author | bulwahn |
Sat, 24 Oct 2009 16:55:42 +0200 | |
changeset 33126 | bb8806eb5da7 |
parent 32558 | e6e1fc2e73cb |
child 33318 | ddd97d9dfbfb |
permissions | -rw-r--r-- |
31708 | 1 |
|
32554 | 2 |
(* Authors: Jeremy Avigad and Amine Chaieb *) |
31708 | 3 |
|
32554 | 4 |
header {* Sets up transfer from nats to ints and back. *} |
31708 | 5 |
|
32558 | 6 |
theory Nat_Transfer |
31708 | 7 |
imports Main Parity |
8 |
begin |
|
9 |
||
10 |
subsection {* Set up transfer from nat to int *} |
|
11 |
||
12 |
(* set up transfer direction *) |
|
13 |
||
14 |
lemma TransferMorphism_nat_int: "TransferMorphism nat (op <= (0::int))" |
|
15 |
by (simp add: TransferMorphism_def) |
|
16 |
||
17 |
declare TransferMorphism_nat_int[transfer |
|
18 |
add mode: manual |
|
19 |
return: nat_0_le |
|
20 |
labels: natint |
|
21 |
] |
|
22 |
||
23 |
(* basic functions and relations *) |
|
24 |
||
25 |
lemma transfer_nat_int_numerals: |
|
26 |
"(0::nat) = nat 0" |
|
27 |
"(1::nat) = nat 1" |
|
28 |
"(2::nat) = nat 2" |
|
29 |
"(3::nat) = nat 3" |
|
30 |
by auto |
|
31 |
||
32 |
definition |
|
33 |
tsub :: "int \<Rightarrow> int \<Rightarrow> int" |
|
34 |
where |
|
35 |
"tsub x y = (if x >= y then x - y else 0)" |
|
36 |
||
37 |
lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y" |
|
38 |
by (simp add: tsub_def) |
|
39 |
||
40 |
||
41 |
lemma transfer_nat_int_functions: |
|
42 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)" |
|
43 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)" |
|
44 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)" |
|
45 |
"(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)" |
|
46 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)" |
|
47 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)" |
|
48 |
by (auto simp add: eq_nat_nat_iff nat_mult_distrib |
|
49 |
nat_power_eq nat_div_distrib nat_mod_distrib tsub_def) |
|
50 |
||
51 |
lemma transfer_nat_int_function_closures: |
|
52 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0" |
|
53 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0" |
|
54 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0" |
|
55 |
"(x::int) >= 0 \<Longrightarrow> x^n >= 0" |
|
56 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0" |
|
57 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0" |
|
58 |
"(0::int) >= 0" |
|
59 |
"(1::int) >= 0" |
|
60 |
"(2::int) >= 0" |
|
61 |
"(3::int) >= 0" |
|
62 |
"int z >= 0" |
|
63 |
apply (auto simp add: zero_le_mult_iff tsub_def) |
|
64 |
apply (case_tac "y = 0") |
|
65 |
apply auto |
|
66 |
apply (subst pos_imp_zdiv_nonneg_iff, auto) |
|
67 |
apply (case_tac "y = 0") |
|
68 |
apply force |
|
69 |
apply (rule pos_mod_sign) |
|
70 |
apply arith |
|
71 |
done |
|
72 |
||
73 |
lemma transfer_nat_int_relations: |
|
74 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
|
75 |
(nat (x::int) = nat y) = (x = y)" |
|
76 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
|
77 |
(nat (x::int) < nat y) = (x < y)" |
|
78 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
|
79 |
(nat (x::int) <= nat y) = (x <= y)" |
|
80 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
|
81 |
(nat (x::int) dvd nat y) = (x dvd y)" |
|
32558 | 82 |
by (auto simp add: zdvd_int) |
31708 | 83 |
|
84 |
declare TransferMorphism_nat_int[transfer add return: |
|
85 |
transfer_nat_int_numerals |
|
86 |
transfer_nat_int_functions |
|
87 |
transfer_nat_int_function_closures |
|
88 |
transfer_nat_int_relations |
|
89 |
] |
|
90 |
||
91 |
||
92 |
(* first-order quantifiers *) |
|
93 |
||
94 |
lemma transfer_nat_int_quantifiers: |
|
95 |
"(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))" |
|
96 |
