| author | nipkow | 
| Sat, 14 Feb 2009 19:27:26 +0100 | |
| changeset 29917 | bb6a75fed911 | 
| parent 23755 | 1c4672d130b1 | 
| permissions | -rw-r--r-- | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
1  | 
(* Title: HOL/NumberTheory/BijectionRel.thy  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
3  | 
Author: Thomas M. Rasmussen  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
4  | 
Copyright 2000 University of Cambridge  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
5  | 
*)  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
6  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
7  | 
header {* Bijections between sets *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
8  | 
|
| 16417 | 9  | 
theory BijectionRel imports Main begin  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
10  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
11  | 
text {*
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
12  | 
Inductive definitions of bijections between two different sets and  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
13  | 
between the same set. Theorem for relating the two definitions.  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
14  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
15  | 
\bigskip  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
16  | 
*}  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
17  | 
|
| 23755 | 18  | 
inductive_set  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
19  | 
  bijR :: "('a => 'b => bool) => ('a set * 'b set) set"
 | 
| 23755 | 20  | 
for P :: "'a => 'b => bool"  | 
21  | 
where  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
22  | 
  empty [simp]: "({}, {}) \<in> bijR P"
 | 
| 23755 | 23  | 
| insert: "P a b ==> a \<notin> A ==> b \<notin> B ==> (A, B) \<in> bijR P  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
24  | 
==> (insert a A, insert b B) \<in> bijR P"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
25  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
26  | 
text {*
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
27  | 
  Add extra condition to @{term insert}: @{term "\<forall>b \<in> B. \<not> P a b"}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
28  | 
  (and similar for @{term A}).
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
29  | 
*}  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
30  | 
|
| 19670 | 31  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19670 
diff
changeset
 | 
32  | 
  bijP :: "('a => 'a => bool) => 'a set => bool" where
 | 
| 19670 | 33  | 
"bijP P F = (\<forall>a b. a \<in> F \<and> P a b --> b \<in> F)"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
34  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19670 
diff
changeset
 | 
35  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19670 
diff
changeset
 | 
36  | 
  uniqP :: "('a => 'a => bool) => bool" where
 | 
| 19670 | 37  | 
"uniqP P = (\<forall>a b c d. P a b \<and> P c d --> (a = c) = (b = d))"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
38  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19670 
diff
changeset
 | 
39  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19670 
diff
changeset
 | 
40  | 
  symP :: "('a => 'a => bool) => bool" where
 | 
| 19670 | 41  | 
"symP P = (\<forall>a b. P a b = P b a)"  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
42  | 
|
| 23755 | 43  | 
inductive_set  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
44  | 
  bijER :: "('a => 'a => bool) => 'a set set"
 | 
| 23755 | 45  | 
for P :: "'a => 'a => bool"  | 
46  | 
where  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
47  | 
  empty [simp]: "{} \<in> bijER P"
 | 
| 23755 | 48  | 
| insert1: "P a a ==> a \<notin> A ==> A \<in> bijER P ==> insert a A \<in> bijER P"  | 
49  | 
| insert2: "P a b ==> a \<noteq> b ==> a \<notin> A ==> b \<notin> A ==> A \<in> bijER P  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
50  | 
==> insert a (insert b A) \<in> bijER P"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
51  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
52  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
53  | 
text {* \medskip @{term bijR} *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
54  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
55  | 
lemma fin_bijRl: "(A, B) \<in> bijR P ==> finite A"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
56  | 
apply (erule bijR.induct)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
57  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
58  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
59  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
60  | 
lemma fin_bijRr: "(A, B) \<in> bijR P ==> finite B"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
61  | 
apply (erule bijR.induct)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
62  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
63  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
64  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
65  | 
lemma aux_induct:  | 
| 18369 | 66  | 
assumes major: "finite F"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
67  | 
and subs: "F \<subseteq> A"  | 
| 18369 | 68  | 
    and cases: "P {}"
 | 
69  | 
"!!F a. F \<subseteq> A ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"  | 
|
70  | 
shows "P F"  | 
|
71  | 
using major subs  | 
|
| 22274 | 72  | 
apply (induct set: finite)  | 
| 18369 | 73  | 
apply (blast intro: cases)+  | 
74  | 
done  | 
|
75  | 
||
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
76  | 
|
| 13524 | 77  | 
lemma inj_func_bijR_aux1:  | 
78  | 
"A \<subseteq> B ==> a \<notin> A ==> a \<in> B ==> inj_on f B ==> f a \<notin> f ` A"  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
79  | 
apply (unfold inj_on_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
80  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
81  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
82  | 
|
| 13524 | 83  | 
lemma inj_func_bijR_aux2:  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
84  | 
"\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A ==> F <= A  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
85  | 
==> (F, f ` F) \<in> bijR P"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
86  | 
apply (rule_tac F = F and A = A in aux_induct)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
87  | 
apply (rule finite_subset)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
88  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
89  | 
apply (rule bijR.insert)  | 
| 13524 | 90  | 
apply (rule_tac [3] inj_func_bijR_aux1)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
91  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
92  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
93  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
94  | 
lemma inj_func_bijR:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
95  | 
"\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
96  | 
==> (A, f ` A) \<in> bijR P"  | 
| 13524 | 97  | 
apply (rule inj_func_bijR_aux2)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
98  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
99  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
100  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
101  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
102  | 
text {* \medskip @{term bijER} *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
103  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
104  | 
lemma fin_bijER: "A \<in> bijER P ==> finite A"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
105  | 
apply (erule bijER.induct)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
106  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
107  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
108  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
109  | 
lemma aux1:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
110  | 
"a \<notin> A ==> a \<notin> B ==> F \<subseteq> insert a A ==> F \<subseteq> insert a B ==> a \<in> F  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
111  | 
==> \<exists>C. F = insert a C \<and> a \<notin> C \<and> C <= A \<and> C <= B"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
112  | 
  apply (rule_tac x = "F - {a}" in exI)
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
113  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
114  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
115  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
116  | 
lemma aux2: "a \<noteq> b ==> a \<notin> A ==> b \<notin> B ==> a \<in> F ==> b \<in> F  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
117  | 
==> F \<subseteq> insert a A ==> F \<subseteq> insert b B  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
118  | 
==> \<exists>C. F = insert a (insert b C) \<and> a \<notin> C \<and> b \<notin> C \<and> C \<subseteq> A \<and> C \<subseteq> B"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
119  | 
  apply (rule_tac x = "F - {a, b}" in exI)
