doc-src/TutorialI/IsarOverview/Isar/Logic.thy
author nipkow
Mon, 08 Jul 2002 18:49:18 +0200
changeset 13317 bb74918cc0dd
parent 13313 e4dc78f4e51e
child 13322 3323ecc0b97c
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)theory Logic = Main:(*>*)
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
     2
text{* We begin by looking at a simplified grammar for Isar proofs
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
     3
where paranthesis are used for grouping and $^?$ indicates an optional item:
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     4
\begin{center}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     5
\begin{tabular}{lrl}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
     6
\emph{proof} & ::= & \isakeyword{proof} \emph{method}$^?$
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     7
                     \emph{statement}*
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
     8
                     \isakeyword{qed} \\
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
     9
                 &$\mid$& \isakeyword{by} \emph{method}\\[1ex]
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    10
\emph{statement} &::= & \isakeyword{fix} \emph{variables} \\
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    11
             &$\mid$& \isakeyword{assume} \emph{proposition}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    12
                      (\isakeyword{and} \emph{proposition})*\\
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    13
             &$\mid$& (\isakeyword{from} \emph{label}$^*$ $\mid$
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    14
                       \isakeyword{then})$^?$ 
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    15
                    (\isakeyword{show} $\mid$ \isakeyword{have})
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    16
                      \emph{string} \emph{proof} \\[1ex]
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    17
\emph{proposition} &::=& (\emph{label}{\bf:})$^?$ \emph{string}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    18
\end{tabular}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    19
\end{center}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    20
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    21
This is a typical proof skeleton:
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    22
\begin{center}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    23
\begin{tabular}{@ {}ll}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    24
\isakeyword{proof}\\
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    25
\hspace*{3ex}\isakeyword{assume} @{text"\""}\emph{the-assm}@{text"\""}\\
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    26
\hspace*{3ex}\isakeyword{have} @{text"\""}\dots@{text"\""}  & -- intermediate result\\
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    27
\hspace*{3ex}\vdots\\
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    28
\hspace*{3ex}\isakeyword{have} @{text"\""}\dots@{text"\""}  & -- intermediate result\\
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    29
\hspace*{3ex}\isakeyword{show} @{text"\""}\emph{the-concl}@{text"\""}\\
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    30
\isakeyword{qed}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    31
\end{tabular}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    32
\end{center}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    33
It proves \emph{the-assm}~@{text"\<Longrightarrow>"}~\emph{the-concl}.
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    34
Text starting with ``--'' is a comment.
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    35
*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    36
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    37
section{*Logic*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    38
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    39
subsection{*Propositional logic*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    40
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    41
subsubsection{*Introduction rules*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    42
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    43
text{* We start with a really trivial toy proof to introduce the basic
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    44
features of structured proofs. *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    45
lemma "A \<longrightarrow> A"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    46
proof (rule impI)
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    47
  assume a: "A"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    48
  show "A" by(rule a)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    49
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    50
text{*\noindent
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    51
The operational reading: the \isakeyword{assume}-\isakeyword{show} block
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    52
proves @{prop"A \<Longrightarrow> A"},
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    53
which rule @{thm[source]impI} turns into the desired @{prop"A \<longrightarrow> A"}.
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    54
However, this text is much too detailled for comfort. Therefore Isar
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    55
implements the following principle:
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    56
\begin{quote}\em
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    57
Command \isakeyword{proof} automatically tries to select an introduction rule
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    58
based on the goal and a predefined list of rules.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    59
\end{quote}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    60
Here @{thm[source]impI} is applied automatically:
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    61
*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    62
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    63
lemma "A \<longrightarrow> A"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    64
proof
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    65
  assume a: "A"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    66
  show "A" by(rule a)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    67
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    68
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    69
text{* Trivial proofs, in particular those by assumption, should be trivial
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    70
to perform. Method ``.'' does just that (and a bit more --- see later). Thus
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    71
naming of assumptions is often superfluous: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    72
lemma "A \<longrightarrow> A"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    73
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    74
  assume "A"
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    75
  show "A" .
