author | haftmann |
Thu, 02 Jul 2020 12:10:58 +0000 | |
changeset 71989 | bad75618fb82 |
parent 67312 | 0d25e02759b7 |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
42151 | 1 |
(* Title: HOL/HOLCF/Ssum.thy |
40502
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
huffman
parents:
40327
diff
changeset
|
2 |
Author: Franz Regensburger |
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
huffman
parents:
40327
diff
changeset
|
3 |
Author: Brian Huffman |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
4 |
*) |
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
5 |
|
62175 | 6 |
section \<open>The type of strict sums\<close> |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
7 |
|
15577 | 8 |
theory Ssum |
67312 | 9 |
imports Tr |
15577 | 10 |
begin |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
11 |
|
36452 | 12 |
default_sort pcpo |
16083
fca38c55c8fa
added defaultsort declaration, moved cpair_less to Cprod.thy
huffman
parents:
16070
diff
changeset
|
13 |
|
67312 | 14 |
|
62175 | 15 |
subsection \<open>Definition of strict sum type\<close> |
15593
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
16 |
|
67312 | 17 |
definition "ssum = |
18 |
{p :: tr \<times> ('a \<times> 'b). p = \<bottom> \<or> |
|
19 |
(fst p = TT \<and> fst (snd p) \<noteq> \<bottom> \<and> snd (snd p) = \<bottom>) \<or> |
|
20 |
(fst p = FF \<and> fst (snd p) = \<bottom> \<and> snd (snd p) \<noteq> \<bottom>)}" |
|
45695 | 21 |
|
61998 | 22 |
pcpodef ('a, 'b) ssum ("(_ \<oplus>/ _)" [21, 20] 20) = "ssum :: (tr \<times> 'a \<times> 'b) set" |
67312 | 23 |
by (simp_all add: ssum_def) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
24 |
|
35525 | 25 |
instance ssum :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin |
67312 | 26 |
by (rule typedef_chfin [OF type_definition_ssum below_ssum_def]) |
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25756
diff
changeset
|
27 |
|
61998 | 28 |
type_notation (ASCII) |
29 |
ssum (infixr "++" 10) |
|
35547 | 30 |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
31 |
|
62175 | 32 |
subsection \<open>Definitions of constructors\<close> |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
33 |
|
67312 | 34 |
definition sinl :: "'a \<rightarrow> ('a ++ 'b)" |
35 |
where "sinl = (\<Lambda> a. Abs_ssum (seq\<cdot>a\<cdot>TT, a, \<bottom>))" |
|
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
36 |
|
67312 | 37 |
definition sinr :: "'b \<rightarrow> ('a ++ 'b)" |
38 |
where "sinr = (\<Lambda> b. Abs_ssum (seq\<cdot>b\<cdot>FF, \<bottom>, b))" |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
39 |
|
40767
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
huffman
parents:
40502
diff
changeset
|
40 |
lemma sinl_ssum: "(seq\<cdot>a\<cdot>TT, a, \<bottom>) \<in> ssum" |
67312 | 41 |
by (simp add: ssum_def seq_conv_if) |
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
42 |
|
40767
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
huffman
parents:
40502
diff
changeset
|
43 |
lemma sinr_ssum: "(seq\<cdot>b\<cdot>FF, \<bottom>, b) \<in> ssum" |
67312 | 44 |
by (simp add: ssum_def seq_conv_if) |
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
45 |
|
40767
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
huffman
parents:
40502
diff
changeset
|
46 |
lemma Rep_ssum_sinl: "Rep_ssum (sinl\<cdot>a) = (seq\<cdot>a\<cdot>TT, a, \<bottom>)" |
67312 | 47 |
by (simp add: sinl_def cont_Abs_ssum Abs_ssum_inverse sinl_ssum) |
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
48 |
|
40767
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
huffman
parents:
40502
diff
changeset
|
49 |
lemma Rep_ssum_sinr: "Rep_ssum (sinr\<cdot>b) = (seq\<cdot>b\<cdot>FF, \<bottom>, b)" |
67312 | 50 |
by (simp add: sinr_def cont_Abs_ssum Abs_ssum_inverse sinr_ssum) |
40092
baf5953615da
do proofs using Rep_Sprod_simps, Rep_Ssum_simps; remove unused lemmas
huffman
parents:
40089
diff
changeset
|
51 |
|
40098
