author | nipkow |
Sat, 26 Sep 2020 18:59:12 +0200 | |
changeset 72313 | babd74b71ea8 |
parent 70880 | de2e2382bc0d |
child 74301 | ffe269e74bdd |
permissions | -rw-r--r-- |
1477 | 1 |
(* Title: FOLP/IFOLP.thy |
2 |
Author: Martin D Coen, Cambridge University Computer Laboratory |
|
1142 | 3 |
Copyright 1992 University of Cambridge |
4 |
*) |
|
5 |
||
60770 | 6 |
section \<open>Intuitionistic First-Order Logic with Proofs\<close> |
17480 | 7 |
|
8 |
theory IFOLP |
|
9 |
imports Pure |
|
10 |
begin |
|
0 | 11 |
|
69605 | 12 |
ML_file \<open>~~/src/Tools/misc_legacy.ML\<close> |
48891 | 13 |
|
39557
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
wenzelm
parents:
38800
diff
changeset
|
14 |
setup Pure_Thy.old_appl_syntax_setup |
70880 | 15 |
setup \<open>Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc [])\<close> |
26956
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
wenzelm
parents:
26480
diff
changeset
|
16 |
|
55380
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
52230
diff
changeset
|
17 |
class "term" |
36452 | 18 |
default_sort "term" |
0 | 19 |
|
17480 | 20 |
typedecl p |
21 |
typedecl o |
|
0 | 22 |
|
17480 | 23 |
consts |
0 | 24 |
(*** Judgements ***) |
1477 | 25 |
Proof :: "[o,p]=>prop" |
0 | 26 |
EqProof :: "[p,p,o]=>prop" ("(3_ /= _ :/ _)" [10,10,10] 5) |
17480 | 27 |
|
0 | 28 |
(*** Logical Connectives -- Type Formers ***) |
41310 | 29 |
eq :: "['a,'a] => o" (infixl "=" 50) |
17480 | 30 |
True :: "o" |
31 |
False :: "o" |
|
41310 | 32 |
conj :: "[o,o] => o" (infixr "&" 35) |
33 |
disj :: "[o,o] => o" (infixr "|" 30) |
|
34 |
imp :: "[o,o] => o" (infixr "-->" 25) |
|
0 | 35 |
(*Quantifiers*) |
1477 | 36 |
All :: "('a => o) => o" (binder "ALL " 10) |
37 |
Ex :: "('a => o) => o" (binder "EX " 10) |
|
0 | 38 |
(*Rewriting gadgets*) |
1477 | 39 |
NORM :: "o => o" |
40 |
norm :: "'a => 'a" |
|
0 | 41 |
|
648
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
lcp
parents:
283
diff
changeset
|
42 |
(*** Proof Term Formers: precedence must exceed 50 ***) |
1477 | 43 |
tt :: "p" |
44 |
contr :: "p=>p" |
|
17480 | 45 |
fst :: "p=>p" |
46 |
snd :: "p=>p" |
|
1477 | 47 |
pair :: "[p,p]=>p" ("(1<_,/_>)") |
48 |
split :: "[p, [p,p]=>p] =>p" |
|
17480 | 49 |
inl :: "p=>p" |
50 |
inr :: "p=>p" |
|
60555
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
59529
diff
changeset
|
51 |
"when" :: "[p, p=>p, p=>p]=>p" |
1477 | 52 |
lambda :: "(p => p) => p" (binder "lam " 55) |
41310 | 53 |
App :: "[p,p]=>p" (infixl "`" 60) |
648
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
lcp
parents:
283
diff
changeset
|
54 |
alll :: "['a=>p]=>p" (binder "all " 55) |
41310 | 55 |
app :: "[p,'a]=>p" (infixl "^" 55) |
1477 | 56 |
exists :: "['a,p]=>p" ("(1[_,/_])") |
0 | 57 |
xsplit :: "[p,['a,p]=>p]=>p" |
58 |
ideq :: "'a=>p" |
|
59 |
idpeel :: "[p,'a=>p]=>p" |
|
17480 | 60 |
nrm :: p |
61 |
NRM :: p |
|
0 | 62 |
|
35113 | 63 |
syntax "_Proof" :: "[p,o]=>prop" ("(_ /: _)" [51, 10] 5) |
64 |
||
60770 | 65 |
parse_translation \<open> |
69593 | 66 |
let fun proof_tr [p, P] = Const (\<^const_syntax>\<open>Proof\<close>, dummyT) $ P $ p |
67 |
in [(\<^syntax_const>\<open>_Proof\<close>, K proof_tr)] end |
|
60770 | 68 |
\<close> |
17480 | 69 |
|
38800 | 70 |
(*show_proofs = true displays the proof terms -- they are ENORMOUS*) |
69593 | 71 |
ML \<open>val show_proofs = Attrib.setup_config_bool \<^binding>\<open>show_proofs\<close> (K false)\<close> |
38800 | 72 |
|
60770 | 73 |
print_translation \<open> |
38800 | 74 |
let |
75 |
fun proof_tr' ctxt [P, p] = |
|
69593 | 76 |
