| author | wenzelm | 
| Sat, 14 Apr 2012 17:26:08 +0200 | |
| changeset 47469 | ba7fe841c885 | 
| parent 46950 | d0181abdbdac | 
| child 47988 | e4b69e10b990 | 
| permissions | -rw-r--r-- | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1 | (* Title: HOL/Hilbert_Choice.thy | 
| 32988 | 2 | Author: Lawrence C Paulson, Tobias Nipkow | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 3 | Copyright 2001 University of Cambridge | 
| 12023 | 4 | *) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 5 | |
| 14760 | 6 | header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 7 | |
| 15131 | 8 | theory Hilbert_Choice | 
| 29655 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 haftmann parents: 
27760diff
changeset | 9 | imports Nat Wellfounded Plain | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
45607diff
changeset | 10 | keywords "specification" "ax_specification" :: thy_goal | 
| 39943 | 11 | uses ("Tools/choice_specification.ML")
 | 
| 15131 | 12 | begin | 
| 12298 | 13 | |
| 14 | subsection {* Hilbert's epsilon *}
 | |
| 15 | ||
| 31454 | 16 | axiomatization Eps :: "('a => bool) => 'a" where
 | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 17 | someI: "P x ==> P (Eps P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 18 | |
| 14872 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 19 | syntax (epsilon) | 
| 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 20 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 21 | syntax (HOL) | 
| 12298 | 22 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 23 | syntax | 
| 12298 | 24 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 25 | translations | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 26 | "SOME x. P" == "CONST Eps (%x. P)" | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 27 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 28 | print_translation {*
 | 
| 35115 | 29 |   [(@{const_syntax Eps}, fn [Abs abs] =>
 | 
| 42284 | 30 | let val (x, t) = Syntax_Trans.atomic_abs_tr' abs | 
| 35115 | 31 |       in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
 | 
| 32 | *} -- {* to avoid eta-contraction of body *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 33 | |
| 33057 | 34 | definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
 | 
| 35 | "inv_into A f == %x. SOME y. y : A & f y = x" | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 36 | |
| 32988 | 37 | abbreviation inv :: "('a => 'b) => ('b => 'a)" where
 | 
| 33057 | 38 | "inv == inv_into UNIV" | 
| 14760 | 39 | |
| 40 | ||
| 41 | subsection {*Hilbert's Epsilon-operator*}
 | |
| 42 | ||
| 43 | text{*Easier to apply than @{text someI} if the witness comes from an
 | |
| 44 | existential formula*} | |
| 45 | lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)" | |
| 46 | apply (erule exE) | |
| 47 | apply (erule someI) | |
| 48 | done | |
| 49 | ||
| 50 | text{*Easier to apply than @{text someI} because the conclusion has only one
 | |
| 51 | occurrence of @{term P}.*}
 | |
| 52 | lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 53 | by (blast intro: someI) | |
| 54 | ||
| 55 | text{*Easier to apply than @{text someI2} if the witness comes from an
 | |
| 56 | existential formula*} | |
| 57 | lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 58 | by (blast intro: someI2) | |
| 59 | ||
| 60 | lemma some_equality [intro]: | |
| 61 | "[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a" | |
| 62 | by (blast intro: someI2) | |
| 63 | ||
| 64 | lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a" | |
| 35216 | 65 | by blast | 
| 14760 | 66 | |
| 67 | lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)" | |
| 68 | by (blast intro: someI) | |
| 69 | ||
| 70 | lemma some_eq_trivial [simp]: "(SOME y. y=x) = x" | |
| 71 | apply (rule some_equality) | |
| 72 | apply (rule refl, assumption) | |
| 73 | done | |
| 74 | ||
| 75 | lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x" | |
| 76 | apply (rule some_equality) | |
| 77 | apply (rule refl) | |
| 78 | apply (erule sym) | |
| 79 | done | |
| 80 | ||
| 81 | ||
| 82 | subsection{*Axiom of Choice, Proved Using the Description Operator*}
 | |
| 83 | ||
| 39950 | 84 | lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)" | 
| 14760 | 85 | by (fast elim: someI) | 
| 86 | ||
| 87 | lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)" | |
| 88 | by (fast elim: someI) | |
| 89 | ||
| 90 | ||
| 91 | subsection {*Function Inverse*}
 | |
| 92 | ||
| 33014 | 93 | lemma inv_def: "inv f = (%y. SOME x. f x = y)" | 
| 33057 | 94 | by(simp add: inv_into_def) | 
| 33014 | 95 | |
| 33057 | 96 | lemma inv_into_into: "x : f ` A ==> inv_into A f x : A" | 
| 97 | apply (simp add: inv_into_def) | |
| 32988 | 98 | apply (fast intro: someI2) | 
| 99 | done | |
| 14760 | 100 | |
| 32988 | 101 | lemma inv_id [simp]: "inv id = id" | 
| 33057 | 102 | by (simp add: inv_into_def id_def) | 
| 14760 | 103 | |
| 33057 | 104 | lemma inv_into_f_f [simp]: | 
| 105 | "[| inj_on f A; x : A |] ==> inv_into A f (f x) = x" | |
| 106 | apply (simp add: inv_into_def inj_on_def) | |
| 32988 | 107 | apply (blast intro: someI2) | 
| 14760 | 108 | done | 
| 109 | ||
| 32988 | 110 | lemma inv_f_f: "inj f ==> inv f (f x) = x" | 
| 35216 | 111 | by simp | 
| 32988 | 112 | |
| 33057 | 113 | lemma f_inv_into_f: "y : f`A ==> f (inv_into A f y) = y" | 
| 114 | apply (simp add: inv_into_def) | |
| 32988 | 115 | apply (fast intro: someI2) | 
| 116 | done | |
| 117 | ||
| 33057 | 118 | lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x" | 
| 32988 | 119 | apply (erule subst) | 
| 33057 | 120 | apply (fast intro: inv_into_f_f) | 
