| author | haftmann | 
| Tue, 17 Aug 2010 15:13:16 +0200 | |
| changeset 38528 | bbaaaf6f1cbe | 
| parent 35416 | d8d7d1b785af | 
| child 39246 | 9e58f0499f57 | 
| permissions | -rw-r--r-- | 
| 32631 | 1 | (* Author: Giampaolo Bella, Catania University | 
| 18886 | 2 | *) | 
| 3 | ||
| 4 | header{*Theory of smartcards*}
 | |
| 5 | ||
| 32631 | 6 | theory Smartcard | 
| 7 | imports EventSC All_Symmetric | |
| 8 | begin | |
| 18886 | 9 | |
| 10 | text{*  
 | |
| 11 | As smartcards handle long-term (symmetric) keys, this theoy extends and | |
| 12 | supersedes theory Private.thy | |
| 13 | ||
| 14 | An agent is bad if she reveals her PIN to the spy, not the shared key that | |
| 15 | is embedded in her card. An agent's being bad implies nothing about her | |
| 16 | smartcard, which independently may be stolen or cloned. | |
| 17 | *} | |
| 18 | ||
| 19 | consts | |
| 20 | shrK :: "agent => key" (*long-term keys saved in smart cards*) | |
| 21 | crdK :: "card => key" (*smart cards' symmetric keys*) | |
| 22 | pin :: "agent => key" (*pin to activate the smart cards*) | |
| 23 | ||
| 24 | (*Mostly for Shoup-Rubin*) | |
| 25 | Pairkey :: "agent * agent => nat" | |
| 26 | pairK :: "agent * agent => key" | |
| 27 | ||
| 28 | axioms | |
| 29 |   inj_shrK: "inj shrK"  --{*No two smartcards store the same key*}
 | |
| 30 |   inj_crdK: "inj crdK"  --{*Nor do two cards*}
 | |
| 31 |   inj_pin : "inj pin"   --{*Nor do two agents have the same pin*}
 | |
| 32 | ||
| 33 | (*pairK is injective on each component, if we assume encryption to be a PRF | |
| 34 | or at least collision free *) | |
| 35 | inj_pairK [iff]: "(pairK(A,B) = pairK(A',B')) = (A = A' & B = B')" | |
| 36 | comm_Pairkey [iff]: "Pairkey(A,B) = Pairkey(B,A)" | |
| 37 | ||
| 38 | (*long-term keys differ from each other*) | |
| 39 | pairK_disj_crdK [iff]: "pairK(A,B) \<noteq> crdK C" | |
| 40 | pairK_disj_shrK [iff]: "pairK(A,B) \<noteq> shrK P" | |
| 41 | pairK_disj_pin [iff]: "pairK(A,B) \<noteq> pin P" | |
| 42 | shrK_disj_crdK [iff]: "shrK P \<noteq> crdK C" | |
| 43 | shrK_disj_pin [iff]: "shrK P \<noteq> pin Q" | |
| 44 | crdK_disj_pin [iff]: "crdK C \<noteq> pin P" | |
| 45 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 46 | definition legalUse :: "card => bool" ("legalUse (_)") where
 | 
| 18886 | 47 | "legalUse C == C \<notin> stolen" | 
| 48 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 49 | primrec illegalUse :: "card => bool" where | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 50 | illegalUse_def: "illegalUse (Card A) = ( (Card A \<in> stolen \<and> A \<in> bad) \<or> Card A \<in> cloned )" | 
| 18886 | 51 | |
| 52 | ||
| 53 | text{*initState must be defined with care*}
 | |
| 54 | primrec | |
| 55 | (*Server knows all long-term keys; adding cards' keys may be redundant but | |
| 56 | helps prove crdK_in_initState and crdK_in_used to distinguish cards' keys | |
| 57 | from fresh (session) keys*) | |
| 58 | initState_Server: "initState Server = | |
| 59 | (Key`(range shrK \<union> range crdK \<union> range pin \<union> range pairK)) \<union> | |
| 60 | (Nonce`(range Pairkey))" | |
| 61 | ||
| 62 | (*Other agents know only their own*) | |
| 63 |   initState_Friend:  "initState (Friend i) = {Key (pin (Friend i))}"
 | |
| 64 | ||
| 65 | (*Spy knows bad agents' pins, cloned cards' keys, pairKs, and Pairkeys *) | |