if Config.get ctxt show_proofs then Const (\<^syntax_const>\<open>_Proof\<close>, dummyT) $ p $ P |
38800 | 77 |
else P |
69593 | 78 |
in [(\<^const_syntax>\<open>Proof\<close>, proof_tr')] end |
60770 | 79 |
\<close> |
17480 | 80 |
|
0 | 81 |
|
82 |
(**** Propositional logic ****) |
|
83 |
||
84 |
(*Equality*) |
|
85 |
(* Like Intensional Equality in MLTT - but proofs distinct from terms *) |
|
86 |
||
51306 | 87 |
axiomatization where |
88 |
ieqI: "ideq(a) : a=a" and |
|
17480 | 89 |
ieqE: "[| p : a=b; !!x. f(x) : P(x,x) |] ==> idpeel(p,f) : P(a,b)" |
0 | 90 |
|
91 |
(* Truth and Falsity *) |
|
92 |
||
51306 | 93 |
axiomatization where |
94 |
TrueI: "tt : True" and |
|
17480 | 95 |
FalseE: "a:False ==> contr(a):P" |
0 | 96 |
|
97 |
(* Conjunction *) |
|
98 |
||
51306 | 99 |
axiomatization where |
100 |
conjI: "[| a:P; b:Q |] ==> <a,b> : P&Q" and |
|
101 |
conjunct1: "p:P&Q ==> fst(p):P" and |
|
17480 | 102 |
conjunct2: "p:P&Q ==> snd(p):Q" |
0 | 103 |
|
104 |
(* Disjunction *) |
|
105 |
||
51306 | 106 |
axiomatization where |
107 |
disjI1: "a:P ==> inl(a):P|Q" and |
|
108 |
disjI2: "b:Q ==> inr(b):P|Q" and |
|
17480 | 109 |
disjE: "[| a:P|Q; !!x. x:P ==> f(x):R; !!x. x:Q ==> g(x):R |
110 |
|] ==> when(a,f,g):R" |
|
0 | 111 |
|
112 |
(* Implication *) |
|
113 |
||
51306 | 114 |
axiomatization where |
115 |
impI: "\<And>P Q f. (!!x. x:P ==> f(x):Q) ==> lam x. f(x):P-->Q" and |
|
116 |
mp: "\<And>P Q f. [| f:P-->Q; a:P |] ==> f`a:Q" |
|
0 | 117 |
|
118 |
(*Quantifiers*) |
|
119 |
||
51306 | 120 |
axiomatization where |
121 |
allI: "\<And>P. (!!x. f(x) : P(x)) ==> all x. f(x) : ALL x. P(x)" and |
|
122 |
spec: "\<And>P f. (f:ALL x. P(x)) ==> f^x : P(x)" |
|
0 | 123 |
|
51306 | 124 |
axiomatization where |
125 |
exI: "p : P(x) ==> [x,p] : EX x. P(x)" and |
|
17480 | 126 |
exE: "[| p: EX x. P(x); !!x u. u:P(x) ==> f(x,u) : R |] ==> xsplit(p,f):R" |
0 | 127 |
|
128 |
(**** Equality between proofs ****) |
|
129 |
||
51306 | 130 |
axiomatization where |
131 |
prefl: "a : P ==> a = a : P" and |
|
132 |
psym: "a = b : P ==> b = a : P" and |
|
17480 | 133 |
ptrans: "[| a = b : P; b = c : P |] ==> a = c : P" |
0 | 134 |
|
51306 | 135 |
axiomatization where |
17480 | 136 |
idpeelB: "[| !!x. f(x) : P(x,x) |] ==> idpeel(ideq(a),f) = f(a) : P(a,a)" |
0 | 137 |
|
51306 | 138 |
axiomatization where |
139 |
fstB: "a:P ==> fst(<a,b>) = a : P" and |
|
140 |
sndB: "b:Q ==> snd(<a,b>) = b : Q" and |
|
17480 | 141 |
pairEC: "p:P&Q ==> p = <fst(p),snd(p)> : P&Q" |
0 | 142 |
|
51306 | 143 |
axiomatization where |
144 |
whenBinl: "[| a:P; !!x. x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q" and |
|
145 |
whenBinr: "[| b:P; !!x. x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q" and |
|
17480 | 146 |
plusEC: "a:P|Q ==> when(a,%x. inl(x),%y. inr(y)) = a : P|Q" |
0 | 147 |
|
51306 | 148 |
axiomatization where |
149 |
applyB: "[| a:P; !!x. x:P ==> b(x) : Q |] ==> (lam x. b(x)) ` a = b(a) : Q" and |
|
17480 | 150 |
funEC: "f:P ==> f = lam x. f`x : P" |
0 | 151 |
|
51306 | 152 |
axiomatization where |
17480 | 153 |
specB: "[| !!x. f(x) : P(x) |] ==> (all x. f(x)) ^ a = f(a) : P(a)" |
0 | 154 |
|
155 |
||
156 |
(**** Definitions ****) |
|
157 |
||
62147 | 158 |
definition Not :: "o => o" ("~ _" [40] 40) |
159 |
where not_def: "~P == P-->False" |
|
160 |
||
161 |
definition iff :: "[o,o] => o" (infixr "<->" 25) |
|
162 |
where "P<->Q == (P-->Q) & (Q-->P)" |
|
0 | 163 |
|
164 |
(*Unique existence*) |
|
62147 | 165 |
definition Ex1 :: "('a => o) => o" (binder "EX! " 10) |
166 |
where ex1_def: "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)" |
|
0 | 167 |
|
168 |
