| 
33471
 | 
     1  | 
(*  Title:      HOL/ex/Induction_Schema.thy
  | 
| 
 | 
     2  | 
    Author:     Alexander Krauss, TU Muenchen
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
header {* Examples of automatically derived induction rules *}
 | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory Induction_Schema
  | 
| 
 | 
     8  | 
imports Main
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
subsection {* Some simple induction principles on nat *}
 | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
lemma nat_standard_induct: (* cf. Nat.thy *)
  | 
| 
 | 
    14  | 
  "\<lbrakk>P 0; \<And>n. P n \<Longrightarrow> P (Suc n)\<rbrakk> \<Longrightarrow> P x"
  | 
| 
 | 
    15  | 
by induction_schema (pat_completeness, lexicographic_order)
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
lemma nat_induct2:
  | 
| 
 | 
    18  | 
  "\<lbrakk> P 0; P (Suc 0); \<And>k. P k ==> P (Suc k) ==> P (Suc (Suc k)) \<rbrakk>
  | 
| 
 | 
    19  | 
  \<Longrightarrow> P n"
  | 
| 
 | 
    20  | 
by induction_schema (pat_completeness, lexicographic_order)
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
lemma minus_one_induct:
  | 
| 
 | 
    23  | 
  "\<lbrakk>\<And>n::nat. (n \<noteq> 0 \<Longrightarrow> P (n - 1)) \<Longrightarrow> P n\<rbrakk> \<Longrightarrow> P x"
  | 
| 
 | 
    24  | 
by induction_schema (pat_completeness, lexicographic_order)
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
theorem diff_induct: (* cf. Nat.thy *)
  | 
| 
 | 
    27  | 
  "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
  | 
| 
 | 
    28  | 
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
  | 
| 
 | 
    29  | 
by induction_schema (pat_completeness, lexicographic_order)
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma list_induct2': (* cf. List.thy *)
  | 
| 
 | 
    32  | 
  "\<lbrakk> P [] [];
  | 
| 
 | 
    33  | 
  \<And>x xs. P (x#xs) [];
  | 
| 
 | 
    34  | 
  \<And>y ys. P [] (y#ys);
  | 
| 
 | 
    35  | 
   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
  | 
| 
 | 
    36  | 
 \<Longrightarrow> P xs ys"
  | 
| 
 | 
    37  | 
by induction_schema (pat_completeness, lexicographic_order)
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
theorem even_odd_induct:
  | 
| 
 | 
    40  | 
  assumes "R 0"
  | 
| 
 | 
    41  | 
  assumes "Q 0"
  | 
| 
 | 
    42  | 
  assumes "\<And>n. Q n \<Longrightarrow> R (Suc n)"
  | 
| 
 | 
    43  | 
  assumes "\<And>n. R n \<Longrightarrow> Q (Suc n)"
  | 
| 
 | 
    44  | 
  shows "R n" "Q n"
  | 
| 
 | 
    45  | 
  using assms
  | 
| 
 | 
    46  | 
by induction_schema (pat_completeness+, lexicographic_order)
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
end  |