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    76
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    77
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    78
text{* To hide proofs by assumption further, \isakeyword{by}@{text"(method)"}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    79
first applies @{text method} and then tries to solve all remaining subgoals
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    80
by assumption: *}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    81
lemma "A \<longrightarrow> A \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    82
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    83
  assume A
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    84
  show "A \<and> A" by(rule conjI)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    85
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    86
text{*\noindent A drawback of these implicit proofs by assumption is that it
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    87
is no longer obvious where an assumption is used.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    88
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    89
Proofs of the form \isakeyword{by}@{text"(rule"}~\emph{name}@{text")"} can be
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    90
abbreviated to ``..''
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    91
if \emph{name} is one of the predefined introduction rules:
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    92
*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    93
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    94
lemma "A \<longrightarrow> A \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    95
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    96
  assume A
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    97
  show "A \<and> A" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    98
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    99
text{*\noindent
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   100
This is what happens: first the matching introduction rule @{thm[source]conjI}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   101
is applied (first ``.''), then the two subgoals are solved by assumption
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   102
(second ``.''). *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   103
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   104
subsubsection{*Elimination rules*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   105
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   106
text{*A typical elimination rule is @{thm[source]conjE}, $\land$-elimination:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   107
@{thm[display,indent=5]conjE[no_vars]}  In the following proof it is applied
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   108
by hand, after its first (``\emph{major}'') premise has been eliminated via
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   109
@{text"[OF AB]"}: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   110
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   111
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   112
  assume AB: "A \<and> B"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   113
  show "B \<and> A"
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   114
  proof (rule conjE[OF AB])  -- {*@{prop"(A \<Longrightarrow> B \<Longrightarrow> R) \<Longrightarrow> R"}*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   115
    assume A and B
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   116
    show ?thesis ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   117
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   118
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   119
text{*\noindent Note that the term @{text"?thesis"} always stands for the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   120
``current goal'', i.e.\ the enclosing \isakeyword{show} (or
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   121
\isakeyword{have}).
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   122
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   123
This is too much proof text. Elimination rules should be selected
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   124
automatically based on their major premise, the formula or rather connective
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   125
to be eliminated. In Isar they are triggered by propositions being fed
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   126
\emph{into} a proof block. Syntax:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   127
\begin{center}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   128
\isakeyword{from} \emph{fact} \isakeyword{show} \emph{proposition}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   129
\end{center}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   130
where \emph{fact} stands for the name of a previously proved
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   131
proposition, e.g.\ an assumption, an intermediate result or some global
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   132
theorem. The fact may also be modified with @{text of}, @{text OF} etc.
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   133
This command applies an elimination rule (from a predefined list)
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   134
whose first premise is solved by the fact. Thus: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   135
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   136
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   137
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   138
  assume AB: "A \<and> B"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   139
  from AB show "B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   140
  proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   141
    assume A and B
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   142
    show ?thesis ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   143
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   144
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   145
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   146
text{* Now we come a second important principle:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   147
\begin{quote}\em
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   148
Try to arrange the sequence of propositions in a UNIX-like pipe,
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   149
such that the proof of each proposition builds on the previous proposition.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   150
\end{quote}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   151
The previous proposition can be referred to via the fact @{text this}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   152
This greatly reduces the need for explicit naming of propositions:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   153
*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   154
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   155
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   156
  assume "A \<and> B"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   157
  from this show "B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   158
  proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   159
    assume A and B
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   160
    show ?thesis ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   161
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   162
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   163
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   164
text{*\noindent
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   165
A final simplification: \isakeyword{from}~@{text this} can be
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   166
abbreviated to \isakeyword{thus}.
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   167
\medskip
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   168
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   169
Here is an alternative proof that operates purely by forward reasoning: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   170
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   171
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   172
  assume ab: "A \<and> B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   173
  from ab have a: A ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   174
  from ab have b: B ..