(*Rewriting -- special constants to flag normalized terms and formulae*) |
|
51306 | 169 |
axiomatization where |
170 |
norm_eq: "nrm : norm(x) = x" and |
|
17480 | 171 |
NORM_iff: "NRM : NORM(P) <-> P" |
172 |
||
26322 | 173 |
(*** Sequent-style elimination rules for & --> and ALL ***) |
174 |
||
61337 | 175 |
schematic_goal conjE: |
26322 | 176 |
assumes "p:P&Q" |
177 |
and "!!x y.[| x:P; y:Q |] ==> f(x,y):R" |
|
178 |
shows "?a:R" |
|
179 |
apply (rule assms(2)) |
|
180 |
apply (rule conjunct1 [OF assms(1)]) |
|
181 |
apply (rule conjunct2 [OF assms(1)]) |
|
182 |
done |
|
183 |
||
61337 | 184 |
schematic_goal impE: |
26322 | 185 |
assumes "p:P-->Q" |
186 |
and "q:P" |
|
187 |
and "!!x. x:Q ==> r(x):R" |
|
188 |
shows "?p:R" |
|
189 |
apply (rule assms mp)+ |
|
190 |
done |
|
191 |
||
61337 | 192 |
schematic_goal allE: |
26322 | 193 |
assumes "p:ALL x. P(x)" |
194 |
and "!!y. y:P(x) ==> q(y):R" |
|
195 |
shows "?p:R" |
|
196 |
apply (rule assms spec)+ |
|
197 |
done |
|
198 |
||
199 |
(*Duplicates the quantifier; for use with eresolve_tac*) |
|
61337 | 200 |
schematic_goal all_dupE: |
26322 | 201 |
assumes "p:ALL x. P(x)" |
202 |
and "!!y z.[| y:P(x); z:ALL x. P(x) |] ==> q(y,z):R" |
|
203 |
shows "?p:R" |
|
204 |
apply (rule assms spec)+ |
|
205 |
done |
|
206 |
||
207 |
||
208 |
(*** Negation rules, which translate between ~P and P-->False ***) |
|
209 |
||
61337 | 210 |
schematic_goal notI: |
26322 | 211 |
assumes "!!x. x:P ==> q(x):False" |
212 |
shows "?p:~P" |
|
213 |
unfolding not_def |
|
214 |
apply (assumption | rule assms impI)+ |
|
215 |
done |
|
216 |
||
61337 | 217 |
schematic_goal notE: "p:~P \<Longrightarrow> q:P \<Longrightarrow> ?p:R" |
26322 | 218 |
unfolding not_def |
219 |
apply (drule (1) mp) |
|
220 |
apply (erule FalseE) |
|
221 |
done |
|
222 |
||
223 |
(*This is useful with the special implication rules for each kind of P. *) |
|
61337 | 224 |
schematic_goal not_to_imp: |
26322 | 225 |
assumes "p:~P" |
226 |
and "!!x. x:(P-->False) ==> q(x):Q" |
|
227 |
shows "?p:Q" |
|
228 |
apply (assumption | rule assms impI notE)+ |
|
229 |
done |
|
230 |
||
231 |
(* For substitution int an assumption P, reduce Q to P-->Q, substitute into |
|
27150 | 232 |
this implication, then apply impI to move P back into the assumptions.*) |
61337 | 233 |
schematic_goal rev_mp: "[| p:P; q:P --> Q |] ==> ?p:Q" |
26322 | 234 |
apply (assumption | rule mp)+ |
235 |
done |
|
236 |
||
237 |
||
238 |
(*Contrapositive of an inference rule*) |
|
61337 | 239 |
schematic_goal contrapos: |
26322 | 240 |
assumes major: "p:~Q" |
241 |
and minor: "!!y. y:P==>q(y):Q" |
|
242 |
shows "?a:~P" |
|
243 |
apply (rule major [THEN notE, THEN notI]) |
|
244 |
apply (erule minor) |
|
245 |
done |
|
246 |
||
247 |
(** Unique assumption tactic. |
|
248 |
Ignores proof objects. |
|
249 |
Fails unless one assumption is equal and exactly one is unifiable |
|
250 |
**) |
|
251 |
||
60770 | 252 |
ML \<open> |
26322 | 253 |
local |
69593 | 254 |
fun discard_proof (Const (\<^const_name>\<open>Proof\<close>, _) $ P $ _) = P; |
26322 | 255 |
in |
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
256 |
fun uniq_assume_tac ctxt = |
26322 | 257 |
SUBGOAL |
258 |
(fn (prem,i) => |
|
259 |
let val hyps = map discard_proof (Logic.strip_assums_hyp prem) |
|
260 |
and concl = discard_proof (Logic.strip_assums_concl prem) |
|
261 |
in |
|
262 |
if exists (fn hyp => hyp aconv concl) hyps |
|
67405
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
wenzelm
parents:
67399
diff
changeset
|
263 |
then case distinct (op =) (filter (fn hyp => Term.could_unify (hyp, concl)) hyps) of |
