| author | wenzelm | 
| Wed, 18 Oct 2000 23:40:17 +0200 | |
| changeset 10261 | bb2f1e859177 | 
| parent 9248 | e1dee89de037 | 
| child 10834 | a7897aebbffc | 
| permissions | -rw-r--r-- | 
| 9245 | 1 | (* Title: HOLCF/Cfun2 | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Franz Regensburger | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 9245 | 6 | Class Instance ->::(cpo,cpo)po | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | |
| 2640 | 9 | (* for compatibility with old HOLCF-Version *) | 
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 10 | Goal "(op <<)=(%f1 f2. Rep_CFun f1 << Rep_CFun f2)"; | 
| 9245 | 11 | by (fold_goals_tac [less_cfun_def]); | 
| 12 | by (rtac refl 1); | |
| 13 | qed "inst_cfun_po"; | |
| 2640 | 14 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 15 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | (* access to less_cfun in class po *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 17 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 18 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 19 | Goal "( f1 << f2 ) = (Rep_CFun(f1) << Rep_CFun(f2))"; | 
| 9245 | 20 | by (simp_tac (simpset() addsimps [inst_cfun_po]) 1); | 
| 21 | qed "less_cfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 22 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 24 | (* Type 'a ->'b is pointed *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 25 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 26 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 27 | Goal "Abs_CFun(% x. UU) << f"; | 
| 9245 | 28 | by (stac less_cfun 1); | 
| 29 | by (stac Abs_Cfun_inverse2 1); | |
| 30 | by (rtac cont_const 1); | |
| 31 | by (rtac minimal_fun 1); | |
| 32 | qed "minimal_cfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 33 | |
| 2640 | 34 | bind_thm ("UU_cfun_def",minimal_cfun RS minimal2UU RS sym);
 | 
| 35 | ||
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 36 | Goal "? x::'a->'b::pcpo.!y. x<<y"; | 
| 9245 | 37 | by (res_inst_tac [("x","Abs_CFun(% x. UU)")] exI 1);
 | 
| 38 | by (rtac (minimal_cfun RS allI) 1); | |
| 39 | qed "least_cfun"; | |
| 2640 | 40 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 41 | (* ------------------------------------------------------------------------ *) | 
| 5291 | 42 | (* Rep_CFun yields continuous functions in 'a => 'b *) | 
| 43 | (* this is continuity of Rep_CFun in its 'second' argument *) | |
| 44 | (* cont_Rep_CFun2 ==> monofun_Rep_CFun2 & contlub_Rep_CFun2 *) | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 45 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 46 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 47 | Goal "cont(Rep_CFun(fo))"; | 
| 9245 | 48 | by (res_inst_tac [("P","cont")] CollectD 1);
 | 
| 49 | by (fold_goals_tac [CFun_def]); | |
| 50 | by (rtac Rep_Cfun 1); | |
| 51 | qed "cont_Rep_CFun2"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 52 | |
| 5291 | 53 | bind_thm ("monofun_Rep_CFun2", cont_Rep_CFun2 RS cont2mono);
 | 
| 54 | (* monofun(Rep_CFun(?fo1)) *) | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 55 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 56 | |
| 5291 | 57 | bind_thm ("contlub_Rep_CFun2", cont_Rep_CFun2 RS cont2contlub);
 | 
| 58 | (* contlub(Rep_CFun(?fo1)) *) | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 59 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 60 | (* ------------------------------------------------------------------------ *) | 
| 5291 | 61 | (* expanded thms cont_Rep_CFun2, contlub_Rep_CFun2 *) | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 62 | (* looks nice with mixfix syntac *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 63 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 64 | |
| 5291 | 65 | bind_thm ("cont_cfun_arg", (cont_Rep_CFun2 RS contE RS spec RS mp));
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 66 | (* chain(?x1) ==> range (%i. ?fo3`(?x1 i)) <<| ?fo3`(lub (range ?x1)) *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 67 | |
| 5291 | 68 | bind_thm ("contlub_cfun_arg", (contlub_Rep_CFun2 RS contlubE RS spec RS mp));
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 69 | (* chain(?x1) ==> ?fo4`(lub (range ?x1)) = lub (range (%i. ?fo4`(?x1 i))) *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 70 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 71 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 72 | (* ------------------------------------------------------------------------ *) | 
| 5291 | 73 | (* Rep_CFun is monotone in its 'first' argument *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 74 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 75 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 76 | Goalw [monofun] "monofun(Rep_CFun)"; | 
| 9245 | 77 | by (strip_tac 1); | 
| 78 | by (etac (less_cfun RS subst) 1); | |