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   175
  from b a show "B \<and> A" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   176
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   177
text{*\noindent
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   178
It is worth examining this text in detail because it exhibits a number of new features.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   179
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   180
For a start, this is the first time we have proved intermediate propositions
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   181
(\isakeyword{have}) on the way to the final \isakeyword{show}. This is the
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   182
norm in any nontrival proof where one cannot bridge the gap between the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   183
assumptions and the conclusion in one step. Both \isakeyword{have}s above are
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   184
proved automatically via @{thm[source]conjE} triggered by
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   185
\isakeyword{from}~@{text ab}.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   186
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   187
The \isakeyword{show} command illustrates two things:
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   188
\begin{itemize}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   189
\item \isakeyword{from} can be followed by any number of facts.
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   190
Given \isakeyword{from}~@{text f}$_1$~\dots~@{text f}$_n$, \isakeyword{show}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   191
tries to find an elimination rule whose first $n$ premises can be proved
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   192
by the given facts in the given order.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   193
\item If there is no matching elimination rule, introduction rules are tried,
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   194
again using the facts to prove the premises.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   195
\end{itemize}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   196
In this case, the proof succeeds with @{thm[source]conjI}. Note that the proof
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   197
would fail if we had written \isakeyword{from}~@{text"a b"}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   198
instead of \isakeyword{from}~@{text"b a"}.
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   199
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   200
This treatment of facts fed into a proof is not restricted to implicit
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   201
application of introduction and elimination rules but applies to explicit
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   202
application of rules as well. Thus you could replace the final ``..'' above
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   203
with \isakeyword{by}@{text"(rule conjI)"}. 
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   204
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   205
Note that Isar's predefined introduction and elimination rules include all the
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   206
usual natural deduction rules for propositional logic. We conclude this
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   207
section with an extended example --- which rules are used implicitly where?
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   208
Rule @{thm[source]ccontr} is @{thm ccontr[no_vars]}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   209
*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   210
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   211
lemma "\<not>(A \<and> B) \<longrightarrow> \<not>A \<or> \<not>B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   212
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   213
  assume n: "\<not>(A \<and> B)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   214
  show "\<not>A \<or> \<not>B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   215
  proof (rule ccontr)
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   216
    assume nn: "\<not>(\<not>A \<or> \<not>B)"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   217
    from n show False
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   218
    proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   219
      show "A \<and> B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   220
      proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   221
	show A
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   222
	proof (rule ccontr)
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   223
	  assume "\<not>A"
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   224
	  have "\<not>A \<or> \<not>B" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   225
	  from nn this show False ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   226
	qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   227
      next
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   228
	show B
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   229
	proof (rule ccontr)
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   230
	  assume "\<not>B"
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   231
	  have "\<not>A \<or> \<not>B" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   232
	  from nn this show False ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   233
	qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   234
      qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   235
    qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   236
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   237
qed;
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   238
text{*\noindent Apart from demonstrating the strangeness of classical
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   239
arguments by contradiction, this example also introduces a new language
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   240
feature to deal with multiple subgoals: \isakeyword{next}.  When showing
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   241
@{term"A \<and> B"} we need to show both @{term A} and @{term B}.  Each subgoal
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   242
is proved separately, in \emph{any} order. The individual proofs are
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   243
separated by \isakeyword{next}.  *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   244
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   245
subsection{*Avoiding duplication*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   246
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   247
text{* So far our examples have been a bit unnatural: normally we want to
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   248
prove rules expressed with @{text"\<Longrightarrow>"}, not @{text"\<longrightarrow>"}. Here is an example:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   249
*}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   250
lemma "(A \<Longrightarrow> False) \<Longrightarrow> \<not> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   251
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   252
  assume "A \<Longrightarrow> False" "A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   253
  thus False .
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   254
qed
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   255
text{*\noindent The \isakeyword{proof} always works on the conclusion,
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   256
@{prop"\<not>A"} in our case, thus selecting $\neg$-introduction. Hence we can
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   257
additionally assume @{prop"A"}. Why does ``.'' prove @{prop False}? Because
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   258
``.'' tries any of the assumptions, including proper rules (here: @{prop"A \<Longrightarrow>
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   259
False"}), such that all of its premises can be solved directly by some other
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   260
assumption (here: @{prop A}).