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
264 |
[_] => assume_tac ctxt i |
26322 | 265 |
| _ => no_tac |
266 |
else no_tac |
|
267 |
end); |
|
268 |
end; |
|
60770 | 269 |
\<close> |
26322 | 270 |
|
271 |
||
272 |
(*** Modus Ponens Tactics ***) |
|
273 |
||
274 |
(*Finds P-->Q and P in the assumptions, replaces implication by Q *) |
|
60770 | 275 |
ML \<open> |
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
276 |
fun mp_tac ctxt i = |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58963
diff
changeset
|
277 |
eresolve_tac ctxt [@{thm notE}, make_elim @{thm mp}] i THEN assume_tac ctxt i |
60770 | 278 |
\<close> |
59529 | 279 |
method_setup mp = \<open>Scan.succeed (SIMPLE_METHOD' o mp_tac)\<close> |
26322 | 280 |
|
281 |
(*Like mp_tac but instantiates no variables*) |
|
60770 | 282 |
ML \<open> |
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
283 |
fun int_uniq_mp_tac ctxt i = |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58963
diff
changeset
|
284 |
eresolve_tac ctxt [@{thm notE}, @{thm impE}] i THEN uniq_assume_tac ctxt i |
60770 | 285 |
\<close> |
26322 | 286 |
|
287 |
||
288 |
(*** If-and-only-if ***) |
|
289 |
||
61337 | 290 |
schematic_goal iffI: |
26322 | 291 |
assumes "!!x. x:P ==> q(x):Q" |
292 |
and "!!x. x:Q ==> r(x):P" |
|
293 |
shows "?p:P<->Q" |
|
294 |
unfolding iff_def |
|
295 |
apply (assumption | rule assms conjI impI)+ |
|
296 |
done |
|
297 |
||
298 |
||
61337 | 299 |
schematic_goal iffE: |
26322 | 300 |
assumes "p:P <-> Q" |
301 |
and "!!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R" |
|
302 |
shows "?p:R" |
|
303 |
apply (rule conjE) |
|
304 |
apply (rule assms(1) [unfolded iff_def]) |
|
305 |
apply (rule assms(2)) |
|
306 |
apply assumption+ |
|
307 |
done |
|
308 |
||
309 |
(* Destruct rules for <-> similar to Modus Ponens *) |
|
310 |
||
61337 | 311 |
schematic_goal iffD1: "[| p:P <-> Q; q:P |] ==> ?p:Q" |
26322 | 312 |
unfolding iff_def |
313 |
apply (rule conjunct1 [THEN mp], assumption+) |
|
314 |
done |
|
315 |
||
61337 | 316 |
schematic_goal iffD2: "[| p:P <-> Q; q:Q |] ==> ?p:P" |
26322 | 317 |
unfolding iff_def |
318 |
apply (rule conjunct2 [THEN mp], assumption+) |
|
319 |
done |
|
320 |
||
61337 | 321 |
schematic_goal iff_refl: "?p:P <-> P" |
26322 | 322 |
apply (rule iffI) |
323 |
apply assumption+ |
|
324 |
done |
|
325 |
||
61337 | 326 |
schematic_goal iff_sym: "p:Q <-> P ==> ?p:P <-> Q" |
26322 | 327 |
apply (erule iffE) |
328 |
apply (rule iffI) |
|
329 |
apply (erule (1) mp)+ |
|
330 |
done |
|
331 |
||
61337 | 332 |
schematic_goal iff_trans: "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R" |
26322 | 333 |
apply (rule iffI) |
334 |
apply (assumption | erule iffE | erule (1) impE)+ |
|
335 |
done |
|
336 |
||
337 |
(*** Unique existence. NOTE THAT the following 2 quantifications |
|
338 |
EX!x such that [EX!y such that P(x,y)] (sequential) |
|
339 |
EX!x,y such that P(x,y) (simultaneous) |
|
340 |
do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential. |
|
341 |
***) |
|
342 |
||
61337 | 343 |
schematic_goal ex1I: |
26322 | 344 |
assumes "p:P(a)" |
345 |
and "!!x u. u:P(x) ==> f(u) : x=a" |
|
346 |
shows "?p:EX! x. P(x)" |
|
347 |
unfolding ex1_def |
|
348 |
apply (assumption | rule assms exI conjI allI impI)+ |
|
349 |
done |
|
350 |
||
61337 | 351 |
schematic_goal ex1E: |
26322 | 352 |
assumes "p:EX! x. P(x)" |
353 |
and "!!x u v. [| u:P(x); v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R" |
|
354 |
shows "?a : R" |
|
355 |
apply (insert assms(1) [unfolded ex1_def]) |
|
356 |
apply (erule exE conjE | assumption | rule assms(1))+ |