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
huffman
parents:
40092
diff
changeset
|
52 |
lemmas Rep_ssum_simps = |
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
huffman
parents:
40092
diff
changeset
|
53 |
Rep_ssum_inject [symmetric] below_ssum_def |
44066
d74182c93f04
rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
huffman
parents:
42151
diff
changeset
|
54 |
prod_eq_iff below_prod_def |
40098
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
huffman
parents:
40092
diff
changeset
|
55 |
Rep_ssum_strict Rep_ssum_sinl Rep_ssum_sinr |
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
56 |
|
67312 | 57 |
|
62175 | 58 |
subsection \<open>Properties of \emph{sinl} and \emph{sinr}\<close> |
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
59 |
|
62175 | 60 |
text \<open>Ordering\<close> |
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
61 |
|
67312 | 62 |
lemma sinl_below [simp]: "sinl\<cdot>x \<sqsubseteq> sinl\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y" |
63 |
by (simp add: Rep_ssum_simps seq_conv_if) |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
64 |
|
67312 | 65 |
lemma sinr_below [simp]: "sinr\<cdot>x \<sqsubseteq> sinr\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y" |
66 |
by (simp add: Rep_ssum_simps seq_conv_if) |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
67 |
|
67312 | 68 |
lemma sinl_below_sinr [simp]: "sinl\<cdot>x \<sqsubseteq> sinr\<cdot>y \<longleftrightarrow> x = \<bottom>" |
69 |
by (simp add: Rep_ssum_simps seq_conv_if) |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
70 |
|
67312 | 71 |
lemma sinr_below_sinl [simp]: "sinr\<cdot>x \<sqsubseteq> sinl\<cdot>y \<longleftrightarrow> x = \<bottom>" |
72 |
by (simp add: Rep_ssum_simps seq_conv_if) |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
73 |
|
62175 | 74 |
text \<open>Equality\<close> |
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
75 |
|
67312 | 76 |
lemma sinl_eq [simp]: "sinl\<cdot>x = sinl\<cdot>y \<longleftrightarrow> x = y" |
77 |
by (simp add: po_eq_conv) |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
78 |
|
67312 | 79 |
lemma sinr_eq [simp]: "sinr\<cdot>x = sinr\<cdot>y \<longleftrightarrow> x = y" |
80 |
by (simp add: po_eq_conv) |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
81 |
|
67312 | 82 |
lemma sinl_eq_sinr [simp]: "sinl\<cdot>x = sinr\<cdot>y \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" |
83 |
by (subst po_eq_conv) simp |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
84 |
|
67312 | 85 |
lemma sinr_eq_sinl [simp]: "sinr\<cdot>x = sinl\<cdot>y \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" |
86 |
by (subst po_eq_conv) simp |
|
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
87 |
|
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
88 |
lemma sinl_inject: "sinl\<cdot>x = sinl\<cdot>y \<Longrightarrow> x = y" |
67312 | 89 |
by (rule sinl_eq [THEN iffD1]) |
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
90 |
|
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
91 |
lemma sinr_inject: "sinr\<cdot>x = sinr\<cdot>y \<Longrightarrow> x = y" |
67312 | 92 |
by (rule sinr_eq [THEN iffD1]) |
25740
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
huffman
parents:
25131
diff
changeset
|
93 |
|
62175 | 94 |
text \<open>Strictness\<close> |
17837 | 95 |
|
16211
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
huffman
parents:
16083
diff
changeset
|
96 |
lemma sinl_strict [simp]: "sinl\<cdot>\<bottom> = \<bottom>" |
67312 | 97 |
by (simp add: Rep_ssum_simps) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
98 |
|
16211
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
huffman
parents:
16083
diff
changeset
|
99 |
lemma sinr_strict [simp]: "sinr\<cdot>\<bottom> = \<bottom>" |
67312 | 100 |
by (simp add: Rep_ssum_simps) |
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
101 |
|
67312 | 102 |
lemma sinl_bottom_iff [simp]: "sinl\<cdot>x = \<bottom> \<longleftrightarrow> x = \<bottom>" |