| 66 | initState_Spy: "initState Spy = | |
| 67 |                  (Key`((pin`bad) \<union> (pin `{A. Card A \<in> cloned}) \<union> 
 | |
| 68 |                                       (shrK`{A. Card A \<in> cloned}) \<union> 
 | |
| 69 | (crdK`cloned) \<union> | |
| 70 |                         (pairK`{(X,A). Card A \<in> cloned})))
 | |
| 71 |            \<union> (Nonce`(Pairkey`{(A,B). Card A \<in> cloned & Card B \<in> cloned}))"
 | |
| 72 | ||
| 73 | ||
| 74 | text{*Still relying on axioms*}
 | |
| 75 | axioms | |
| 76 | Key_supply_ax: "finite KK \<Longrightarrow> \<exists> K. K \<notin> KK & Key K \<notin> used evs" | |
| 77 | ||
| 78 | (*Needed because of Spy's knowledge of Pairkeys*) | |
| 79 | Nonce_supply_ax: "finite NN \<Longrightarrow> \<exists> N. N \<notin> NN & Nonce N \<notin> used evs" | |
| 80 | ||
| 81 | ||
| 82 | ||
| 83 | ||
| 84 | ||
| 85 | ||
| 86 | ||
| 87 | subsection{*Basic properties of shrK*}
 | |
| 88 | ||
| 89 | (*Injectiveness: Agents' long-term keys are distinct.*) | |
| 90 | declare inj_shrK [THEN inj_eq, iff] | |
| 91 | declare inj_crdK [THEN inj_eq, iff] | |
| 92 | declare inj_pin [THEN inj_eq, iff] | |
| 93 | ||
| 94 | lemma invKey_K [simp]: "invKey K = K" | |
| 95 | apply (insert isSym_keys) | |
| 96 | apply (simp add: symKeys_def) | |
| 97 | done | |
| 98 | ||
| 99 | ||
| 100 | lemma analz_Decrypt' [dest]: | |
| 101 | "\<lbrakk> Crypt K X \<in> analz H; Key K \<in> analz H \<rbrakk> \<Longrightarrow> X \<in> analz H" | |
| 102 | by auto | |
| 103 | ||
| 104 | text{*Now cancel the @{text dest} attribute given to
 | |
| 105 |  @{text analz.Decrypt} in its declaration.*}
 | |
| 106 | declare analz.Decrypt [rule del] | |
| 107 | ||
| 108 | text{*Rewrites should not refer to  @{term "initState(Friend i)"} because
 | |
| 109 | that expression is not in normal form.*} | |
| 110 | ||
| 111 | text{*Added to extend initstate with set of nonces*}
 | |
| 112 | lemma parts_image_Nonce [simp]: "parts (Nonce`N) = Nonce`N" | |
| 113 | apply auto | |
| 114 | apply (erule parts.induct) | |
| 115 | apply auto | |
| 116 | done | |
| 117 | ||
| 118 | lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
 | |
| 119 | apply (unfold keysFor_def) | |
| 120 | apply (induct_tac "C", auto) | |
| 121 | done | |
| 122 | ||
| 123 | (*Specialized to shared-key model: no @{term invKey}*)
 | |
| 124 | lemma keysFor_parts_insert: | |
| 125 | "\<lbrakk> K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) \<rbrakk> | |
| 126 | \<Longrightarrow> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H"; | |
| 127 | by (force dest: EventSC.keysFor_parts_insert) | |
| 128 | ||
| 129 | lemma Crypt_imp_keysFor: "Crypt K X \<in> H \<Longrightarrow> K \<in> keysFor H" | |
| 130 | by (drule Crypt_imp_invKey_keysFor, simp) | |
| 131 | ||
| 132 | ||
| 133 | subsection{*Function "knows"*}
 | |
| 134 | ||
| 135 | (*Spy knows the pins of bad agents!*) | |
| 136 | lemma Spy_knows_bad [intro!]: "A \<in> bad \<Longrightarrow> Key (pin A) \<in> knows Spy evs" | |
| 137 | apply (induct_tac "evs") | |
| 138 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split) | |
| 139 | done | |
| 140 | ||
| 141 | (*Spy knows the long-term keys of cloned cards!*) | |
| 142 | lemma Spy_knows_cloned [intro!]: | |
| 143 | "Card A \<in> cloned \<Longrightarrow> Key (crdK (Card A)) \<in> knows Spy evs & | |
| 144 | Key (shrK A) \<in> knows Spy evs & | |