|
29305 | 357 |
apply (erule assms(2), assumption) |
26322 | 358 |
done |
359 |
||
360 |
||
361 |
(*** <-> congruence rules for simplification ***) |
|
362 |
||
363 |
(*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*) |
|
60770 | 364 |
ML \<open> |
59529 | 365 |
fun iff_tac ctxt prems i = |
366 |
resolve_tac ctxt (prems RL [@{thm iffE}]) i THEN |
|
367 |
REPEAT1 (eresolve_tac ctxt [asm_rl, @{thm mp}] i) |
|
60770 | 368 |
\<close> |
26322 | 369 |
|
59529 | 370 |
method_setup iff = |
371 |
\<open>Attrib.thms >> (fn prems => fn ctxt => SIMPLE_METHOD' (iff_tac ctxt prems))\<close> |
|
372 |
||
61337 | 373 |
schematic_goal conj_cong: |
26322 | 374 |
assumes "p:P <-> P'" |
375 |
and "!!x. x:P' ==> q(x):Q <-> Q'" |
|
376 |
shows "?p:(P&Q) <-> (P'&Q')" |
|
377 |
apply (insert assms(1)) |
|
59529 | 378 |
apply (assumption | rule iffI conjI | erule iffE conjE mp | iff assms)+ |
26322 | 379 |
done |
380 |
||
61337 | 381 |
schematic_goal disj_cong: |
26322 | 382 |
"[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')" |
59529 | 383 |
apply (erule iffE disjE disjI1 disjI2 | assumption | rule iffI | mp)+ |
26322 | 384 |
done |
385 |
||
61337 | 386 |
schematic_goal imp_cong: |
26322 | 387 |
assumes "p:P <-> P'" |
388 |
and "!!x. x:P' ==> q(x):Q <-> Q'" |
|
389 |
shows "?p:(P-->Q) <-> (P'-->Q')" |
|
390 |
apply (insert assms(1)) |
|
59529 | 391 |
apply (assumption | rule iffI impI | erule iffE | mp | iff assms)+ |
26322 | 392 |
done |
393 |
||
61337 | 394 |
schematic_goal iff_cong: |
26322 | 395 |
"[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')" |
59529 | 396 |
apply (erule iffE | assumption | rule iffI | mp)+ |
26322 | 397 |
done |
398 |
||
61337 | 399 |
schematic_goal not_cong: |
26322 | 400 |
"p:P <-> P' ==> ?p:~P <-> ~P'" |
59529 | 401 |
apply (assumption | rule iffI notI | mp | erule iffE notE)+ |
26322 | 402 |
done |
403 |
||
61337 | 404 |
schematic_goal all_cong: |
26322 | 405 |
assumes "!!x. f(x):P(x) <-> Q(x)" |
406 |
shows "?p:(ALL x. P(x)) <-> (ALL x. Q(x))" |
|
59529 | 407 |
apply (assumption | rule iffI allI | mp | erule allE | iff assms)+ |
26322 | 408 |
done |
409 |
||
61337 | 410 |
schematic_goal ex_cong: |
26322 | 411 |
assumes "!!x. f(x):P(x) <-> Q(x)" |
412 |
shows "?p:(EX x. P(x)) <-> (EX x. Q(x))" |
|
59529 | 413 |
apply (erule exE | assumption | rule iffI exI | mp | iff assms)+ |
26322 | 414 |
done |
415 |
||
416 |
(*NOT PROVED |
|
56199 | 417 |
ML_Thms.bind_thm ("ex1_cong", prove_goal (the_context ()) |
26322 | 418 |
"(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))" |
419 |
(fn prems => |
|
420 |
[ (REPEAT (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1 |
|
421 |
ORELSE mp_tac 1 |
|
422 |
ORELSE iff_tac prems 1)) ])) |
|
423 |
*) |
|
424 |
||
425 |
(*** Equality rules ***) |
|
426 |
||
427 |
lemmas refl = ieqI |
|
428 |
||
61337 | 429 |
schematic_goal subst: |
26322 | 430 |
assumes prem1: "p:a=b" |
431 |
and prem2: "q:P(a)" |
|
432 |
shows "?p : P(b)" |
|
433 |
apply (rule prem2 [THEN rev_mp]) |
|
434 |
apply (rule prem1 [THEN ieqE]) |
|
435 |
apply (rule impI) |
|
436 |
apply assumption |
|
437 |
done |
|
438 |
||
61337 | 439 |
schematic_goal sym: "q:a=b ==> ?c:b=a" |
26322 | 440 |
apply (erule subst) |
441 |
apply (rule refl) |
|
442 |
done |
|
443 |
||
61337 | 444 |
schematic_goal trans: "[| p:a=b; q:b=c |] ==> ?d:a=c" |
26322 | 445 |
apply (erule (1) subst) |
446 |
done |
|
447 |
||
448 |
(** ~ b=a ==> ~ a=b **) |
|
61337 | 449 |
schematic_goal not_sym: "p:~ b=a ==> ?q:~ a=b" |
26322 | 450 |
apply (erule contrapos) |
451 |
apply (erule sym) |
|