| 32988 | 121 | done | 
| 122 | ||
| 123 | lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x" | |
| 33057 | 124 | by (simp add:inv_into_f_eq) | 
| 32988 | 125 | |
| 126 | lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g" | |
| 44921 | 127 | by (blast intro: inv_into_f_eq) | 
| 14760 | 128 | |
| 129 | text{*But is it useful?*}
 | |
| 130 | lemma inj_transfer: | |
| 131 | assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)" | |
| 132 | shows "P x" | |
| 133 | proof - | |
| 134 | have "f x \<in> range f" by auto | |
| 135 | hence "P(inv f (f x))" by (rule minor) | |
| 33057 | 136 | thus "P x" by (simp add: inv_into_f_f [OF injf]) | 
| 14760 | 137 | qed | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 138 | |
| 14760 | 139 | lemma inj_iff: "(inj f) = (inv f o f = id)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 140 | apply (simp add: o_def fun_eq_iff) | 
| 33057 | 141 | apply (blast intro: inj_on_inverseI inv_into_f_f) | 
| 14760 | 142 | done | 
| 143 | ||
| 23433 | 144 | lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id" | 
| 145 | by (simp add: inj_iff) | |
| 146 | ||
| 147 | lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g" | |
| 148 | by (simp add: o_assoc[symmetric]) | |
| 149 | ||
| 33057 | 150 | lemma inv_into_image_cancel[simp]: | 
| 151 | "inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S" | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
42284diff
changeset | 152 | by(fastforce simp: image_def) | 
| 32988 | 153 | |
| 14760 | 154 | lemma inj_imp_surj_inv: "inj f ==> surj (inv f)" | 
| 40702 | 155 | by (blast intro!: surjI inv_into_f_f) | 
| 14760 | 156 | |
| 157 | lemma surj_f_inv_f: "surj f ==> f(inv f y) = y" | |
| 40702 | 158 | by (simp add: f_inv_into_f) | 
| 14760 | 159 | |
| 33057 | 160 | lemma inv_into_injective: | 
| 161 | assumes eq: "inv_into A f x = inv_into A f y" | |
| 32988 | 162 | and x: "x: f`A" | 
| 163 | and y: "y: f`A" | |
| 14760 | 164 | shows "x=y" | 
| 165 | proof - | |
| 33057 | 166 | have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp | 
| 167 | thus ?thesis by (simp add: f_inv_into_f x y) | |
| 14760 | 168 | qed | 
| 169 | ||
| 33057 | 170 | lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B" | 
| 171 | by (blast intro: inj_onI dest: inv_into_injective injD) | |
| 32988 | 172 | |
| 33057 | 173 | lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A" | 
| 174 | by (auto simp add: bij_betw_def inj_on_inv_into) | |
| 14760 | 175 | |
| 176 | lemma surj_imp_inj_inv: "surj f ==> inj (inv f)" | |
| 40702 | 177 | by (simp add: inj_on_inv_into) | 
| 14760 | 178 | |
| 179 | lemma surj_iff: "(surj f) = (f o inv f = id)" | |
| 40702 | 180 | by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a]) | 
| 181 | ||
| 182 | lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)" | |
| 183 | unfolding surj_iff by (simp add: o_def fun_eq_iff) | |
| 14760 | 184 | |
| 185 | lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g" | |
| 186 | apply (rule ext) | |
| 187 | apply (drule_tac x = "inv f x" in spec) | |
| 188 | apply (simp add: surj_f_inv_f) | |
| 189 | done | |
| 190 | ||
| 191 | lemma bij_imp_bij_inv: "bij f ==> bij (inv f)" | |
| 192 | by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) | |
| 12372 | 193 | |
| 14760 | 194 | lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g" | 
| 195 | apply (rule ext) | |
| 33057 | 196 | apply (auto simp add: inv_into_def) | 
| 14760 | 197 | done | 
| 198 | ||
| 199 | lemma inv_inv_eq: "bij f ==> inv (inv f) = f" | |
| 200 | apply (rule inv_equality) | |
| 201 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 202 | done | |
| 203 | ||
| 204 | (** bij(inv f) implies little about f. Consider f::bool=>bool such that | |
| 205 | f(True)=f(False)=True. Then it's consistent with axiom someI that | |
| 206 | inv f could be any function at all, including the identity function. | |
| 207 | If inv f=id then inv f is a bijection, but inj f, surj(f) and | |
| 208 | inv(inv f)=f all fail. | |
| 209 | **) | |
| 210 | ||
| 33057 | 211 | lemma inv_into_comp: | 
| 32988 | 212 | "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==> | 
| 33057 | 213 | inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x" | 
| 214 | apply (rule inv_into_f_eq) | |
| 32988 | 215 | apply (fast intro: comp_inj_on) | 
| 33057 | 216 | apply (simp add: inv_into_into) | 
| 217 | apply (simp add: f_inv_into_f inv_into_into) | |
| 32988 | 218 | done | 
| 219 | ||
| 14760 | 220 | lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f" | 
| 221 | apply (rule inv_equality) | |
| 222 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 223 | done | |
| 224 | ||
| 225 | lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A" | |
| 226 | by (simp add: image_eq_UN surj_f_inv_f) | |
| 227 | ||
| 228 | lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A" | |
| 229 | by (simp add: image_eq_UN) | |
| 230 | ||
| 231 | lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X" | |
| 232 | by (auto simp add: image_def) | |
| 233 | ||
| 234 | lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
 | |
| 235 | apply auto | |
| 236 | apply (force simp add: bij_is_inj) | |
| 237 | apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) | |
| 238 | done | |
| 239 | ||
| 240 | lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" | |
| 241 | apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) | |
| 33057 | 242 | apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric]) | 
| 14760 | 243 | done | 
| 244 | ||
| 31380 | 245 | lemma finite_fun_UNIVD1: | 
| 246 |   assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | |
