L" | |
| 588 | and determ: "!!act. act \<in> Acts F ==> single_valued act" | |
| 589 | and total: "!!act. act \<in> Acts F ==> Domain act = UNIV" | |
| 590 | and lattice: "lattice L" | |
| 591 | and BL: "B \<in> L" | |
| 592 | and TL: "T \<in> L" | |
| 593 | and Fstable: "F \<in> stable T" | |
| 594 | and Gco: "!!X. X\<in>L ==> G \<in> X-B co X" | |
| 595 | shows "F\<squnion>G \<in> T\<inter>A leadsTo B" | |
| 596 | apply (rule commutativity1 [OF leadsTo lattice]) | |
| 597 | apply (simp_all add: Gco commutativity2_lemma dcommutes determ total | |
| 598 | lattice BL TL Fstable) | |
| 599 | done | |
| 600 | ||
| 601 | ||
| 13888 | 602 | subsection {*Monotonicity*}
 | 
| 14150 | 603 | text{*From Meier's thesis, section 4.5.7, page 110*}
 | 
| 13888 | 604 | (*to be continued?*) | 
| 605 | ||
| 13853 | 606 | end |