452 |
done |
|
453 |
||
61337 | 454 |
schematic_goal ssubst: "p:b=a \<Longrightarrow> q:P(a) \<Longrightarrow> ?p:P(b)" |
45594 | 455 |
apply (drule sym) |
456 |
apply (erule subst) |
|
457 |
apply assumption |
|
458 |
done |
|
26322 | 459 |
|
460 |
(*A special case of ex1E that would otherwise need quantifier expansion*) |
|
61337 | 461 |
schematic_goal ex1_equalsE: "[| p:EX! x. P(x); q:P(a); r:P(b) |] ==> ?d:a=b" |
26322 | 462 |
apply (erule ex1E) |
463 |
apply (rule trans) |
|
464 |
apply (rule_tac [2] sym) |
|
465 |
apply (assumption | erule spec [THEN mp])+ |
|
466 |
done |
|
467 |
||
468 |
(** Polymorphic congruence rules **) |
|
469 |
||
61337 | 470 |
schematic_goal subst_context: "[| p:a=b |] ==> ?d:t(a)=t(b)" |
26322 | 471 |
apply (erule ssubst) |
472 |
apply (rule refl) |
|
473 |
done |
|
474 |
||
61337 | 475 |
schematic_goal subst_context2: "[| p:a=b; q:c=d |] ==> ?p:t(a,c)=t(b,d)" |
26322 | 476 |
apply (erule ssubst)+ |
477 |
apply (rule refl) |
|
478 |
done |
|
479 |
||
61337 | 480 |
schematic_goal subst_context3: "[| p:a=b; q:c=d; r:e=f |] ==> ?p:t(a,c,e)=t(b,d,f)" |
26322 | 481 |
apply (erule ssubst)+ |
482 |
apply (rule refl) |
|
483 |
done |
|
484 |
||
485 |
(*Useful with eresolve_tac for proving equalties from known equalities. |
|
486 |
a = b |
|
487 |
| | |
|
488 |
c = d *) |
|
61337 | 489 |
schematic_goal box_equals: "[| p:a=b; q:a=c; r:b=d |] ==> ?p:c=d" |
26322 | 490 |
apply (rule trans) |
491 |
apply (rule trans) |
|
492 |
apply (rule sym) |
|
493 |
apply assumption+ |
|
494 |
done |
|
495 |
||
496 |
(*Dual of box_equals: for proving equalities backwards*) |
|
61337 | 497 |
schematic_goal simp_equals: "[| p:a=c; q:b=d; r:c=d |] ==> ?p:a=b" |
26322 | 498 |
apply (rule trans) |
499 |
apply (rule trans) |
|
500 |
apply (assumption | rule sym)+ |
|
501 |
done |
|
502 |
||
503 |
(** Congruence rules for predicate letters **) |
|
504 |
||
61337 | 505 |
schematic_goal pred1_cong: "p:a=a' ==> ?p:P(a) <-> P(a')" |
26322 | 506 |
apply (rule iffI) |
60770 | 507 |
apply (tactic \<open> |
69593 | 508 |
DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE eresolve_tac \<^context> [@{thm subst}, @{thm ssubst}] 1)\<close>) |
26322 | 509 |
done |
510 |
||
61337 | 511 |
schematic_goal pred2_cong: "[| p:a=a'; q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')" |
26322 | 512 |
apply (rule iffI) |
60770 | 513 |
apply (tactic \<open> |
69593 | 514 |
DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE eresolve_tac \<^context> [@{thm subst}, @{thm ssubst}] 1)\<close>) |
26322 | 515 |
done |
516 |
||
61337 | 517 |
schematic_goal pred3_cong: "[| p:a=a'; q:b=b'; r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')" |
26322 | 518 |
apply (rule iffI) |
60770 | 519 |
apply (tactic \<open> |
69593 | 520 |
DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE eresolve_tac \<^context> [@{thm subst}, @{thm ssubst}] 1)\<close>) |
26322 | 521 |
done |
522 |
||
27152
192954a9a549
changed pred_congs: merely cover pred1_cong pred2_cong pred3_cong;
wenzelm
parents:
27150
diff
changeset
|
523 |
lemmas pred_congs = pred1_cong pred2_cong pred3_cong |
26322 | 524 |
|
525 |
(*special case for the equality predicate!*) |
|
67399 | 526 |
lemmas eq_cong = pred2_cong [where P = "(=)"] |
26322 | 527 |
|
528 |
||
529 |
(*** Simplifications of assumed implications. |
|
530 |
Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE |
|
531 |
used with mp_tac (restricted to atomic formulae) is COMPLETE for |
|
532 |
intuitionistic propositional logic. See |
|
533 |
R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic |
|
534 |