| 145 | Key (pin A) \<in> knows Spy evs & | |
| 146 | (\<forall> B. Key (pairK(B,A)) \<in> knows Spy evs)" | |
| 147 | apply (induct_tac "evs") | |
| 148 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split) | |
| 149 | done | |
| 150 | ||
| 151 | lemma Spy_knows_cloned1 [intro!]: "C \<in> cloned \<Longrightarrow> Key (crdK C) \<in> knows Spy evs" | |
| 152 | apply (induct_tac "evs") | |
| 153 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split) | |
| 154 | done | |
| 155 | ||
| 156 | lemma Spy_knows_cloned2 [intro!]: "\<lbrakk> Card A \<in> cloned; Card B \<in> cloned \<rbrakk> | |
| 157 | \<Longrightarrow> Nonce (Pairkey(A,B))\<in> knows Spy evs" | |
| 158 | apply (induct_tac "evs") | |
| 159 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split) | |
| 160 | done | |
| 161 | ||
| 162 | (*Spy only knows pins of bad agents!*) | |
| 163 | lemma Spy_knows_Spy_bad [intro!]: "A\<in> bad \<Longrightarrow> Key (pin A) \<in> knows Spy evs" | |
| 164 | apply (induct_tac "evs") | |
| 165 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split) | |
| 166 | done | |
| 167 | ||
| 168 | ||
| 169 | (*For case analysis on whether or not an agent is compromised*) | |
| 170 | lemma Crypt_Spy_analz_bad: | |
| 171 | "\<lbrakk> Crypt (pin A) X \<in> analz (knows Spy evs); A\<in>bad \<rbrakk> | |
| 172 | \<Longrightarrow> X \<in> analz (knows Spy evs)" | |
| 173 | apply (force dest!: analz.Decrypt) | |
| 174 | done | |
| 175 | ||
| 176 | (** Fresh keys never clash with other keys **) | |
| 177 | ||
| 178 | lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState Server" | |
| 179 | apply (induct_tac "A") | |
| 180 | apply auto | |
| 181 | done | |
| 182 | ||
| 183 | lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs" | |
| 184 | apply (rule initState_into_used) | |
| 185 | apply blast | |
| 186 | done | |
| 187 | ||
| 188 | lemma crdK_in_initState [iff]: "Key (crdK A) \<in> initState Server" | |
| 189 | apply (induct_tac "A") | |
| 190 | apply auto | |
| 191 | done | |
| 192 | ||
| 193 | lemma crdK_in_used [iff]: "Key (crdK A) \<in> used evs" | |
| 194 | apply (rule initState_into_used) | |
| 195 | apply blast | |
| 196 | done | |
| 197 | ||
| 198 | lemma pin_in_initState [iff]: "Key (pin A) \<in> initState A" | |
| 199 | apply (induct_tac "A") | |
| 200 | apply auto | |
| 201 | done | |
| 202 | ||
| 203 | lemma pin_in_used [iff]: "Key (pin A) \<in> used evs" | |
| 204 | apply (rule initState_into_used) | |
| 205 | apply blast | |
| 206 | done | |
| 207 | ||
| 208 | lemma pairK_in_initState [iff]: "Key (pairK X) \<in> initState Server" | |
| 209 | apply (induct_tac "X") | |
| 210 | apply auto | |
| 211 | done | |
| 212 | ||
| 213 | lemma pairK_in_used [iff]: "Key (pairK X) \<in> used evs" | |
| 214 | apply (rule initState_into_used) | |
| 215 | apply blast | |
| 216 | done | |
| 217 | ||
| 218 | ||
| 219 | ||
| 220 | (*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys | |
| 221 | from long-term shared keys*) | |
| 222 | lemma Key_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range shrK" | |
| 223 | by blast | |
| 224 | ||
| 225 | lemma shrK_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> shrK B \<noteq> K" | |
| 226 | by blast | |
| 227 | ||
| 228 | lemma crdK_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range crdK" | |
| 229 | apply clarify | |