| 247 | and card: "card (UNIV :: 'b set) \<noteq> Suc 0" | |
| 248 | shows "finite (UNIV :: 'a set)" | |
| 249 | proof - | |
| 250 | from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2) | |
| 251 | with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)" | |
| 252 | by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff) | |
| 253 | then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto | |
| 254 | then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq) | |
| 255 | from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI) | |
| 256 | moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" | |
| 257 | proof (rule UNIV_eq_I) | |
| 258 | fix x :: 'a | |
| 33057 | 259 | from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def) | 
| 31380 | 260 | thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast | 
| 261 | qed | |
| 262 | ultimately show "finite (UNIV :: 'a set)" by simp | |
| 263 | qed | |
| 14760 | 264 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 265 | lemma image_inv_into_cancel: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 266 | assumes SURJ: "f`A=A'" and SUB: "B' \<le> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 267 | shows "f `((inv_into A f)`B') = B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 268 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 269 | proof (auto simp add: f_inv_into_f) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 270 | let ?f' = "(inv_into A f)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 271 | fix a' assume *: "a' \<in> B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 272 | then have "a' \<in> A'" using SUB by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 273 | then have "a' = f (?f' a')" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 274 | using SURJ by (auto simp add: f_inv_into_f) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 275 | then show "a' \<in> f ` (?f' ` B')" using * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 276 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 277 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 278 | lemma inv_into_inv_into_eq: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 279 | assumes "bij_betw f A A'" "a \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 280 | shows "inv_into A' (inv_into A f) a = f a" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 281 | proof - | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 282 | let ?f' = "inv_into A f" let ?f'' = "inv_into A' ?f'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 283 | have 1: "bij_betw ?f' A' A" using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 284 | by (auto simp add: bij_betw_inv_into) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 285 | obtain a' where 2: "a' \<in> A'" and 3: "?f' a' = a" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 286 | using 1 `a \<in> A` unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 287 | hence "?f'' a = a'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 288 | using `a \<in> A` 1 3 by (auto simp add: f_inv_into_f bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 289 | moreover have "f a = a'" using assms 2 3 | 
| 44921 | 290 | by (auto simp add: bij_betw_def) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 291 | ultimately show "?f'' a = f a" by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 292 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 293 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 294 | lemma inj_on_iff_surj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 295 |   assumes "A \<noteq> {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 296 | shows "(\<exists>f. inj_on f A \<and> f ` A \<le> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 297 | proof safe | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 298 | fix f assume INJ: "inj_on f A" and INCL: "f ` A \<le> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 299 | let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'" let ?csi = "\<lambda>a. a \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 300 | let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 301 | have "?g ` A' = A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 302 | proof | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 303 | show "?g ` A' \<le> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 304 | proof clarify | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 305 | fix a' assume *: "a' \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 306 | show "?g a' \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 307 | proof cases | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 308 | assume Case1: "a' \<in> f ` A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 309 | then obtain a where "?phi a' a" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 310 | hence "?phi a' (SOME a. ?phi a' a)" using someI[of "?phi a'" a] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 311 | with Case1 show ?thesis by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 312 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 313 | assume Case2: "a' \<notin> f ` A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 314 | hence "?csi (SOME a. ?csi a)" using assms someI_ex[of ?csi] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 315 | with Case2 show ?thesis by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 316 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 317 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 318 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 319 | show "A \<le> ?g ` A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 320 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 321 |       {fix a assume *: "a \<in> A"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 322 | let ?b = "SOME aa. ?phi (f a) aa" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 323 | have "?phi (f a) a" using * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 324 | hence 1: "?phi (f a) ?b" using someI[of "?phi(f a)" a] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 325 | hence "?g(f a) = ?b" using * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 326 | moreover have "a = ?b" using 1 INJ * by (auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 327 | ultimately have "?g(f a) = a" by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 328 | with INCL * have "?g(f a) = a \<and> f a \<in> A'" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 329 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 330 | thus ?thesis by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 331 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 332 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 333 | thus "\<exists>g. g ` A' = A" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 334 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 335 | fix g let ?f = "inv_into A' g" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 336 | have "inj_on ?f (g ` A')" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 337 | by (auto simp add: inj_on_inv_into) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 338 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 339 |   {fix a' assume *: "a' \<in> A'"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 340 | let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 341 | have "?phi a'" using * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 342 | hence "?phi(SOME b'. ?phi b')" using someI[of ?phi] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 343 | hence "?f(g a') \<in> A'" unfolding inv_into_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 344 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 345 | ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 346 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 347 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 348 | lemma Ex_inj_on_UNION_Sigma: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 349 | "\<exists>f. (inj_on f (\<Union> i \<in> I. A i) \<and> f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i))" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 350 | proof | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 351 | let ?phi = "\<lambda> a i. i \<in> I \<and> a \<in> A i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 352 | let ?sm = "\<lambda> a. SOME i. ?phi a i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 353 | let ?f = "\<lambda>a. (?sm a, a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 354 | have "inj_on ?f (\<Union> i \<in> I. A i)" unfolding inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 355 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 356 |   { { fix i a assume "i \<in> I" and "a \<in> A i"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 357 | hence "?sm a \<in> I \<and> a \<in> A(?sm a)" using someI[of "?phi a" i] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 358 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 359 | hence "?f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i)" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 360 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 361 | ultimately | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 362 | show "inj_on ?f (\<Union> i \<in> I. A i) \<and> ?f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 363 | by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 364 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 365 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 366 | subsection {* The Cantor-Bernstein Theorem *}
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 367 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 368 | lemma Cantor_Bernstein_aux: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 369 | shows "\<exists>A' h. A' \<le> A \<and> | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 370 | (\<forall>a \<in> A'. a \<notin> g`(B - f ` A')) \<and> | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 371 | (\<forall>a \<in> A'. h a = f a) \<and> | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 372 | (\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a))" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 373 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 374 | obtain H where H_def: "H = (\<lambda> A'. A - (g`(B - (f ` A'))))" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 375 | have 0: "mono H" unfolding mono_def H_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 376 | then obtain A' where 1: "H A' = A'" using lfp_unfold by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 377 | hence 2: "A' = A - (g`(B - (f ` A')))" unfolding H_def by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 378 | hence 3: "A' \<le> A" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 379 | have 4: "\<forall>a \<in> A'. a \<notin> g`(B - f ` A')" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 380 | using 2 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 381 | have 5: "\<forall>a \<in> A - A'. \<exists>b \<in> B - (f ` A'). a = g b" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 382 | using 2 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 383 | (* *) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 384 | obtain h where h_def: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 385 | "h = (\<lambda> a. if a \<in> A' then f a else (SOME b. b \<in> B - (f ` A') \<and> a = g b))" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 386 | hence "\<forall>a \<in> A'. h a = f a" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 387 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 388 | have "\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 389 | proof | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 390 | fix a assume *: "a \<in> A - A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 391 | let ?phi = "\<lambda> b. b \<in> B - (f ` A') \<and> a = g b" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 392 | have "h a = (SOME b. ?phi b)" using h_def * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 393 | moreover have "\<exists>b. ?phi b" using 5 * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 394 | ultimately show "?phi (h a)" using someI_ex[of ?phi] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 395 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 396 | ultimately show ?thesis using 3 4 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 397 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 398 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 399 | theorem Cantor_Bernstein: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 400 | assumes INJ1: "inj_on f A" and SUB1: "f ` A \<le> B" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 401 | INJ2: "inj_on g B" and SUB2: "g ` B \<le> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 402 | shows "\<exists>h. bij_betw h A B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 403 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 404 | obtain A' and h where 0: "A' \<le> A" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 405 | 1: "\<forall>a \<in> A'. a \<notin> g`(B - f ` A')" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 406 | 2: "\<forall>a \<in> A'. h a = f a" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 407 | 3: "\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 408 | using Cantor_Bernstein_aux[of A g B f] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 409 | have "inj_on h A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 410 | proof (intro inj_onI) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 411 | fix a1 a2 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 412 | assume 4: "a1 \<in> A" and 5: "a2 \<in> A" and 6: "h a1 = h a2" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 413 | show "a1 = a2" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 414 | proof(cases "a1 \<in> A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 415 | assume Case1: "a1 \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 416 | show ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 417 | proof(cases "a2 \<in> A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 418 | assume Case11: "a2 \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 419 | hence "f a1 = f a2" using Case1 2 6 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 420 | thus ?thesis using INJ1 Case1 Case11 0 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 421 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 422 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 423 | assume Case12: "a2 \<notin> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 424 | hence False using 3 5 2 6 Case1 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 425 | thus ?thesis by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 426 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 427 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 428 | assume Case2: "a1 \<notin> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 429 | show ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 430 | proof(cases "a2 \<in> A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 431 | assume Case21: "a2 \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 432 | hence False using 3 4 2 6 Case2 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 433 | thus ?thesis by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 434 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 435 | assume Case22: "a2 \<notin> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 436 | hence "a1 = g(h a1) \<and> a2 = g(h a2)" using Case2 4 5 3 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 437 | thus ?thesis using 6 by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 438 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 439 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 440 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 441 | (* *) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 442 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 443 | have "h ` A = B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 444 | proof safe | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 445 | fix a assume "a \<in> A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 446 | thus "h a \<in> B" using SUB1 2 3 by (case_tac "a \<in> A'", auto) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 447 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 448 | fix b assume *: "b \<in> B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 449 | show "b \<in> h ` A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 450 | proof(cases "b \<in> f ` A'") | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 451 | assume Case1: "b \<in> f ` A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 452 | then obtain a where "a \<in> A' \<and> b = f a" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 453 | thus ?thesis using 2 0 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 454 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 455 | assume Case2: "b \<notin> f ` A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 456 | hence "g b \<notin> A'" using 1 * by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 457 | hence 4: "g b \<in> A - A'" using * SUB2 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 458 | hence "h(g b) \<in> B \<and> g(h(g b)) = g b" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 459 | using 3 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 460 | hence "h(g b) = b" using * INJ2 unfolding inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 461 | thus ?thesis using 4 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 462 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 463 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 464 | (* *) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 465 | ultimately show ?thesis unfolding bij_betw_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 466 | qed | 
| 14760 | 467 | |
| 468 | subsection {*Other Consequences of Hilbert's Epsilon*}
 | |
| 469 | ||
| 470 | text {*Hilbert's Epsilon and the @{term split} Operator*}
 | |
| 471 | ||
| 472 | text{*Looping simprule*}
 | |
| 473 | lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))" | |
| 26347 | 474 | by simp | 
| 14760 | 475 | |
| 476 | lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))" | |
| 26347 | 477 | by (simp add: split_def) | 
| 14760 | 478 | |
| 479 | lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)" | |
| 26347 | 480 | by blast | 
| 14760 | 481 | |
| 482 | ||
| 483 | text{*A relation is wellfounded iff it has no infinite descending chain*}
 | |
| 484 | lemma wf_iff_no_infinite_down_chain: | |
| 485 | "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))" | |
| 486 | apply (simp only: wf_eq_minimal) | |
| 487 | apply (rule iffI) | |
| 488 | apply (rule notI) | |
| 489 | apply (erule exE) | |
| 490 |  apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
 | |
| 491 | apply (erule contrapos_np, simp, clarify) | |
| 492 | apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q") | |
| 493 | apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI) | |
| 494 | apply (rule allI, simp) | |
| 495 | apply (rule someI2_ex, blast, blast) | |
| 496 | apply (rule allI) | |
| 497 | apply (induct_tac "n", simp_all) | |
| 498 | apply (rule someI2_ex, blast+) | |
| 499 | done | |
| 500 | ||
| 27760 | 501 | lemma wf_no_infinite_down_chainE: | 
| 502 | assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r" | |
| 503 | using `wf r` wf_iff_no_infinite_down_chain[of r] by blast | |
| 504 | ||
| 505 | ||
| 14760 | 506 | text{*A dynamically-scoped fact for TFL *}
 | 
| 12298 | 507 | lemma tfl_some: "\<forall>P x. P x --> P (Eps P)" | 
| 508 | by (blast intro: someI) | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 509 | |
| 12298 | 510 | |
| 511 | subsection {* Least value operator *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 512 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 513 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 514 | LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where | 
| 14760 | 515 | "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 516 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 517 | syntax | 
| 12298 | 518 |   "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 519 | translations | 
| 35115 | 520 | "LEAST x WRT m. P" == "CONST LeastM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 521 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 522 | lemma LeastMI2: | 
| 12298 | 523 | "P x ==> (!!y. P y ==> m x <= m y) | 
| 524 | ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x) | |
| 525 | ==> Q (LeastM m P)" | |
| 14760 | 526 | apply (simp add: LeastM_def) | 
| 14208 | 527 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 528 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 529 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 530 | lemma LeastM_equality: | 
| 12298 | 531 | "P k ==> (!!x. P x ==> m k <= m x) | 
| 532 | ==> m (LEAST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 533 | apply (rule LeastMI2, assumption, blast) | 
| 12298 | 534 | apply (blast intro!: order_antisym) | 
| 535 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 536 | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 537 | lemma wf_linord_ex_has_least: | 
| 14760 | 538 | "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k | 
| 539 | ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)" | |
| 12298 | 540 | apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]]) | 
| 14208 | 541 | apply (drule_tac x = "m`Collect P" in spec, force) | 
| 12298 | 542 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 543 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 544 | lemma ex_has_least_nat: | 
| 14760 | 545 | "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))" | 
| 12298 | 546 | apply (simp only: pred_nat_trancl_eq_le [symmetric]) | 
| 547 | apply (rule wf_pred_nat [THEN wf_linord_ex_has_least]) | |
| 16796 | 548 | apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption) | 
| 12298 | 549 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 550 | |
| 12298 | 551 | lemma LeastM_nat_lemma: | 
| 14760 | 552 | "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))" | 
| 553 | apply (simp add: LeastM_def) | |