"(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))" |
|
97 |
by (rule all_nat, rule ex_nat) |
|
98 |
||
99 |
(* should we restrict these? *) |
|
100 |
lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> |
|
101 |
(ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)" |
|
102 |
by auto |
|
103 |
||
104 |
lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> |
|
105 |
(EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)" |
|
106 |
by auto |
|
107 |
||
108 |
declare TransferMorphism_nat_int[transfer add |
|
109 |
return: transfer_nat_int_quantifiers |
|
110 |
cong: all_cong ex_cong] |
|
111 |
||
112 |
||
113 |
(* if *) |
|
114 |
||
115 |
lemma nat_if_cong: "(if P then (nat x) else (nat y)) = |
|
116 |
nat (if P then x else y)" |
|
117 |
by auto |
|
118 |
||
119 |
declare TransferMorphism_nat_int [transfer add return: nat_if_cong] |
|
120 |
||
121 |
||
122 |
(* operations with sets *) |
|
123 |
||
124 |
definition |
|
125 |
nat_set :: "int set \<Rightarrow> bool" |
|
126 |
where |
|
127 |
"nat_set S = (ALL x:S. x >= 0)" |
|
128 |
||
129 |
lemma transfer_nat_int_set_functions: |
|
130 |
"card A = card (int ` A)" |
|
131 |
"{} = nat ` ({}::int set)" |
|
132 |
"A Un B = nat ` (int ` A Un int ` B)" |
|
133 |
"A Int B = nat ` (int ` A Int int ` B)" |
|
134 |
"{x. P x} = nat ` {x. x >= 0 & P(nat x)}" |
|
135 |
"{..n} = nat ` {0..int n}" |
|
136 |
"{m..n} = nat ` {int m..int n}" (* need all variants of these! *) |
|
137 |
apply (rule card_image [symmetric]) |
|
138 |
apply (auto simp add: inj_on_def image_def) |
|
139 |
apply (rule_tac x = "int x" in bexI) |
|
140 |
apply auto |
|
141 |
apply (rule_tac x = "int x" in bexI) |
|
142 |
apply auto |
|
143 |
apply (rule_tac x = "int x" in bexI) |
|
144 |
apply auto |
|
145 |
apply (rule_tac x = "int x" in exI) |
|
146 |
apply auto |
|
147 |
apply (rule_tac x = "int x" in bexI) |
|
148 |
apply auto |
|
149 |
apply (rule_tac x = "int x" in bexI) |
|
150 |
apply auto |
|
151 |
done |
|
152 |
||
153 |
lemma transfer_nat_int_set_function_closures: |
|
154 |
"nat_set {}" |
|
155 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" |
|
156 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" |
|
157 |
"x >= 0 \<Longrightarrow> nat_set {x..y}" |
|
158 |
"nat_set {x. x >= 0 & P x}" |
|
159 |
"nat_set (int ` C)" |
|
160 |
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *) |
|
161 |
unfolding nat_set_def apply auto |
|
162 |
done |
|
163 |
||
164 |
lemma transfer_nat_int_set_relations: |
|
165 |
"(finite A) = (finite (int ` A))" |
|
166 |
"(x : A) = (int x : int ` A)" |
|
167 |
"(A = B) = (int ` A = int ` B)" |
|
168 |
"(A < B) = (int ` A < int ` B)" |
|
169 |
"(A <= B) = (int ` A <= int ` B)" |
|
170 |
||
171 |
apply (rule iffI) |
|
172 |
apply (erule finite_imageI) |
|
173 |
apply (erule finite_imageD) |
|
174 |
apply (auto simp add: image_def expand_set_eq inj_on_def) |
|
175 |
apply (drule_tac x = "int x" in spec, auto) |
|
176 |
apply (drule_tac x = "int x" in spec, auto) |
|
177 |
apply (drule_tac x = "int x" in spec, auto) |
|
178 |
done |
|
179 |
||
180 |
lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow> |
|
181 |
(int ` nat ` A = A)" |
|
182 |
by (auto simp add: nat_set_def image_def) |
|
183 |
||
184 |
lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow> |
|
185 |
{(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}" |
|
186 |
by auto |
|
187 |
||
188 |
declare TransferMorphism_nat_int[transfer add |
|
189 |
return: transfer_nat_int_set_functions |
|
190 |
transfer_nat_int_set_function_closures |
|
191 |
transfer_nat_int_set_relations |
|
192 |
transfer_nat_int_set_return_embed |
|
193 |
cong: transfer_nat_int_set_cong |