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   261
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   262
This is all very well as long as formulae are small. Let us now look at some
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   263
devices to avoid repeating (possibly large) formulae. A very general method
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   264
is pattern matching: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   265
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   266
lemma "(large_formula \<Longrightarrow> False) \<Longrightarrow> \<not> large_formula"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   267
      (is "(?P \<Longrightarrow> _) \<Longrightarrow> _")
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   268
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   269
  assume "?P \<Longrightarrow> False" ?P
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   270
  thus False .
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   271
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   272
text{*\noindent Any formula may be followed by
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   273
@{text"("}\isakeyword{is}~\emph{pattern}@{text")"} which causes the pattern
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   274
to be matched against the formula, instantiating the @{text"?"}-variables in
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   275
the pattern. Subsequent uses of these variables in other terms simply causes
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   276
them to be replaced by the terms they stand for.
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   277
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   278
We can simplify things even more by stating the theorem by means of the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   279
\isakeyword{assumes} and \isakeyword{shows} primitives which allow direct
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   280
naming of assumptions: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   281
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   282
lemma assumes A: "large_formula \<Longrightarrow> False"
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   283
  shows "\<not> large_formula" (is "\<not> ?P")
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   284
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   285
  assume ?P
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   286
  with A show False .
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   287
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   288
text{*\noindent Here we have used the abbreviation
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   289
\begin{center}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   290
\isakeyword{with}~\emph{facts} \quad = \quad
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   291
\isakeyword{from}~\emph{facts} \isakeyword{and} @{text this}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   292
\end{center}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   293
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   294
Sometimes it is necessary to supress the implicit application of rules in a
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   295
\isakeyword{proof}. For example \isakeyword{show}~@{prop"A \<or> B"} would
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   296
trigger $\lor$-introduction, requiring us to prove @{prop A}. A simple
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   297
``@{text"-"}'' prevents this \emph{faut pas}: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   298
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   299
lemma assumes AB: "A \<or> B" shows "B \<or> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   300
proof -
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   301
  from AB show ?thesis
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   302
  proof
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   303
    assume A show ?thesis ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   304
  next
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   305
    assume B show ?thesis ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   306
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   307
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   308
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   309
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   310
subsection{*Predicate calculus*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   311
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   312
text{* Command \isakeyword{fix} introduces new local variables into a
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   313
proof. It corresponds to @{text"\<And>"} (the universal quantifier at the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   314
meta-level) just like \isakeyword{assume}-\isakeyword{show} corresponds to
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   315
@{text"\<Longrightarrow>"}. Here is a sample proof, annotated with the rules that are
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   316
applied implictly: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   317
lemma assumes P: "\<forall>x. P x" shows "\<forall>x. P(f x)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   318
proof  -- "@{thm[source]allI}: @{thm allI[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   319
  fix a
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   320
  from P show "P(f a)" ..  --"@{thm[source]allE}: @{thm allE[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   321
qed
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   322
text{*\noindent Note that in the proof we have chosen to call the bound
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   323
variable @{term a} instead of @{term x} merely to show that the choice of
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   324
names is irrelevant.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   325
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   326
Next we look at @{text"\<exists>"} which is a bit more tricky.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   327
*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   328
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   329
lemma assumes Pf: "\<exists>x. P(f x)" shows "\<exists>y. P y"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   330
proof -
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   331
  from Pf show ?thesis
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   332
  proof  -- "@{thm[source]exE}: @{thm exE[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   333
    fix a
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   334
    assume "P(f a)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   335
    show ?thesis ..  --"@{thm[source]exI}: @{thm exI[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   336
  qed
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   337
qed
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   338
text{*\noindent Explicit $\exists$-elimination as seen above can become
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   339
cumbersome in practice.  The derived Isar language element
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   340
\isakeyword{obtain} provides a more handsome way to perform generalized
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   341
existence reasoning: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   342
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   343
lemma assumes Pf: "\<exists>x. P(f x)" shows "\<exists>y. P y"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   344
proof -
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   345
  from Pf obtain a where "P(f a)" ..