103 |
using sinl_eq [of "x" "\<bottom>"] by simp |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
104 |
|
67312 | 105 |
lemma sinr_bottom_iff [simp]: "sinr\<cdot>x = \<bottom> \<longleftrightarrow> x = \<bottom>" |
106 |
using sinr_eq [of "x" "\<bottom>"] by simp |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
107 |
|
40081 | 108 |
lemma sinl_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinl\<cdot>x \<noteq> \<bottom>" |
67312 | 109 |
by simp |
16752
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
huffman
parents:
16742
diff
changeset
|
110 |
|
40081 | 111 |
lemma sinr_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinr\<cdot>x \<noteq> \<bottom>" |
67312 | 112 |
by simp |
16752
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
huffman
parents:
16742
diff
changeset
|
113 |
|
62175 | 114 |
text \<open>Compactness\<close> |
25882
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
115 |
|
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
116 |
lemma compact_sinl: "compact x \<Longrightarrow> compact (sinl\<cdot>x)" |
67312 | 117 |
by (rule compact_ssum) (simp add: Rep_ssum_sinl) |
25882
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
118 |
|
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
119 |
lemma compact_sinr: "compact x \<Longrightarrow> compact (sinr\<cdot>x)" |
67312 | 120 |
by (rule compact_ssum) (simp add: Rep_ssum_sinr) |
25882
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
121 |
|
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
122 |
lemma compact_sinlD: "compact (sinl\<cdot>x) \<Longrightarrow> compact x" |
67312 | 123 |
unfolding compact_def |
124 |
by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinl]], simp) |
|
25882
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
125 |
|
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
126 |
lemma compact_sinrD: "compact (sinr\<cdot>x) \<Longrightarrow> compact x" |
67312 | 127 |
unfolding compact_def |
128 |
by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinr]], simp) |
|
25882
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
129 |
|
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
130 |
lemma compact_sinl_iff [simp]: "compact (sinl\<cdot>x) = compact x" |
67312 | 131 |
by (safe elim!: compact_sinl compact_sinlD) |
25882
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
132 |
|
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
133 |
lemma compact_sinr_iff [simp]: "compact (sinr\<cdot>x) = compact x" |
67312 | 134 |
by (safe elim!: compact_sinr compact_sinrD) |
135 |
||
25882
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
huffman
parents:
25827
diff
changeset
|
136 |
|
62175 | 137 |
subsection \<open>Case analysis\<close> |
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
138 |
|
35783 | 139 |
lemma ssumE [case_names bottom sinl sinr, cases type: ssum]: |
40080 | 140 |
obtains "p = \<bottom>" |
141 |
| x where "p = sinl\<cdot>x" and "x \<noteq> \<bottom>" |
|
142 |
| y where "p = sinr\<cdot>y" and "y \<noteq> \<bottom>" |
|
67312 | 143 |
using Rep_ssum [of p] by (auto simp add: ssum_def Rep_ssum_simps) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
144 |
|
35783 | 145 |
lemma ssum_induct [case_names bottom sinl sinr, induct type: ssum]: |
25756 | 146 |
"\<lbrakk>P \<bottom>; |
147 |
\<And>x. x \<noteq> \<bottom> \<Longrightarrow> P (sinl\<cdot>x); |
|
148 |
\<And>y. y \<noteq> \<bottom> \<Longrightarrow> P (sinr\<cdot>y)\<rbrakk> \<Longrightarrow> P x" |
|
67312 | 149 |
by (cases x) simp_all |
25756 | 150 |
|
35783 | 151 |
lemma ssumE2 [case_names sinl sinr]: |
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
152 |
"\<lbrakk>\<And>x. p = sinl\<cdot>x \<Longrightarrow> Q; \<And>y. p = sinr\<cdot>y \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" |
67312 | 153 |
by (cases p, simp only: sinl_strict [symmetric], simp, simp) |
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