|
194 |
] |
|
195 |
||
196 |
||
197 |
(* setsum and setprod *) |
|
198 |
||
199 |
(* this handles the case where the *domain* of f is nat *) |
|
200 |
lemma transfer_nat_int_sum_prod: |
|
201 |
"setsum f A = setsum (%x. f (nat x)) (int ` A)" |
|
202 |
"setprod f A = setprod (%x. f (nat x)) (int ` A)" |
|
203 |
apply (subst setsum_reindex) |
|
204 |
apply (unfold inj_on_def, auto) |
|
205 |
apply (subst setprod_reindex) |
|
206 |
apply (unfold inj_on_def o_def, auto) |
|
207 |
done |
|
208 |
||
209 |
(* this handles the case where the *range* of f is nat *) |
|
210 |
lemma transfer_nat_int_sum_prod2: |
|
211 |
"setsum f A = nat(setsum (%x. int (f x)) A)" |
|
212 |
"setprod f A = nat(setprod (%x. int (f x)) A)" |
|
213 |
apply (subst int_setsum [symmetric]) |
|
214 |
apply auto |
|
215 |
apply (subst int_setprod [symmetric]) |
|
216 |
apply auto |
|
217 |
done |
|
218 |
||
219 |
lemma transfer_nat_int_sum_prod_closure: |
|
220 |
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0" |
|
221 |
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0" |
|
222 |
unfolding nat_set_def |
|
223 |
apply (rule setsum_nonneg) |
|
224 |
apply auto |
|
225 |
apply (rule setprod_nonneg) |
|
226 |
apply auto |
|
227 |
done |
|
228 |
||
229 |
(* this version doesn't work, even with nat_set A \<Longrightarrow> |
|
230 |
x : A \<Longrightarrow> x >= 0 turned on. Why not? |
|
231 |
||
232 |
also: what does =simp=> do? |
|
233 |
||
234 |
lemma transfer_nat_int_sum_prod_closure: |
|
235 |
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0" |
|
236 |
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0" |
|
237 |
unfolding nat_set_def simp_implies_def |
|
238 |
apply (rule setsum_nonneg) |
|
239 |
apply auto |
|
240 |
apply (rule setprod_nonneg) |
|
241 |
apply auto |
|
242 |
done |
|
243 |
*) |
|
244 |
||
245 |
(* Making A = B in this lemma doesn't work. Why not? |
|
246 |
Also, why aren't setsum_cong and setprod_cong enough, |
|
247 |
with the previously mentioned rule turned on? *) |
|
248 |
||
249 |
lemma transfer_nat_int_sum_prod_cong: |
|
250 |
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> |
|
251 |
setsum f A = setsum g B" |
|
252 |
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> |
|
253 |
setprod f A = setprod g B" |
|
254 |
unfolding nat_set_def |
|
255 |
apply (subst setsum_cong, assumption) |
|
256 |
apply auto [2] |
|
257 |
apply (subst setprod_cong, assumption, auto) |
|
258 |
done |
|
259 |
||
260 |
declare TransferMorphism_nat_int[transfer add |
|
261 |
return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2 |
|
262 |
transfer_nat_int_sum_prod_closure |
|
263 |
cong: transfer_nat_int_sum_prod_cong] |
|
264 |
||
265 |
(* lists *) |
|
266 |
||
267 |
definition |
|
268 |
embed_list :: "nat list \<Rightarrow> int list" |
|
269 |
where |
|
270 |
"embed_list l = map int l"; |
|
271 |
||
272 |
definition |
|
273 |
nat_list :: "int list \<Rightarrow> bool" |
|
274 |
where |
|
275 |
"nat_list l = nat_set (set l)"; |
|
276 |
||
277 |
definition |
|
278 |
return_list :: "int list \<Rightarrow> nat list" |
|
279 |
where |
|
280 |
"return_list l = map nat l"; |
|
281 |
||
282 |
thm nat_0_le; |
|
283 |
||
284 |
lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow> |
|
285 |
embed_list (return_list l) = l"; |
|
286 |
unfolding embed_list_def return_list_def nat_list_def nat_set_def |
|
287 |
apply (induct l); |
|
288 |
apply auto; |
|
289 |
done; |
|
290 |
||
291 |
lemma transfer_nat_int_list_functions: |
|
292 |
"l @ m = return_list (embed_list l @ embed_list m)" |
|
293 |
"[] = return_list []"; |
|
294 |
unfolding return_list_def embed_list_def; |
|
295 |
apply auto; |