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   346
  thus "\<exists>y. P y" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   347
qed
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   348
text{*\noindent Note how the proof text follows the usual mathematical style
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   349
of concluding $P(x)$ from $\exists x. P(x)$, while carefully introducing $x$
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   350
as a new local variable.  Technically, \isakeyword{obtain} is similar to
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   351
\isakeyword{fix} and \isakeyword{assume} together with a soundness proof of
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   352
the elimination involved.  Thus it behaves similar to any other forward proof
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   353
element.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   354
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   355
Here is a proof of a well known tautology which employs another useful
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   356
abbreviation: \isakeyword{hence} abbreviates \isakeyword{from}~@{text
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   357
this}~\isakeyword{have}.  Figure out which rule is used where!  *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   358
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   359
lemma assumes ex: "\<exists>x. \<forall>y. P x y" shows "\<forall>y. \<exists>x. P x y"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   360
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   361
  fix y
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   362
  from ex obtain x where "\<forall>y. P x y" ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   363
  hence "P x y" ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   364
  thus "\<exists>x. P x y" ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   365
qed
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   366
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   367
text{* So far we have confined ourselves to single step proofs. Of course
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   368
powerful automatic methods can be used just as well. Here is an example,
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   369
Cantor's theorem that there is no surjective function from a set to its
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   370
powerset: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   371
theorem "\<exists>S. S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   372
proof
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   373
  let ?S = "{x. x \<notin> f x}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   374
  show "?S \<notin> range f"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   375
  proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   376
    assume "?S \<in> range f"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   377
    then obtain y where fy: "?S = f y" ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   378
    show False
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   379
    proof cases
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   380
      assume "y \<in> ?S"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   381
      with fy show False by blast
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   382
    next
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   383
      assume "y \<notin> ?S"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   384
      with fy show False by blast
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   385
    qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   386
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   387
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   388
text{*\noindent
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   389
For a start, the example demonstrates two new language elements:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   390
\begin{itemize}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   391
\item \isakeyword{let} introduces an abbreviation for a term, in our case
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   392
the witness for the claim, because the term occurs multiple times in the proof.
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   393
\item Proof by @{text"cases"} starts a proof by cases. Note that it remains
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   394
implicit what the two cases are: it is merely expected that the two subproofs
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   395
prove @{prop"P \<Longrightarrow> Q"} and @{prop"\<not>P \<Longrightarrow> Q"} for suitable @{term P} and
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   396
@{term Q}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   397
\end{itemize}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   398
If you wonder how to \isakeyword{obtain} @{term y}:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   399
via the predefined elimination rule @{thm rangeE[no_vars]}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   400
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   401
Method @{text blast} is used because the contradiction does not follow easily
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   402
by just a single rule. If you find the proof too cryptic for human
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   403
consumption, here is a more detailed version; the beginning up to
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   404
\isakeyword{obtain} stays unchanged. *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   405
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   406
theorem "\<exists>S. S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   407
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   408
  let ?S = "{x. x \<notin> f x}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   409
  show "?S \<notin> range f"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   410
  proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   411
    assume "?S \<in> range f"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   412
    then obtain y where fy: "?S = f y" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   413
    show False
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   414
    proof cases
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   415
      assume A: "y \<in> ?S"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   416
      hence isin: "y \<in> f y"   by(simp add:fy)
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   417
      from A have "y \<notin> f y"   by simp
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   418
      with isin show False    by contradiction
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   419
    next
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   420
      assume A: "y \<notin> ?S"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   421
      hence notin: "y \<notin> f y"   by(simp add:fy)
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   422
      from A have "y \<in> f y"    by simp
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   423
      with notin show False    by contradiction
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   424
    qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   425
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   426
qed
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   427
text{*\noindent Method @{text contradiction} succeeds if both $P$ and
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   428
$\neg P$ are among the assumptions and the facts fed into that step.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   429
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   430
As it happens, Cantor's theorem can be proved automatically by best-first
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   431
search. Depth-first search would diverge, but best-first search successfully
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   432
navigates through the large search space:
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   433
*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   434
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   435
theorem "\<exists>S. S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   436
by best
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   437
text{*\noindent Of course this only works in the context of HOL's carefully
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   438
constructed introduction and elimination rules for set theory.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   439
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   440
Finally, whole scripts may appear in the leaves of the proof tree, although