| 79 | qed "monofun_Rep_CFun1"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 80 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 81 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 82 | (* ------------------------------------------------------------------------ *) | 
| 5291 | 83 | (* monotonicity of application Rep_CFun in mixfix syntax [_]_ *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 84 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 85 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 86 | Goal "f1 << f2 ==> f1`x << f2`x"; | 
| 9245 | 87 | by (res_inst_tac [("x","x")] spec 1);
 | 
| 88 | by (rtac (less_fun RS subst) 1); | |
| 89 | by (etac (monofun_Rep_CFun1 RS monofunE RS spec RS spec RS mp) 1); | |
| 90 | qed "monofun_cfun_fun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 91 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 92 | |
| 5291 | 93 | bind_thm ("monofun_cfun_arg", monofun_Rep_CFun2 RS monofunE RS spec RS spec RS mp);
 | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 94 | (* ?x2 << ?x1 ==> ?fo5`?x2 << ?fo5`?x1 *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 95 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 96 | (* ------------------------------------------------------------------------ *) | 
| 5291 | 97 | (* monotonicity of Rep_CFun in both arguments in mixfix syntax [_]_ *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 98 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 99 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 100 | Goal "[|f1<<f2;x1<<x2|] ==> f1`x1 << f2`x2"; | 
| 9245 | 101 | by (rtac trans_less 1); | 
| 102 | by (etac monofun_cfun_arg 1); | |
| 103 | by (etac monofun_cfun_fun 1); | |
| 104 | qed "monofun_cfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 105 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 106 | |
| 9245 | 107 | Goal "f`x = UU ==> f`UU = UU"; | 
| 108 | by (rtac (eq_UU_iff RS iffD2) 1); | |
| 109 | by (etac subst 1); | |
| 110 | by (rtac (minimal RS monofun_cfun_arg) 1); | |
| 111 | qed "strictI"; | |
| 1989 | 112 | |
| 113 | ||
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 114 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 115 | (* ch2ch - rules for the type 'a -> 'b *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 116 | (* use MF2 lemmas from Cont.ML *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 117 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 118 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 119 | Goal "chain(Y) ==> chain(%i. f`(Y i))"; | 
| 9245 | 120 | by (etac (monofun_Rep_CFun2 RS ch2ch_MF2R) 1); | 
| 121 | qed "ch2ch_Rep_CFunR"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 122 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 123 | |
| 5291 | 124 | bind_thm ("ch2ch_Rep_CFunL", monofun_Rep_CFun1 RS ch2ch_MF2L);
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 125 | (* chain(?F) ==> chain (%i. ?F i`?x) *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 126 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 127 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 128 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 129 | (* the lub of a chain of continous functions is monotone *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 130 | (* use MF2 lemmas from Cont.ML *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 131 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 132 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 133 | Goal "chain(F) ==> monofun(% x. lub(range(% j.(F j)`x)))"; | 
| 9245 | 134 | by (rtac lub_MF2_mono 1); | 
| 135 | by (rtac monofun_Rep_CFun1 1); | |
| 136 | by (rtac (monofun_Rep_CFun2 RS allI) 1); | |
| 137 | by (atac 1); | |
| 138 | qed "lub_cfun_mono"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 139 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 140 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 141 | (* a lemma about the exchange of lubs for type 'a -> 'b *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 142 | (* use MF2 lemmas from Cont.ML *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 143 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 144 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 145 | Goal "[| chain(F); chain(Y) |] ==>\ | 
| 1461 | 146 | \ lub(range(%j. lub(range(%i. F(j)`(Y i))))) =\ | 
| 9245 | 147 | \ lub(range(%i. lub(range(%j. F(j)`(Y i)))))"; | 
| 148 | by (rtac ex_lubMF2 1); | |
| 149 | by (rtac monofun_Rep_CFun1 1); | |
| 150 | by (rtac (monofun_Rep_CFun2 RS allI) 1); | |
| 151 | by (atac 1); | |
| 152 | by (atac 1); | |
| 153 | qed "ex_lubcfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 154 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 155 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 156 | (* the lub of a chain of cont. functions is continuous *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 157 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 158 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 159 | Goal "chain(F) ==> cont(% x. lub(range(% j. F(j)`x)))"; | 
