| author | huffman |
| Fri, 22 Oct 2010 11:24:52 -0700 | |
| changeset 40092 | baf5953615da |
| parent 39595 | 9f86e46779e4 |
| child 40631 | b3f85ba3dae4 |
| permissions | -rw-r--r-- |
| 13586 | 1 |
(* Title: HOL/Library/FuncSet.thy |
2 |
Author: Florian Kammueller and Lawrence C Paulson |
|
3 |
*) |
|
4 |
||
| 14706 | 5 |
header {* Pi and Function Sets *}
|
| 13586 | 6 |
|
| 15131 | 7 |
theory FuncSet |
|
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
28524
diff
changeset
|
8 |
imports Hilbert_Choice Main |
| 15131 | 9 |
begin |
| 13586 | 10 |
|
| 19736 | 11 |
definition |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
12 |
Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
|
| 19736 | 13 |
"Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
|
| 13586 | 14 |
|
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
15 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
16 |
extensional :: "'a set => ('a => 'b) set" where
|
| 28524 | 17 |
"extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
|
| 13586 | 18 |
|
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
19 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
20 |
"restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
|
| 28524 | 21 |
"restrict f A = (%x. if x \<in> A then f x else undefined)" |
| 13586 | 22 |
|
| 19536 | 23 |
abbreviation |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
24 |
funcset :: "['a set, 'b set] => ('a => 'b) set"
|
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
25 |
(infixr "->" 60) where |
| 19536 | 26 |
"A -> B == Pi A (%_. B)" |
27 |
||
| 21210 | 28 |
notation (xsymbols) |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
29 |
funcset (infixr "\<rightarrow>" 60) |
| 19536 | 30 |
|
| 13586 | 31 |
syntax |
| 19736 | 32 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10)
|
33 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3%_:_./ _)" [0,0,3] 3)
|
|
| 13586 | 34 |
|
35 |
syntax (xsymbols) |
|
| 19736 | 36 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10)
|
37 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
|
|
| 13586 | 38 |
|
| 14565 | 39 |
syntax (HTML output) |
| 19736 | 40 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10)
|
41 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
|
|
| 14565 | 42 |
|
| 13586 | 43 |
translations |
| 20770 | 44 |
"PI x:A. B" == "CONST Pi A (%x. B)" |
45 |
"%x:A. f" == "CONST restrict (%x. f) A" |
|
| 13586 | 46 |
|
| 19736 | 47 |
definition |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
48 |
"compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
|
| 19736 | 49 |
"compose A g f = (\<lambda>x\<in>A. g (f x))" |
| 13586 | 50 |
|
51 |
||
52 |
subsection{*Basic Properties of @{term Pi}*}
|
|
53 |
||
| 31754 | 54 |
lemma Pi_I[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" |
| 14706 | 55 |
by (simp add: Pi_def) |
| 13586 | 56 |
|
| 31731 | 57 |
lemma Pi_I'[simp]: "(!!x. x : A --> f x : B x) ==> f : Pi A B" |
58 |
by(simp add:Pi_def) |
|
59 |
||
| 13586 | 60 |
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" |
| 14706 | 61 |
by (simp add: Pi_def) |
| 13586 | 62 |
|
63 |
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" |
|
| 14706 | 64 |
by (simp add: Pi_def) |
| 13586 | 65 |
|
| 31759 | 66 |
lemma PiE [elim]: |
| 31754 | 67 |
"f : Pi A B ==> (f x : B x ==> Q) ==> (x ~: A ==> Q) ==> Q" |
68 |
by(auto simp: Pi_def) |
|
69 |
||
| 38656 | 70 |
lemma Pi_cong: |
71 |
"(\<And> w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" |
|
72 |
by (auto simp: Pi_def) |
|
73 |
||
| 31769 | 74 |
lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" |
75 |
by (auto intro: Pi_I) |
|
76 |
||
| 13586 | 77 |
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" |
| 14706 | 78 |
by (simp add: Pi_def) |
| 13586 | 79 |
|
| 14762 | 80 |
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" |
| 31754 | 81 |
by auto |
| 14762 | 82 |
|
| 31754 | 83 |
lemma Pi_eq_empty[simp]: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
|
| 13593 | 84 |
apply (simp add: Pi_def, auto) |
| 13586 | 85 |