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
120  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
121  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
122  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
123  | 
lemma aux_uniq: "uniqP P ==> P a b ==> P c d ==> (a = c) = (b = d)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
124  | 
apply (unfold uniqP_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
125  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
126  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
127  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
128  | 
lemma aux_sym: "symP P ==> P a b = P b a"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
129  | 
apply (unfold symP_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
130  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
131  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
132  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
133  | 
lemma aux_in1:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
134  | 
"uniqP P ==> b \<notin> C ==> P b b ==> bijP P (insert b C) ==> bijP P C"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
135  | 
apply (unfold bijP_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
136  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
137  | 
apply (subgoal_tac "b \<noteq> a")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
138  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
139  | 
apply clarify  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
140  | 
apply (simp add: aux_uniq)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
141  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
142  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
143  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
144  | 
lemma aux_in2:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
145  | 
"symP P ==> uniqP P ==> a \<notin> C ==> b \<notin> C ==> a \<noteq> b ==> P a b  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
146  | 
==> bijP P (insert a (insert b C)) ==> bijP P C"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
147  | 
apply (unfold bijP_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
148  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
149  | 
apply (subgoal_tac "aa \<noteq> a")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
150  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
151  | 
apply clarify  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
152  | 
apply (subgoal_tac "aa \<noteq> b")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
153  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
154  | 
apply clarify  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
155  | 
apply (simp add: aux_uniq)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
156  | 
apply (subgoal_tac "ba \<noteq> a")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
157  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
158  | 
apply (subgoal_tac "P a aa")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
159  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
160  | 
apply (simp add: aux_sym)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
161  | 
apply (subgoal_tac "b = aa")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
162  | 
apply (rule_tac [2] iffD1)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
163  | 
apply (rule_tac [2] a = a and c = a and P = P in aux_uniq)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
164  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
165  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
166  | 
|
| 13524 | 167  | 
lemma aux_foo: "\<forall>a b. Q a \<and> P a b --> R b ==> P a b ==> Q a ==> R b"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
168  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
169  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
170  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
171  | 
lemma aux_bij: "bijP P F ==> symP P ==> P a b ==> (a \<in> F) = (b \<in> F)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
172  | 
apply (unfold bijP_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
173  | 
apply (rule iffI)  | 
| 13524 | 174  | 
apply (erule_tac [!] aux_foo)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
175  | 
apply simp_all  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
176  | 
apply (rule iffD2)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
177  | 
apply (rule_tac P = P in aux_sym)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
178  | 
apply simp_all  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
179  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
180  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
181  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
182  | 
lemma aux_bijRER:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
183  | 
"(A, B) \<in> bijR P ==> uniqP P ==> symP P  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
184  | 
==> \<forall>F. bijP P F \<and> F \<subseteq> A \<and> F \<subseteq> B --> F \<in> bijER P"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
185  | 
apply (erule bijR.induct)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
186  | 
apply simp  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
187  | 
apply (case_tac "a = b")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
188  | 
apply clarify  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
189  | 
apply (case_tac "b \<in> F")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
190  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
191  | 
apply (simp add: subset_insert)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
192  | 
apply (cut_tac F = F and a = b and A = A and B = B in aux1)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
193  | 
prefer 6  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
194  | 
apply clarify  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
195  | 
apply (rule bijER.insert1)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
196  | 
apply simp_all  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
197  | 
apply (subgoal_tac "bijP P C")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
198  | 
apply simp  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
199  | 
apply (rule aux_in1)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
200  | 
apply simp_all  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
201  | 
apply clarify  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
202  | 
apply (case_tac "a \<in> F")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
203  | 
apply (case_tac [!] "b \<in> F")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
204  | 
apply (cut_tac F = F and a = a and b = b and A = A and B = B  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
205  | 
in aux2)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
206  | 
apply (simp_all add: subset_insert)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
207  | 
apply clarify  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
208  | 
apply (rule bijER.insert2)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
209  | 
apply simp_all  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
210  | 
apply (subgoal_tac "bijP P C")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
211  | 
apply simp  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
212  | 
apply (rule aux_in2)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
213  | 
apply simp_all  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
214  | 
apply (subgoal_tac "b \<in> F")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
215  | 
apply (rule_tac [2] iffD1)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
216  | 
apply (rule_tac [2] a = a and F = F and P = P in aux_bij)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
217  | 
apply (simp_all (no_asm_simp))  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
218  | 
apply (subgoal_tac [2] "a \<in> F")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
219  | 
apply (rule_tac [3] iffD2)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
220  | 
apply (rule_tac [3] b = b and F = F and P = P in aux_bij)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
221  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
222  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
223  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
224  | 
lemma bijR_bijER:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
225  | 
"(A, A) \<in> bijR P ==>  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
226  | 
bijP P A ==> uniqP P ==> symP P ==> A \<in> bijER P"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
227  | 
apply (cut_tac A = A and B = A and P = P in aux_bijRER)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
228  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
9508 
diff
changeset
 | 
229  | 
done  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
230  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
231  | 
end  |