154 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29530
diff
changeset
|
155 |
lemma below_sinlD: "p \<sqsubseteq> sinl\<cdot>x \<Longrightarrow> \<exists>y. p = sinl\<cdot>y \<and> y \<sqsubseteq> x" |
67312 | 156 |
by (cases p, rule_tac x="\<bottom>" in exI, simp_all) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
157 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29530
diff
changeset
|
158 |
lemma below_sinrD: "p \<sqsubseteq> sinr\<cdot>x \<Longrightarrow> \<exists>y. p = sinr\<cdot>y \<and> y \<sqsubseteq> x" |
67312 | 159 |
by (cases p, rule_tac x="\<bottom>" in exI, simp_all) |
160 |
||
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
161 |
|
62175 | 162 |
subsection \<open>Case analysis combinator\<close> |
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
163 |
|
67312 | 164 |
definition sscase :: "('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a ++ 'b) \<rightarrow> 'c" |
165 |
where "sscase = (\<Lambda> f g s. (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s))" |
|
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
166 |
|
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
167 |
translations |
67312 | 168 |
"case s of XCONST sinl\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" \<rightleftharpoons> "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" |
169 |
"case s of (XCONST sinl :: 'a)\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" \<rightharpoonup> "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" |
|
18078
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
huffman
parents:
17837
diff
changeset
|
170 |
|
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
huffman
parents:
17837
diff
changeset
|
171 |
translations |
67312 | 172 |
"\<Lambda>(XCONST sinl\<cdot>x). t" \<rightleftharpoons> "CONST sscase\<cdot>(\<Lambda> x. t)\<cdot>\<bottom>" |
173 |
"\<Lambda>(XCONST sinr\<cdot>y). t" \<rightleftharpoons> "CONST sscase\<cdot>\<bottom>\<cdot>(\<Lambda> y. t)" |
|
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
174 |
|
67312 | 175 |
lemma beta_sscase: "sscase\<cdot>f\<cdot>g\<cdot>s = (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s)" |
176 |
by (simp add: sscase_def cont_Rep_ssum) |
|
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
177 |
|
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
178 |
lemma sscase1 [simp]: "sscase\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" |
67312 | 179 |
by (simp add: beta_sscase Rep_ssum_strict) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
180 |
|
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
181 |
lemma sscase2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = f\<cdot>x" |
67312 | 182 |
by (simp add: beta_sscase Rep_ssum_sinl) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
183 |
|
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
184 |
lemma sscase3 [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>y) = g\<cdot>y" |
67312 | 185 |
by (simp add: beta_sscase Rep_ssum_sinr) |
15593
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
186 |
|
16060
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
huffman
parents:
15606
diff
changeset
|
187 |
lemma sscase4 [simp]: "sscase\<cdot>sinl\<cdot>sinr\<cdot>z = z" |
67312 | 188 |
by (cases z) simp_all |
189 |
||
15593
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
190 |
|
62175 | 191 |
subsection \<open>Strict sum preserves flatness\<close> |
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25756
diff
changeset
|
192 |
|
35525 | 193 |
instance ssum :: (flat, flat) flat |
67312 | 194 |
apply (intro_classes, clarify) |
195 |
apply (case_tac x, simp) |
|
196 |
apply (case_tac y, simp_all add: flat_below_iff) |
|
197 |
apply (case_tac y, simp_all add: flat_below_iff) |
|
198 |
done |
|
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25756
diff
changeset
|
199 |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
200 |
end |