txt{*Converse direction requires Axiom of Choice to exhibit a function
|
86 |
picking an element from each non-empty @{term "B x"}*}
|
|
| 13593 | 87 |
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) |
| 14706 | 88 |
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) |
| 13586 | 89 |
done |
90 |
||
| 13593 | 91 |
lemma Pi_empty [simp]: "Pi {} B = UNIV"
|
| 31754 | 92 |
by (simp add: Pi_def) |
| 13593 | 93 |
|
94 |
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" |
|
| 31754 | 95 |
by (simp add: Pi_def) |
| 31727 | 96 |
(* |
97 |
lemma funcset_id [simp]: "(%x. x): A -> A" |
|
98 |
by (simp add: Pi_def) |
|
99 |
*) |
|
| 13586 | 100 |
text{*Covariance of Pi-sets in their second argument*}
|
101 |
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" |
|
| 31754 | 102 |
by auto |
| 13586 | 103 |
|
104 |
text{*Contravariance of Pi-sets in their first argument*}
|
|
105 |
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" |
|
| 31754 | 106 |
by auto |
| 13586 | 107 |
|
|
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
108 |
lemma prod_final: |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
109 |
assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C" |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
110 |
shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
111 |
proof (rule Pi_I) |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
112 |
fix z |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
113 |
assume z: "z \<in> A" |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
114 |
have "f z = (fst (f z), snd (f z))" |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
115 |
by simp |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
116 |
also have "... \<in> B z \<times> C z" |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
117 |
by (metis SigmaI PiE o_apply 1 2 z) |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
118 |
finally show "f z \<in> B z \<times> C z" . |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
119 |
qed |
|
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
120 |
|
| 13586 | 121 |
|
122 |
subsection{*Composition With a Restricted Domain: @{term compose}*}
|
|
123 |
||
| 14706 | 124 |
lemma funcset_compose: |
| 31754 | 125 |
"[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" |
126 |
by (simp add: Pi_def compose_def restrict_def) |
|
| 13586 | 127 |
|
128 |
lemma compose_assoc: |
|
| 14706 | 129 |
"[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] |
| 13586 | 130 |
==> compose A h (compose A g f) = compose A (compose B h g) f" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
131 |
by (simp add: fun_eq_iff Pi_def compose_def restrict_def) |
| 13586 | 132 |
|
133 |
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" |
|
| 31754 | 134 |
by (simp add: compose_def restrict_def) |
| 13586 | 135 |
|
136 |
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" |
|
| 14706 | 137 |
by (auto simp add: image_def compose_eq) |
| 13586 | 138 |
|
139 |
||
140 |
subsection{*Bounded Abstraction: @{term restrict}*}
|
|
141 |
||
142 |
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B" |
|
| 14706 | 143 |
by (simp add: Pi_def restrict_def) |
| 13586 | 144 |
|
| 31754 | 145 |
lemma restrictI[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B" |
| 14706 | 146 |
by (simp add: Pi_def restrict_def) |
| 13586 | 147 |
|
148 |
lemma restrict_apply [simp]: |
|
| 28524 | 149 |
"(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" |
| 14706 | 150 |
by (simp add: restrict_def) |
| 13586 | 151 |
|
| 14706 | 152 |
lemma restrict_ext: |
| 13586 | 153 |
"(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
154 |
by (simp add: fun_eq_iff Pi_def restrict_def) |
| 13586 | 155 |
|
| 14853 | 156 |
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" |
| 14706 | 157 |
by (simp add: inj_on_def restrict_def) |
| 13586 | 158 |
|
159 |
lemma Id_compose: |
|
| 14706 | 160 |
"[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
161 |
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) |
| 13586 | 162 |
|
163 |