| 230 | done | |
| 231 | ||
| 232 | lemma crdK_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> crdK C \<noteq> K" | |
| 233 | apply clarify | |
| 234 | done | |
| 235 | ||
| 236 | lemma pin_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range pin" | |
| 237 | apply clarify | |
| 238 | done | |
| 239 | ||
| 240 | lemma pin_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> pin A \<noteq> K" | |
| 241 | apply clarify | |
| 242 | done | |
| 243 | ||
| 244 | lemma pairK_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range pairK" | |
| 245 | apply clarify | |
| 246 | done | |
| 247 | ||
| 248 | lemma pairK_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> pairK(A,B) \<noteq> K" | |
| 249 | apply clarify | |
| 250 | done | |
| 251 | ||
| 252 | declare shrK_neq [THEN not_sym, simp] | |
| 253 | declare crdK_neq [THEN not_sym, simp] | |
| 254 | declare pin_neq [THEN not_sym, simp] | |
| 255 | declare pairK_neq [THEN not_sym, simp] | |
| 256 | ||
| 257 | ||
| 258 | subsection{*Fresh nonces*}
 | |
| 259 | ||
| 260 | lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState (Friend i))" | |
| 261 | by auto | |
| 262 | ||
| 263 | ||
| 264 | (*This lemma no longer holds of smartcard protocols, where the cards can store | |
| 265 | nonces. | |
| 266 | ||
| 267 | lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []" | |
| 268 | apply (simp (no_asm) add: used_Nil) | |
| 269 | done | |
| 270 | ||
| 271 | So, we must use old-style supply fresh nonce theorems relying on the appropriate axiom*) | |
| 272 | ||
| 273 | ||
| 274 | subsection{*Supply fresh nonces for possibility theorems.*}
 | |
| 275 | ||
| 276 | ||
| 277 | lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs" | |
| 22265 | 278 | apply (rule finite.emptyI [THEN Nonce_supply_ax, THEN exE], blast) | 
| 18886 | 279 | done | 
| 280 | ||
| 281 | lemma Nonce_supply2: | |
| 282 | "\<exists>N N'. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & N \<noteq> N'" | |
| 22265 | 283 | apply (cut_tac evs = evs in finite.emptyI [THEN Nonce_supply_ax]) | 
| 18886 | 284 | apply (erule exE) | 
| 22265 | 285 | apply (cut_tac evs = evs' in finite.emptyI [THEN finite.insertI, THEN Nonce_supply_ax]) | 
| 18886 | 286 | apply auto | 
| 287 | done | |
| 288 | ||
| 289 | ||
| 290 | lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & | |
| 291 | Nonce N'' \<notin> used evs'' & N \<noteq> N' & N' \<noteq> N'' & N \<noteq> N''" | |
| 22265 | 292 | apply (cut_tac evs = evs in finite.emptyI [THEN Nonce_supply_ax]) | 
| 18886 | 293 | apply (erule exE) | 
| 22265 | 294 | apply (cut_tac evs = evs' and a1 = N in finite.emptyI [THEN finite.insertI, THEN Nonce_supply_ax]) | 
| 18886 | 295 | apply (erule exE) | 
| 22265 | 296 | apply (cut_tac evs = evs'' and a1 = Na and a2 = N in finite.emptyI [THEN finite.insertI, THEN finite.insertI, THEN Nonce_supply_ax]) | 
| 18886 | 297 | apply blast | 
| 298 | done | |
| 299 | ||
| 300 | lemma Nonce_supply: "Nonce (@ N. Nonce N \<notin> used evs) \<notin> used evs" | |
| 22265 | 301 | apply (rule finite.emptyI [THEN Nonce_supply_ax, THEN exE]) | 
| 18886 | 302 | apply (rule someI, blast) | 
| 303 | done | |
| 304 | ||
| 305 | ||
| 306 | ||
| 307 | text{*Unlike the corresponding property of nonces, we cannot prove
 | |
| 308 |     @{term "finite KK \<Longrightarrow> \<exists>K. K \<notin> KK & Key K \<notin> used evs"}.