| 12298 | 554 | apply (rule someI_ex) | 
| 555 | apply (erule ex_has_least_nat) | |
| 556 | done | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 557 | |
| 45607 | 558 | lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1] | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 559 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 560 | lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)" | 
| 14208 | 561 | by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption) | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 562 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 563 | |
| 12298 | 564 | subsection {* Greatest value operator *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 565 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 566 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 567 | GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where | 
| 14760 | 568 | "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)" | 
| 12298 | 569 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 570 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 571 |   Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where
 | 
| 12298 | 572 | "Greatest == GreatestM (%x. x)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 573 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 574 | syntax | 
| 35115 | 575 | "_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a" | 
| 12298 | 576 |       ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 577 | translations | 
| 35115 | 578 | "GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 579 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 580 | lemma GreatestMI2: | 
| 12298 | 581 | "P x ==> (!!y. P y ==> m y <= m x) | 
| 582 | ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x) | |
| 583 | ==> Q (GreatestM m P)" | |
| 14760 | 584 | apply (simp add: GreatestM_def) | 
| 14208 | 585 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 586 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 587 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 588 | lemma GreatestM_equality: | 
| 12298 | 589 | "P k ==> (!!x. P x ==> m x <= m k) | 
| 590 | ==> m (GREATEST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 591 | apply (rule_tac m = m in GreatestMI2, assumption, blast) | 
| 12298 | 592 | apply (blast intro!: order_antisym) | 
| 593 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 594 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 595 | lemma Greatest_equality: | 
| 12298 | 596 | "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k" | 
| 14760 | 597 | apply (simp add: Greatest_def) | 
| 14208 | 598 | apply (erule GreatestM_equality, blast) | 
| 12298 | 599 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 600 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 601 | lemma ex_has_greatest_nat_lemma: | 
| 14760 | 602 | "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x)) | 
| 603 | ==> \<exists>y. P y & ~ (m y < m k + n)" | |
| 15251 | 604 | apply (induct n, force) | 
| 12298 | 605 | apply (force simp add: le_Suc_eq) | 
| 606 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 607 | |
| 12298 | 608 | lemma ex_has_greatest_nat: | 
| 14760 | 609 | "P k ==> \<forall>y. P y --> m y < b | 
| 610 | ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)" | |
| 12298 | 611 | apply (rule ccontr) | 
| 612 | apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma) | |
| 14208 | 613 | apply (subgoal_tac [3] "m k <= b", auto) | 
| 12298 | 614 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 615 | |
| 12298 | 616 | lemma GreatestM_nat_lemma: | 
| 14760 | 617 | "P k ==> \<forall>y. P y --> m y < b | 
| 618 | ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))" | |
| 619 | apply (simp add: GreatestM_def) | |
| 12298 | 620 | apply (rule someI_ex) | 
| 14208 | 621 | apply (erule ex_has_greatest_nat, assumption) | 
| 12298 | 622 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 623 | |
| 45607 | 624 | lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1] | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 625 | |
| 12298 | 626 | lemma GreatestM_nat_le: | 
| 14760 | 627 | "P x ==> \<forall>y. P y --> m y < b | 
| 12298 | 628 | ==> (m x::nat) <= m (GreatestM m P)" | 
| 21020 | 629 | apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P]) | 
| 12298 | 630 | done | 
| 631 | ||
| 632 | ||
| 633 | text {* \medskip Specialization to @{text GREATEST}. *}
 | |
| 634 | ||
| 14760 | 635 | lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)" | 
| 636 | apply (simp add: Greatest_def) | |
| 14208 | 637 | apply (rule GreatestM_natI, auto) | 
| 12298 | 638 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 639 | |
| 12298 | 640 | lemma Greatest_le: | 
| 14760 | 641 | "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)" | 
| 642 | apply (simp add: Greatest_def) | |
| 14208 | 643 | apply (rule GreatestM_nat_le, auto) | 
| 12298 | 644 | done | 
| 645 | ||
| 646 | ||
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 647 | subsection {* Specification package -- Hilbertized version *}
 | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 648 | |
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 649 | lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c" | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 650 | by (simp only: someI_ex) | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 651 | |
| 31723 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
 haftmann parents: 
31454diff
changeset | 652 | use "Tools/choice_specification.ML" | 
| 14115 | 653 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 654 | end |