lemma compose_Id: |
|
| 14706 | 164 |
"[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
165 |
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) |
| 13586 | 166 |
|
| 14853 | 167 |
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" |
| 19736 | 168 |
by (auto simp add: restrict_def) |
| 13586 | 169 |
|
| 14745 | 170 |
|
| 14762 | 171 |
subsection{*Bijections Between Sets*}
|
172 |
||
|
26106
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
nipkow
parents:
21404
diff
changeset
|
173 |
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
|
| 14762 | 174 |
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
|
175 |
||
| 39595 | 176 |
lemma bij_betwI: |
177 |
assumes "f \<in> A \<rightarrow> B" and "g \<in> B \<rightarrow> A" |
|
178 |
and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" |
|
179 |
shows "bij_betw f A B" |
|
180 |
unfolding bij_betw_def |
|
181 |
proof |
|
182 |
show "inj_on f A" by (metis g_f inj_on_def) |
|
183 |
next |
|
184 |
have "f ` A \<subseteq> B" using `f \<in> A \<rightarrow> B` by auto |
|
185 |
moreover |
|
186 |
have "B \<subseteq> f ` A" by auto (metis Pi_mem `g \<in> B \<rightarrow> A` f_g image_iff) |
|
187 |
ultimately show "f ` A = B" by blast |
|
188 |
qed |
|
189 |
||
| 14762 | 190 |
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" |
| 32988 | 191 |
by (auto simp add: bij_betw_def) |
| 14762 | 192 |
|
| 14853 | 193 |
lemma inj_on_compose: |
| 31754 | 194 |
"[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" |
195 |
by (auto simp add: bij_betw_def inj_on_def compose_eq) |
|
| 14853 | 196 |
|
| 14762 | 197 |
lemma bij_betw_compose: |
| 31754 | 198 |
"[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" |
199 |
apply (simp add: bij_betw_def compose_eq inj_on_compose) |
|
200 |
apply (auto simp add: compose_def image_def) |
|
201 |
done |
|
| 14762 | 202 |
|
| 14853 | 203 |
lemma bij_betw_restrict_eq [simp]: |
| 31754 | 204 |
"bij_betw (restrict f A) A B = bij_betw f A B" |
205 |
by (simp add: bij_betw_def) |
|
| 14853 | 206 |
|
207 |
||
208 |
subsection{*Extensionality*}
|
|
209 |
||
| 28524 | 210 |
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined" |
| 31754 | 211 |
by (simp add: extensional_def) |
| 14853 | 212 |
|
213 |
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" |
|
| 31754 | 214 |
by (simp add: restrict_def extensional_def) |
| 14853 | 215 |
|
216 |
lemma compose_extensional [simp]: "compose A f g \<in> extensional A" |
|
| 31754 | 217 |
by (simp add: compose_def) |
| 14853 | 218 |
|
219 |
lemma extensionalityI: |
|
| 31754 | 220 |
"[| f \<in> extensional A; g \<in> extensional A; |
| 14853 | 221 |
!!x. x\<in>A ==> f x = g x |] ==> f = g" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
222 |
by (force simp add: fun_eq_iff extensional_def) |
| 14853 | 223 |
|
| 39595 | 224 |
lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" |
225 |
by(rule extensionalityI[OF restrict_extensional]) auto |
|
226 |
||
| 33057 | 227 |
lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A" |
228 |
by (unfold inv_into_def) (fast intro: someI2) |
|
| 14853 | 229 |
|
| 33057 | 230 |
lemma compose_inv_into_id: |
231 |
"bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" |
|
| 31754 | 232 |
apply (simp add: bij_betw_def compose_def) |
233 |
apply (rule restrict_ext, auto) |
|
234 |
done |
|
| 14853 | 235 |
|
| 33057 | 236 |
lemma compose_id_inv_into: |
237 |
"f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" |
|
| 31754 | 238 |
apply (simp add: compose_def) |
239 |
apply (rule restrict_ext) |
|
| 33057 | 240 |
apply (simp add: f_inv_into_f) |
| 31754 | 241 |
done |
| 14853 | 242 |
|
| 14762 | 243 |
|
| 14745 | 244 |
subsection{*Cardinality*}
|
245 |
||
246 |
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" |
|
| 31754 | 247 |
by (rule card_inj_on_le) auto |
| 14745 | 248 |
|
249 |
lemma card_bij: |
|
| 31754 | 250 |
"[|f \<in> A\<rightarrow>B; inj_on f A; |
251 |
g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" |
|
252 |
by (blast intro: card_inj order_antisym) |
|
| 14745 | 253 |
|
| 13586 | 254 |
end |