|
296 |
apply (induct l, auto); |
|
297 |
apply (induct m, auto); |
|
298 |
done; |
|
299 |
||
300 |
(* |
|
301 |
lemma transfer_nat_int_fold1: "fold f l x = |
|
302 |
fold (%x. f (nat x)) (embed_list l) x"; |
|
303 |
*) |
|
304 |
||
305 |
||
306 |
||
307 |
||
308 |
subsection {* Set up transfer from int to nat *} |
|
309 |
||
310 |
(* set up transfer direction *) |
|
311 |
||
312 |
lemma TransferMorphism_int_nat: "TransferMorphism int (UNIV :: nat set)" |
|
313 |
by (simp add: TransferMorphism_def) |
|
314 |
||
315 |
declare TransferMorphism_int_nat[transfer add |
|
316 |
mode: manual |
|
317 |
(* labels: int-nat *) |
|
318 |
return: nat_int |
|
319 |
] |
|
320 |
||
321 |
||
322 |
(* basic functions and relations *) |
|
323 |
||
324 |
definition |
|
325 |
is_nat :: "int \<Rightarrow> bool" |
|
326 |
where |
|
327 |
"is_nat x = (x >= 0)" |
|
328 |
||
329 |
lemma transfer_int_nat_numerals: |
|
330 |
"0 = int 0" |
|
331 |
"1 = int 1" |
|
332 |
"2 = int 2" |
|
333 |
"3 = int 3" |
|
334 |
by auto |
|
335 |
||
336 |
lemma transfer_int_nat_functions: |
|
337 |
"(int x) + (int y) = int (x + y)" |
|
338 |
"(int x) * (int y) = int (x * y)" |
|
339 |
"tsub (int x) (int y) = int (x - y)" |
|
340 |
"(int x)^n = int (x^n)" |
|
341 |
"(int x) div (int y) = int (x div y)" |
|
342 |
"(int x) mod (int y) = int (x mod y)" |
|
343 |
by (auto simp add: int_mult tsub_def int_power zdiv_int zmod_int) |
|
344 |
||
345 |
lemma transfer_int_nat_function_closures: |
|
346 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)" |
|
347 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)" |
|
348 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)" |
|
349 |
"is_nat x \<Longrightarrow> is_nat (x^n)" |
|
350 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)" |
|
351 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)" |
|
352 |
"is_nat 0" |
|
353 |
"is_nat 1" |
|
354 |
"is_nat 2" |
|
355 |
"is_nat 3" |
|
356 |
"is_nat (int z)" |
|
357 |
by (simp_all only: is_nat_def transfer_nat_int_function_closures) |
|
358 |
||
359 |
lemma transfer_int_nat_relations: |
|
360 |
"(int x = int y) = (x = y)" |
|
361 |
"(int x < int y) = (x < y)" |
|
362 |
"(int x <= int y) = (x <= y)" |
|
363 |
"(int x dvd int y) = (x dvd y)" |
|
364 |
"(even (int x)) = (even x)" |
|
365 |
by (auto simp add: zdvd_int even_nat_def) |
|
366 |
||
32121 | 367 |
lemma UNIV_apply: |
368 |
"UNIV x = True" |
|
32264
0be31453f698
Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents:
32121
diff
changeset
|
369 |
by (simp add: top_fun_eq top_bool_eq) |
32121 | 370 |
|
31708 | 371 |
declare TransferMorphism_int_nat[transfer add return: |
372 |
transfer_int_nat_numerals |
|
373 |
transfer_int_nat_functions |
|
374 |
transfer_int_nat_function_closures |
|
375 |
transfer_int_nat_relations |
|
32121 | 376 |
UNIV_apply |
31708 | 377 |
] |
378 |
||
379 |
||
380 |
(* first-order quantifiers *) |
|
381 |
||
382 |
lemma transfer_int_nat_quantifiers: |
|
383 |
"(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))" |
|
384 |
"(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))" |
|
385 |
apply (subst all_nat) |
|
386 |
apply auto [1] |
|
387 |
apply (subst ex_nat) |
|
388 |
apply auto |
|
389 |
done |
|
390 |
||
391 |
declare TransferMorphism_int_nat[transfer add |
|
392 |
return: transfer_int_nat_quantifiers] |
|
393 |
||
394 |
||
395 |
(* if *) |
|
396 |
||
397 |
lemma int_if_cong: "(if P then (int x) else (int y)) = |
|
398 |
int (if P then x else y)" |
|
399 |
by auto |
|
400 |
||
401 |
declare TransferMorphism_int_nat [transfer add return: int_if_cong] |
|
402 |
||
403 |
||
404 |
||
405 |
(* operations with sets *) |
|
406 |
||
407 |