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   441
this is best avoided.  Here is a contrived example: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   442
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   443
lemma "A \<longrightarrow> (A \<longrightarrow>B) \<longrightarrow> B"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   444
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   445
  assume a: A
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   446
  show "(A \<longrightarrow>B) \<longrightarrow> B"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   447
    apply(rule impI)
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   448
    apply(erule impE)
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   449
    apply(rule a)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   450
    apply assumption
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   451
    done
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   452
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   453
text{*\noindent You may need to resort to this technique if an automatic step
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   454
fails to prove the desired proposition. *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   455
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   456
section{*Case distinction and induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   457
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   458
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   459
subsection{*Case distinction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   460
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   461
text{* We have already met the @{text cases} method for performing
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   462
binary case splits. Here is another example: *}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   463
lemma "P \<or> \<not> P"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   464
proof cases
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   465
  assume "P" thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   466
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   467
  assume "\<not> P" thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   468
qed
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   469
text{*\noindent As always, the cases can be tackled in any order.
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   470
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   471
This form is appropriate if @{term P} is textually small.  However, if
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   472
@{term P} is large, we don't want to repeat it. This can be avoided by
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   473
the following idiom *}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   474
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   475
lemma "P \<or> \<not> P"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   476
proof (cases "P")
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   477
  case True thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   478
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   479
  case False thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   480
qed
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   481
text{*\noindent which is simply a shorthand for the previous
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   482
proof. More precisely, the phrases \isakeyword{case}~@{prop
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   483
True}/@{prop False} abbreviate the corresponding assumptions @{prop P}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   484
and @{prop"\<not>P"}.
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   485
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   486
The same game can be played with other datatypes, for example lists:
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   487
*}
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   488
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   489
(*<*)declare length_tl[simp del](*>*)
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   490
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   491
lemma "length(tl xs) = length xs - 1"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   492
proof (cases xs)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   493
  case Nil thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   494
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   495
  case Cons thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   496
qed
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   497
text{*\noindent Here \isakeyword{case}~@{text Nil} abbreviates
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   498
\isakeyword{assume}~@{prop"x = []"} and \isakeyword{case}~@{text Cons}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   499
abbreviates \isakeyword{assume}~@{text"xs = _ # _"}. The names of the head
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   500
and tail of @{text xs} have been chosen by the system. Therefore we cannot
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   501
refer to them (this would lead to brittle proofs) and have not even shown
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   502
them. Luckily, the proof is simple enough we do not need to refer to them.
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   503
However, in general one may have to. Hence Isar offers a simple scheme for
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   504
naming those variables: Replace the anonymous @{text Cons} by, for example,
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   505
@{text"(Cons y ys)"}, which abbreviates \isakeyword{fix}~@{text"y ys"}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   506
\isakeyword{assume}~@{text"xs = Cons y ys"}, i.e.\ @{prop"xs = y # ys"}. Here
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   507
is a (somewhat contrived) example: *}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   508
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   509
lemma "length(tl xs) = length xs - 1"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   510
proof (cases xs)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   511
  case Nil thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   512
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   513
  case (Cons y ys)
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   514
  hence "length(tl xs) = length ys  \<and>  length xs = length ys + 1"
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   515
    by simp
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   516
  thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   517
qed
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   518
text{* New case distincion rules can be declared any time, even with
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   519
named cases. *}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   520
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   521
subsection{*Induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   522
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   523
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   524
subsubsection{*Structural induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   525
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   526
text{* We start with a simple inductive proof where both cases are proved automatically: *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   527
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   528
by (induct n, simp_all)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   529
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   530
text{*\noindent If we want to expose more of the structure of the
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   531
proof, we can use pattern matching to avoid having to repeat the goal
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   532
statement: *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   533
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)" (is "?P n")
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   534
proof (induct n)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   535
  show "?P 0" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   536
next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   537
  fix n assume "?P n"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   538
  thus "?P(Suc n)" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   539
qed
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   540
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   541
text{* \noindent We could refine this further to show more of the equational
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   542
proof. Instead we explore the same avenue as for case distinctions:
