| author | paulson | 
| Sat, 10 Jan 1998 17:59:32 +0100 | |
| changeset 4552 | bb8ff763c93d | 
| parent 4477 | b3e5857d8d99 | 
| child 5068 | fb28eaa07e01 | 
| permissions | -rw-r--r-- | 
| 3655 | 1 | (* Title: HOLCF/Lift.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Olaf Mueller | |
| 4 | Copyright 1997 Technische Universitaet Muenchen | |
| 5 | ||
| 6 | Theorems for Lift.thy | |
| 7 | *) | |
| 8 | ||
| 3324 | 9 | |
| 10 | (* ---------------------------------------------------------- *) | |
| 11 | section"Continuity Proofs for flift1, flift2, if"; | |
| 3655 | 12 | (* ---------------------------------------------------------- *) | 
| 3324 | 13 | (* need the instance into flat *) | 
| 14 | ||
| 15 | ||
| 16 | (* flift1 is continuous in its argument itself*) | |
| 17 | goal thy "cont (lift_case UU f)"; | |
| 3457 | 18 | by (rtac flatdom_strict2cont 1); | 
| 3324 | 19 | by (Simp_tac 1); | 
| 20 | qed"cont_flift1_arg"; | |
| 21 | ||
| 22 | (* flift1 is continuous in a variable that occurs only | |
| 23 | in the Def branch *) | |
| 24 | ||
| 3842 | 25 | goal thy "!!f. [| !! a. cont (%y. (f y) a) |] ==> \ | 
| 3324 | 26 | \ cont (%y. lift_case UU (f y))"; | 
| 3457 | 27 | by (rtac cont2cont_CF1L_rev 1); | 
| 3324 | 28 | by (strip_tac 1); | 
| 29 | by (res_inst_tac [("x","y")] Lift_cases 1);
 | |
| 30 | by (Asm_simp_tac 1); | |
| 4098 | 31 | by (fast_tac (HOL_cs addss simpset()) 1); | 
| 3324 | 32 | qed"cont_flift1_not_arg"; | 
| 33 | ||
| 34 | (* flift1 is continuous in a variable that occurs either | |
| 35 | in the Def branch or in the argument *) | |
| 36 | ||
| 3842 | 37 | goal thy "!!f. [| !! a. cont (%y. (f y) a); cont g|] ==> \ | 
| 3324 | 38 | \ cont (%y. lift_case UU (f y) (g y))"; | 
| 3457 | 39 | by (rtac cont2cont_app 1); | 
| 3324 | 40 | back(); | 
| 41 | by (safe_tac set_cs); | |
| 3457 | 42 | by (rtac cont_flift1_not_arg 1); | 
| 4477 
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
 paulson parents: 
4098diff
changeset | 43 | by Auto_tac; | 
| 3457 | 44 | by (rtac cont_flift1_arg 1); | 
| 3324 | 45 | qed"cont_flift1_arg_and_not_arg"; | 
| 46 | ||
| 47 | (* flift2 is continuous in its argument itself *) | |
| 48 | ||
| 49 | goal thy "cont (lift_case UU (%y. Def (f y)))"; | |
| 3457 | 50 | by (rtac flatdom_strict2cont 1); | 
| 3324 | 51 | by (Simp_tac 1); | 
| 52 | qed"cont_flift2_arg"; | |
| 53 | ||
| 54 | ||
| 55 | (* ---------------------------------------------------------- *) | |
| 56 | (* Extension of cont_tac and installation of simplifier *) | |
| 57 | (* ---------------------------------------------------------- *) | |
| 58 | ||
| 59 | bind_thm("cont2cont_CF1L_rev2",allI RS cont2cont_CF1L_rev);
 | |
| 60 | ||
| 61 | val cont_lemmas_ext = [cont_flift1_arg,cont_flift2_arg, | |
| 62 | cont_flift1_arg_and_not_arg,cont2cont_CF1L_rev2, | |
| 63 | cont_fapp_app,cont_fapp_app_app,cont_if]; | |
| 64 | ||
| 65 | val cont_lemmas2 = cont_lemmas1 @ cont_lemmas_ext; | |
| 66 | ||
| 67 | Addsimps cont_lemmas_ext; | |
| 68 | ||
| 69 | fun cont_tac i = resolve_tac cont_lemmas2 i; | |
| 70 | fun cont_tacR i = REPEAT (cont_tac i); | |
| 71 | ||
| 4098 | 72 | fun cont_tacRs i = simp_tac (simpset() addsimps [flift1_def,flift2_def]) i THEN | 
| 3324 | 73 | REPEAT (cont_tac i); | 
| 74 | ||
| 75 | ||
| 4098 | 76 | simpset_ref() := simpset() addSolver (K (DEPTH_SOLVE_1 o cont_tac)); | 
| 3324 | 77 | |
| 3661 | 78 | |
| 79 | ||
| 3324 | 80 | (* ---------------------------------------------------------- *) | 
| 81 | section"flift1, flift2"; | |
| 82 | (* ---------------------------------------------------------- *) | |
| 83 | ||
| 84 | ||
| 85 | goal thy "flift1 f`(Def x) = (f x)"; | |
| 4098 | 86 | by (simp_tac (simpset() addsimps [flift1_def]) 1); | 
| 3324 | 87 | qed"flift1_Def"; | 
| 88 | ||
| 89 | goal thy "flift2 f`(Def x) = Def (f x)"; | |
| 4098 | 90 | by (simp_tac (simpset() addsimps [flift2_def]) 1); | 
| 3324 | 91 | qed"flift2_Def"; | 
| 92 | ||
| 93 | goal thy "flift1 f`UU = UU"; | |
| 4098 | 94 | by (simp_tac (simpset() addsimps [flift1_def]) 1); | 
| 3324 | 95 | qed"flift1_UU"; | 
| 96 | ||
| 97 | goal thy "flift2 f`UU = UU"; | |
| 4098 | 98 | by (simp_tac (simpset() addsimps [flift2_def]) 1); | 
| 3324 | 99 | qed"flift2_UU"; | 
| 100 | ||
| 101 | Addsimps [flift1_Def,flift2_Def,flift1_UU,flift2_UU]; | |
| 102 | ||
| 103 | goal thy "!!x. x~=UU ==> (flift2 f)`x~=UU"; | |
| 104 | by (def_tac 1); | |
| 105 | qed"flift2_nUU"; | |
| 106 | ||
| 107 | Addsimps [flift2_nUU]; | |
| 108 | ||
| 109 |