(preprint, University of St Andrews, 1991) ***) |
|
535 |
||
61337 | 536 |
schematic_goal conj_impE: |
26322 | 537 |
assumes major: "p:(P&Q)-->S" |
538 |
and minor: "!!x. x:P-->(Q-->S) ==> q(x):R" |
|
539 |
shows "?p:R" |
|
540 |
apply (assumption | rule conjI impI major [THEN mp] minor)+ |
|
541 |
done |
|
542 |
||
61337 | 543 |
schematic_goal disj_impE: |
26322 | 544 |
assumes major: "p:(P|Q)-->S" |
545 |
and minor: "!!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R" |
|
546 |
shows "?p:R" |
|
69593 | 547 |
apply (tactic \<open>DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE |
548 |
resolve_tac \<^context> [@{thm disjI1}, @{thm disjI2}, @{thm impI}, |
|
60770 | 549 |
@{thm major} RS @{thm mp}, @{thm minor}] 1)\<close>) |
26322 | 550 |
done |
551 |
||
552 |
(*Simplifies the implication. Classical version is stronger. |
|
553 |
Still UNSAFE since Q must be provable -- backtracking needed. *) |
|
61337 | 554 |
schematic_goal imp_impE: |
26322 | 555 |
assumes major: "p:(P-->Q)-->S" |
556 |
and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q" |
|
557 |
and r2: "!!x. x:S ==> r(x):R" |
|
558 |
shows "?p:R" |
|
559 |
apply (assumption | rule impI major [THEN mp] r1 r2)+ |
|
560 |
done |
|
561 |
||
562 |
(*Simplifies the implication. Classical version is stronger. |
|
563 |
Still UNSAFE since ~P must be provable -- backtracking needed. *) |
|
61337 | 564 |
schematic_goal not_impE: |
26322 | 565 |
assumes major: "p:~P --> S" |
566 |
and r1: "!!y. y:P ==> q(y):False" |
|
567 |
and r2: "!!y. y:S ==> r(y):R" |
|
568 |
shows "?p:R" |
|
569 |
apply (assumption | rule notI impI major [THEN mp] r1 r2)+ |
|
570 |
done |
|
571 |
||
572 |
(*Simplifies the implication. UNSAFE. *) |
|
61337 | 573 |
schematic_goal iff_impE: |
26322 | 574 |
assumes major: "p:(P<->Q)-->S" |
575 |
and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q" |
|
576 |
and r2: "!!x y.[| x:Q; y:P-->S |] ==> r(x,y):P" |
|
577 |
and r3: "!!x. x:S ==> s(x):R" |
|
578 |
shows "?p:R" |
|
579 |
apply (assumption | rule iffI impI major [THEN mp] r1 r2 r3)+ |
|
580 |
done |
|
581 |
||
582 |
(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*) |
|
61337 | 583 |
schematic_goal all_impE: |
26322 | 584 |
assumes major: "p:(ALL x. P(x))-->S" |
585 |
and r1: "!!x. q:P(x)" |
|
586 |
and r2: "!!y. y:S ==> r(y):R" |
|
587 |
shows "?p:R" |
|
588 |
apply (assumption | rule allI impI major [THEN mp] r1 r2)+ |
|
589 |
done |
|
590 |
||
591 |
(*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *) |
|
61337 | 592 |
schematic_goal ex_impE: |
26322 | 593 |
assumes major: "p:(EX x. P(x))-->S" |
594 |
and r: "!!y. y:P(a)-->S ==> q(y):R" |
|
595 |
shows "?p:R" |
|
596 |
apply (assumption | rule exI impI major [THEN mp] r)+ |
|
597 |
done |
|
598 |
||
599 |
||
61337 | 600 |
schematic_goal rev_cut_eq: |
26322 | 601 |
assumes "p:a=b" |
602 |
and "!!x. x:a=b ==> f(x):R" |
|
603 |
shows "?p:R" |
|
604 |
apply (rule assms)+ |
|
605 |
done |
|
606 |
||
607 |
lemma thin_refl: "!!X. [|p:x=x; PROP W|] ==> PROP W" . |
|
608 |
||
69605 | 609 |
ML_file \<open>hypsubst.ML\<close> |
26322 | 610 |
|
60770 | 611 |
ML \<open> |
42799 | 612 |
structure Hypsubst = Hypsubst |
613 |
( |
|
26322 | 614 |
(*Take apart an equality judgement; otherwise raise Match!*) |
69593 | 615 |
fun dest_eq (Const (\<^const_name>\<open>Proof\<close>, _) $ |
616 |
(Const (\<^const_name>\<open>eq\<close>, _) $ t $ u) $ _) = (t, u); |
|
26322 | 617 |
|
618 |
val imp_intr = @{thm impI} |
|
619 |
||
620 |
(*etac rev_cut_eq moves an equality to be the last premise. *) |
|
621 |
val rev_cut_eq = @{thm rev_cut_eq} |
|