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   543
introducing context via the \isakeyword{case} command: *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   544
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   545
proof (induct n)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   546
  case 0 show ?case by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   547
next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   548
  case Suc thus ?case by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   549
qed
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   550
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   551
text{* \noindent The implicitly defined @{text ?case} refers to the
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   552
corresponding case to be proved, i.e.\ @{text"?P 0"} in the first case and
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   553
@{text"?P(Suc n)"} in the second case. Context \isakeyword{case}~@{text 0} is
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   554
empty whereas \isakeyword{case}~@{text Suc} assumes @{text"?P n"}. Again we
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   555
have the same problem as with case distinctions: we cannot refer to @{term n}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   556
in the induction step because it has not been introduced via \isakeyword{fix}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   557
(in contrast to the previous proof). The solution is the same as above:
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   558
replace @{term Suc} by @{text"(Suc i)"}: *}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   559
lemma fixes n::nat shows "n < n*n + 1"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   560
proof (induct n)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   561
  case 0 show ?case by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   562
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   563
  case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   564
qed
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   565
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   566
text{* \noindent Of course we could again have written
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   567
\isakeyword{thus}~@{text ?case} instead of giving the term explicitly
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   568
but we wanted to use @{term i} somewehere.
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   569
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   570
Let us now tackle a more ambitious lemma: proving complete induction
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   571
@{prop[display,indent=5]"(\<And>n. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n) \<Longrightarrow> P n"}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   572
via structural induction. It is well known that one needs to prove
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   573
something more general first: *}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   574
lemma cind_lemma:
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   575
  assumes A: "(\<And>n. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)"
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   576
  shows "\<And>m. m < n \<Longrightarrow> P(m::nat)"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   577
proof (induct n)
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   578
  case 0 thus ?case by simp
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   579
next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   580
  case (Suc n m)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   581
  show ?case
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   582
  proof cases
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   583
    assume eq: "m = n"
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   584
    from Suc A have "P n" by blast
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   585
    with eq show "P m" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   586
  next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   587
    assume neq: "m \<noteq> n"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   588
    with Suc have "m < n" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   589
    with Suc show "P m" by blast
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   590
  qed
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   591
qed
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   592
text{* \noindent Let us first examine the statement of the lemma.
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   593
In contrast to the style advertized in the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   594
Tutorial~\cite{LNCS2283}, structured Isar proofs do not need to
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   595
introduce @{text"\<forall>"} or @{text"\<longrightarrow>"} into a theorem to strengthen it
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   596
for induction --- we use @{text"\<And>"} and @{text"\<Longrightarrow>"} instead. This
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   597
simplifies the proof and means we don't have to convert between the
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   598
two kinds of connectives. As usual, at the end of the proof
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   599
@{text"\<And>"} disappears and the bound variable is turned into a
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   600
@{text"?"}-variable. Thus @{thm[source]cind_lemma} becomes
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   601
@{thm[display,indent=5] cind_lemma} Complete induction is an easy
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   602
corollary: instantiation followed by
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   603
simplification, @{thm[source] cind_lemma[of _ n "Suc n", simplified]},
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   604
yields @{thm[display,indent=5] cind_lemma[of _ n "Suc n", simplified]}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   605
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   606
Now we examine the proof.  So what is this funny case @{text"(Suc n m)"}? It
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   607
looks confusing at first and reveals that the very suggestive @{text"(Suc
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   608
n)"} used above is not the whole truth. The variable names after the case
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   609
name (here: @{term Suc}) are the names of the parameters of that subgoal. So
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   610
far the only parameters where the arguments to the constructor, but now we
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   611
have an additonal parameter coming from the @{text"\<And>m"} in the main
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   612
\isakeyword{shows} clause. Thus  Thus @{text"(Suc n m)"} does not mean that
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   613
constructor @{term Suc} is applied to two arguments but that the two
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   614
parameters in the @{term Suc} case are to be named @{text n} and @{text
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   615
m}. *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   616
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   617
subsubsection{*Rule induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   618
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   619
text{* We define our own version of reflexive transitive closure of a
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   620
relation *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   621
consts rtc :: "('a \<times> 'a)set \<Rightarrow> ('a \<times> 'a)set"   ("_*" [1000] 999)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   622
inductive "r*"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   623
intros
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   624
refl:  "(x,x) \<in> r*"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   625
step:  "\<lbrakk> (x,y) \<in> r; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   626
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   627
text{* \noindent and prove that @{term"r*"} is indeed transitive: *}
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   628
lemma assumes A: "(x,y) \<in> r*"
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   629
  shows "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*" (is "PROP ?P x y")
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   630
using A
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   631
proof induct
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   632
  case refl thus ?case .