| 9245 | 160 | by (rtac monocontlub2cont 1); | 
| 161 | by (etac lub_cfun_mono 1); | |
| 162 | by (rtac contlubI 1); | |
| 163 | by (strip_tac 1); | |
| 164 | by (stac (contlub_cfun_arg RS ext) 1); | |
| 165 | by (atac 1); | |
| 166 | by (etac ex_lubcfun 1); | |
| 167 | by (atac 1); | |
| 168 | qed "cont_lubcfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 169 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 170 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 171 | (* type 'a -> 'b is chain complete *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 172 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 173 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 174 | Goal "chain(CCF) ==> range(CCF) <<| (LAM x. lub(range(% i. CCF(i)`x)))"; | 
| 9245 | 175 | by (rtac is_lubI 1); | 
| 176 | by (rtac ub_rangeI 1); | |
| 177 | by (stac less_cfun 1); | |
| 178 | by (stac Abs_Cfun_inverse2 1); | |
| 179 | by (etac cont_lubcfun 1); | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 180 | by (rtac (lub_fun RS is_lubD1 RS ub_rangeD) 1); | 
| 9245 | 181 | by (etac (monofun_Rep_CFun1 RS ch2ch_monofun) 1); | 
| 182 | by (stac less_cfun 1); | |
| 183 | by (stac Abs_Cfun_inverse2 1); | |
| 184 | by (etac cont_lubcfun 1); | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 185 | by (rtac (lub_fun RS is_lub_lub) 1); | 
| 9245 | 186 | by (etac (monofun_Rep_CFun1 RS ch2ch_monofun) 1); | 
| 187 | by (etac (monofun_Rep_CFun1 RS ub2ub_monofun) 1); | |
| 188 | qed "lub_cfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 189 | |
| 1779 | 190 | bind_thm ("thelub_cfun", lub_cfun RS thelubI);
 | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 191 | (* | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 192 | chain(?CCF1) ==> lub (range ?CCF1) = (LAM x. lub (range (%i. ?CCF1 i`x))) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 193 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 194 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 195 | Goal "chain(CCF::nat=>('a->'b)) ==> ? x. range(CCF) <<| x";
 | 
| 9245 | 196 | by (rtac exI 1); | 
| 197 | by (etac lub_cfun 1); | |
| 198 | qed "cpo_cfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 199 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 200 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 201 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 202 | (* Extensionality in 'a -> 'b *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 203 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 204 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 205 | val prems = Goal "(!!x. f`x = g`x) ==> f = g"; | 
| 9245 | 206 | by (res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1);
 | 
| 207 | by (res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1);
 | |
| 208 | by (res_inst_tac [("f","Abs_CFun")] arg_cong 1);
 | |
| 209 | by (rtac ext 1); | |
| 210 | by (resolve_tac prems 1); | |
| 211 | qed "ext_cfun"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 212 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 213 | (* ------------------------------------------------------------------------ *) | 
| 5291 | 214 | (* Monotonicity of Abs_CFun *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 215 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 216 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 217 | Goal "[| cont(f); cont(g); f<<g|] ==> Abs_CFun(f)<<Abs_CFun(g)"; | 
| 9245 | 218 | by (rtac (less_cfun RS iffD2) 1); | 
| 219 | by (stac Abs_Cfun_inverse2 1); | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 220 | by (assume_tac 1); | 
| 9245 | 221 | by (stac Abs_Cfun_inverse2 1); | 
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 222 | by (assume_tac 1); | 
| 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 223 | by (assume_tac 1); | 
| 9245 | 224 | qed "semi_monofun_Abs_CFun"; | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 225 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 226 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 227 | (* Extenionality wrt. << in 'a -> 'b *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 228 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 229 | |
| 9248 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 paulson parents: 
9245diff
changeset | 230 | val prems = Goal "(!!x. f`x << g`x) ==> f << g"; | 
| 9245 | 231 | by (res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1);
 | 
| 232 | by (res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1);
 | |
| 233 | by (rtac semi_monofun_Abs_CFun 1); | |
| 234 | by (rtac cont_Rep_CFun2 1); | |
| 235 | by (rtac cont_Rep_CFun2 1); | |
| 236 | by (rtac (less_fun RS iffD2) 1); | |
| 237 | by (rtac allI 1); | |
| 238 | by (resolve_tac prems 1); | |
| 239 | qed "less_cfun2"; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 240 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 241 |