622 |
||
623 |
val rev_mp = @{thm rev_mp} |
|
624 |
val subst = @{thm subst} |
|
625 |
val sym = @{thm sym} |
|
626 |
val thin_refl = @{thm thin_refl} |
|
42799 | 627 |
); |
26322 | 628 |
open Hypsubst; |
60770 | 629 |
\<close> |
26322 | 630 |
|
69605 | 631 |
ML_file \<open>intprover.ML\<close> |
26322 | 632 |
|
633 |
||
634 |
(*** Rewrite rules ***) |
|
635 |
||
61337 | 636 |
schematic_goal conj_rews: |
26322 | 637 |
"?p1 : P & True <-> P" |
638 |
"?p2 : True & P <-> P" |
|
639 |
"?p3 : P & False <-> False" |
|
640 |
"?p4 : False & P <-> False" |
|
641 |
"?p5 : P & P <-> P" |
|
642 |
"?p6 : P & ~P <-> False" |
|
643 |
"?p7 : ~P & P <-> False" |
|
644 |
"?p8 : (P & Q) & R <-> P & (Q & R)" |
|
69593 | 645 |
apply (tactic \<open>fn st => IntPr.fast_tac \<^context> 1 st\<close>)+ |
26322 | 646 |
done |
647 |
||
61337 | 648 |
schematic_goal disj_rews: |
26322 | 649 |
"?p1 : P | True <-> True" |
650 |
"?p2 : True | P <-> True" |
|
651 |
"?p3 : P | False <-> P" |
|
652 |
"?p4 : False | P <-> P" |
|
653 |
"?p5 : P | P <-> P" |
|
654 |
"?p6 : (P | Q) | R <-> P | (Q | R)" |
|
69593 | 655 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ |
26322 | 656 |
done |
657 |
||
61337 | 658 |
schematic_goal not_rews: |
26322 | 659 |
"?p1 : ~ False <-> True" |
660 |
"?p2 : ~ True <-> False" |
|
69593 | 661 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ |
26322 | 662 |
done |
663 |
||
61337 | 664 |
schematic_goal imp_rews: |
26322 | 665 |
"?p1 : (P --> False) <-> ~P" |
666 |
"?p2 : (P --> True) <-> True" |
|
667 |
"?p3 : (False --> P) <-> True" |
|
668 |
"?p4 : (True --> P) <-> P" |
|
669 |
"?p5 : (P --> P) <-> True" |
|
670 |
"?p6 : (P --> ~P) <-> ~P" |
|
69593 | 671 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ |
26322 | 672 |
done |
673 |
||
61337 | 674 |
schematic_goal iff_rews: |
26322 | 675 |
"?p1 : (True <-> P) <-> P" |
676 |
"?p2 : (P <-> True) <-> P" |
|
677 |
"?p3 : (P <-> P) <-> True" |
|
678 |
"?p4 : (False <-> P) <-> ~P" |
|
679 |
"?p5 : (P <-> False) <-> ~P" |
|
69593 | 680 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ |
26322 | 681 |
done |
682 |
||
61337 | 683 |
schematic_goal quant_rews: |
26322 | 684 |
"?p1 : (ALL x. P) <-> P" |
685 |
"?p2 : (EX x. P) <-> P" |
|
69593 | 686 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ |
26322 | 687 |
done |
688 |
||
689 |
(*These are NOT supplied by default!*) |
|
61337 | 690 |
schematic_goal distrib_rews1: |
26322 | 691 |
"?p1 : ~(P|Q) <-> ~P & ~Q" |
692 |
"?p2 : P & (Q | R) <-> P&Q | P&R" |
|
693 |
"?p3 : (Q | R) & P <-> Q&P | R&P" |
|
694 |
"?p4 : (P | Q --> R) <-> (P --> R) & (Q --> R)" |
|
69593 | 695 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ |
26322 | 696 |
done |
697 |
||
61337 | 698 |
schematic_goal distrib_rews2: |
26322 | 699 |
"?p1 : ~(EX x. NORM(P(x))) <-> (ALL x. ~NORM(P(x)))" |
700 |
"?p2 : ((EX x. NORM(P(x))) --> Q) <-> (ALL x. NORM(P(x)) --> Q)" |
|
701 |
"?p3 : (EX x. NORM(P(x))) & NORM(Q) <-> (EX x. NORM(P(x)) & NORM(Q))" |
|
702 |
"?p4 : NORM(Q) & (EX x. NORM(P(x))) <-> (EX x. NORM(Q) & NORM(P(x)))" |
|
69593 | 703 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ |
26322 | 704 |
done |
705 |
||
706 |
lemmas distrib_rews = distrib_rews1 distrib_rews2 |
|
707 |
||
61337 | 708 |
schematic_goal P_Imp_P_iff_T: "p:P ==> ?p:(P <-> True)" |
69593 | 709 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>) |
26322 | 710 |
done |
711 |
||
61337 | 712 |
schematic_goal not_P_imp_P_iff_F: "p:~P ==> ?p:(P <-> False)" |
69593 | 713 |
apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>) |
26322 | 714 |
done |
0 | 715 |
|
716 |
end |