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   633
next
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   634
  case step thus ?case by(blast intro: rtc.step)
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   635
qed
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   636
(*
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   637
lemma assumes A: "(x,y) \<in> r*"
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   638
  shows "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*" (is "PROP ?P x y")
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   639
proof -
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   640
  from A show "PROP ?P x y"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   641
  proof induct
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   642
    fix x show "PROP ?P x x" .
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   643
  next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   644
    fix x' x y
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   645
    assume "(x',x) \<in> r"
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   646
           "PROP ?P x y"   -- "induction hypothesis"
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   647
    thus "PROP ?P x' y" by(blast intro: rtc.step)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   648
  qed
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   649
qed
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   650
*)
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   651
text{*\noindent Rule induction is triggered by a fact $(x_1,\dots,x_n) \in R$
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   652
piped into the proof, here \isakeyword{from}~@{text A}. The proof itself
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   653
follows the two rules of the inductive definition very closely.  The only
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   654
surprising thing should be the keyword @{text PROP}: because of certain
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   655
syntactic subleties it is required in front of terms of type @{typ prop} (the
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   656
type of meta-level propositions) which are not obviously of type @{typ prop}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   657
(e.g.\ @{text"?P x y"}) because they do not contain a tell-tale constant such
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   658
as @{text"\<And>"} or @{text"\<Longrightarrow>"}.
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   659
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   660
However, the proof is rather terse. Here is a more readable version:
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   661
*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   662
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   663
lemma assumes A: "(x,y) \<in> r*" and B: "(y,z) \<in> r*"
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   664
  shows "(x,z) \<in> r*"
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   665
proof -
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   666
  from A B show ?thesis
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   667
  proof induct
13312
ad91cf279f06 *** empty log message ***
nipkow
parents: 13311
diff changeset
   668
    fix x assume "(x,z) \<in> r*"  -- {*@{text B}[@{text y} := @{text x}]*}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   669
    thus "(x,z) \<in> r*" .
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   670
  next
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   671
    fix x' x y
13313
e4dc78f4e51e *** empty log message ***
nipkow
parents: 13312
diff changeset
   672
    assume 1: "(x',x) \<in> r" and
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   673
           IH: "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*" and
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   674
           B:  "(y,z) \<in> r*"
13313
e4dc78f4e51e *** empty log message ***
nipkow
parents: 13312
diff changeset
   675
    from 1 IH[OF B] show "(x',z) \<in> r*" by(rule rtc.step)
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   676
  qed
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   677
qed
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   678
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   679
text{*\noindent We start the proof with \isakeyword{from}~@{text"A
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   680
B"}. Only @{text A} is ``consumed'' by the first proof step, here
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   681
induction. Since @{text B} is left over we don't just prove @{text
13311
50d821437370 *** empty log message ***
nipkow
parents: 13310
diff changeset
   682
?thesis} but @{text"B \<Longrightarrow> ?thesis"}, just as in the previous
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   683
proof, only more elegantly. The base case is trivial. In the
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   684
assumptions for the induction step we can see very clearly how things
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   685
fit together and permit ourselves the obvious forward step
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   686
@{text"IH[OF B]"}. *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   687
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   688
(*<*)end(*>*)