lemma transfer_int_nat_set_functions: |
|
408 |
"nat_set A \<Longrightarrow> card A = card (nat ` A)" |
|
409 |
"{} = int ` ({}::nat set)" |
|
410 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)" |
|
411 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)" |
|
412 |
"{x. x >= 0 & P x} = int ` {x. P(int x)}" |
|
413 |
"is_nat m \<Longrightarrow> is_nat n \<Longrightarrow> {m..n} = int ` {nat m..nat n}" |
|
414 |
(* need all variants of these! *) |
|
415 |
by (simp_all only: is_nat_def transfer_nat_int_set_functions |
|
416 |
transfer_nat_int_set_function_closures |
|
417 |
transfer_nat_int_set_return_embed nat_0_le |
|
418 |
cong: transfer_nat_int_set_cong) |
|
419 |
||
420 |
lemma transfer_int_nat_set_function_closures: |
|
421 |
"nat_set {}" |
|
422 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" |
|
423 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" |
|
424 |
"is_nat x \<Longrightarrow> nat_set {x..y}" |
|
425 |
"nat_set {x. x >= 0 & P x}" |
|
426 |
"nat_set (int ` C)" |
|
427 |
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x" |
|
428 |
by (simp_all only: transfer_nat_int_set_function_closures is_nat_def) |
|
429 |
||
430 |
lemma transfer_int_nat_set_relations: |
|
431 |
"nat_set A \<Longrightarrow> finite A = finite (nat ` A)" |
|
432 |
"is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)" |
|
433 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)" |
|
434 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)" |
|
435 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)" |
|
436 |
by (simp_all only: is_nat_def transfer_nat_int_set_relations |
|
437 |
transfer_nat_int_set_return_embed nat_0_le) |
|
438 |
||
439 |
lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A" |
|
440 |
by (simp only: transfer_nat_int_set_relations |
|
441 |
transfer_nat_int_set_function_closures |
|
442 |
transfer_nat_int_set_return_embed nat_0_le) |
|
443 |
||
444 |
lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow> |
|
445 |
{(x::nat). P x} = {x. P' x}" |
|
446 |
by auto |
|
447 |
||
448 |
declare TransferMorphism_int_nat[transfer add |
|
449 |
return: transfer_int_nat_set_functions |
|
450 |
transfer_int_nat_set_function_closures |
|
451 |
transfer_int_nat_set_relations |
|
452 |
transfer_int_nat_set_return_embed |
|
453 |
cong: transfer_int_nat_set_cong |
|
454 |
] |
|
455 |
||
456 |
||
457 |
(* setsum and setprod *) |
|
458 |
||
459 |
(* this handles the case where the *domain* of f is int *) |
|
460 |
lemma transfer_int_nat_sum_prod: |
|
461 |
"nat_set A \<Longrightarrow> setsum f A = setsum (%x. f (int x)) (nat ` A)" |
|
462 |
"nat_set A \<Longrightarrow> setprod f A = setprod (%x. f (int x)) (nat ` A)" |
|
463 |
apply (subst setsum_reindex) |
|
464 |
apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff) |
|
465 |
apply (subst setprod_reindex) |
|
466 |
apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff |
|
467 |
cong: setprod_cong) |
|
468 |
done |
|
469 |
||
470 |
(* this handles the case where the *range* of f is int *) |
|
471 |
lemma transfer_int_nat_sum_prod2: |
|
472 |
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> setsum f A = int(setsum (%x. nat (f x)) A)" |
|
473 |
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> |
|
474 |
setprod f A = int(setprod (%x. nat (f x)) A)" |
|
475 |
unfolding is_nat_def |
|
476 |
apply (subst int_setsum, auto) |
|
477 |
apply (subst int_setprod, auto simp add: cong: setprod_cong) |
|
478 |
done |
|
479 |
||
480 |
declare TransferMorphism_int_nat[transfer add |
|
481 |
return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2 |
|
482 |
cong: setsum_cong setprod_cong] |
|
483 |
||
484 |
end |