 | |
| 309 | We have infinitely many agents and there is nothing to stop their | |
| 310 | long-term keys from exhausting all the natural numbers. Instead, | |
| 311 | possibility theorems must assume the existence of a few keys.*} | |
| 312 | ||
| 313 | ||
| 314 | subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*}
 | |
| 315 | ||
| 316 | lemma subset_Compl_range_shrK: "A \<subseteq> - (range shrK) \<Longrightarrow> shrK x \<notin> A" | |
| 317 | by blast | |
| 318 | ||
| 319 | lemma subset_Compl_range_crdK: "A \<subseteq> - (range crdK) \<Longrightarrow> crdK x \<notin> A" | |
| 320 | apply blast | |
| 321 | done | |
| 322 | ||
| 323 | lemma subset_Compl_range_pin: "A \<subseteq> - (range pin) \<Longrightarrow> pin x \<notin> A" | |
| 324 | apply blast | |
| 325 | done | |
| 326 | ||
| 327 | lemma subset_Compl_range_pairK: "A \<subseteq> - (range pairK) \<Longrightarrow> pairK x \<notin> A" | |
| 328 | apply blast | |
| 329 | done | |
| 330 | lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H"
 | |
| 331 | by blast | |
| 332 | ||
| 333 | lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C" | |
| 334 | by blast | |
| 335 | ||
| 336 | (** Reverse the normal simplification of "image" to build up (not break down) | |
| 337 | the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to | |
| 338 | erase occurrences of forwarded message components (X). **) | |
| 339 | ||
| 340 | lemmas analz_image_freshK_simps = | |
| 341 |        simp_thms mem_simps --{*these two allow its use with @{text "only:"}*}
 | |
| 342 | disj_comms | |
| 343 | image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset | |
| 344 | analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD] | |
| 345 | insert_Key_singleton subset_Compl_range_shrK subset_Compl_range_crdK | |
| 346 | subset_Compl_range_pin subset_Compl_range_pairK | |
| 347 | Key_not_used insert_Key_image Un_assoc [THEN sym] | |
| 348 | ||
| 349 | (*Lemma for the trivial direction of the if-and-only-if*) | |
| 350 | lemma analz_image_freshK_lemma: | |
| 351 | "(Key K \<in> analz (Key`nE \<union> H)) \<longrightarrow> (K \<in> nE | Key K \<in> analz H) \<Longrightarrow> | |
| 352 | (Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)" | |
| 353 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 354 | ||
| 24122 | 355 | |
| 356 | subsection{*Tactics for possibility theorems*}
 | |
| 357 | ||
| 18886 | 358 | ML | 
| 359 | {*
 | |
| 24122 | 360 | structure Smartcard = | 
| 361 | struct | |
| 362 | ||
| 363 | (*Omitting used_Says makes the tactic much faster: it leaves expressions | |
| 364 | such as Nonce ?N \<notin> used evs that match Nonce_supply*) | |
| 365 | fun possibility_tac ctxt = | |
| 366 | (REPEAT | |
| 32149 
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
 wenzelm parents: 
30549diff
changeset | 367 | (ALLGOALS (simp_tac (simpset_of ctxt | 
| 24122 | 368 |       delsimps [@{thm used_Says}, @{thm used_Notes}, @{thm used_Gets},
 | 
| 369 |         @{thm used_Inputs}, @{thm used_C_Gets}, @{thm used_Outpts}, @{thm used_A_Gets}] 
 | |
| 370 | setSolver safe_solver)) | |
| 371 | THEN | |
| 372 | REPEAT_FIRST (eq_assume_tac ORELSE' | |
| 373 |                    resolve_tac [refl, conjI, @{thm Nonce_supply}])))
 | |
| 374 | ||
| 375 | (*For harder protocols (such as Recur) where we have to set up some | |
| 376 | nonces and keys initially*) | |
| 377 | fun basic_possibility_tac ctxt = | |
| 378 | REPEAT | |
| 32149 
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
 wenzelm parents: 
30549diff
changeset | 379 | (ALLGOALS (asm_simp_tac (simpset_of ctxt setSolver safe_solver)) | 
| 24122 | 380 | THEN | 
| 381 | REPEAT_FIRST (resolve_tac [refl, conjI])) | |
| 18886 | 382 | |
| 383 | val analz_image_freshK_ss = | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 384 |      @{simpset} delsimps [image_insert, image_Un]
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32631diff
changeset | 385 |                delsimps [@{thm imp_disjL}]    (*reduces blow-up*)
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32631diff
changeset | 386 |                addsimps @{thms analz_image_freshK_simps}
 | 
| 24122 | 387 | end | 
| 18886 | 388 | *} | 
| 389 | ||
| 390 | ||
| 391 | (*Lets blast_tac perform this step without needing the simplifier*) | |
| 392 | lemma invKey_shrK_iff [iff]: | |
| 393 | "(Key (invKey K) \<in> X) = (Key K \<in> X)" | |
| 394 | by auto | |
| 395 | ||
| 396 | (*Specialized methods*) | |
| 397 | ||
| 398 | method_setup analz_freshK = {*
 | |
| 30549 | 399 | Scan.succeed (fn ctxt => | 
| 30510 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 wenzelm parents: 
24122diff
changeset | 400 | (SIMPLE_METHOD | 
| 21588 | 401 | (EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]), | 
| 24122 | 402 |           REPEAT_FIRST (rtac @{thm analz_image_freshK_lemma}),
 | 
| 403 | ALLGOALS (asm_simp_tac (Simplifier.context ctxt Smartcard.analz_image_freshK_ss))]))) *} | |
| 18886 | 404 | "for proving the Session Key Compromise theorem" | 
| 405 | ||
| 406 | method_setup possibility = {*
 | |
| 30549 | 407 | Scan.succeed (fn ctxt => | 
| 30510 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 wenzelm parents: 
24122diff
changeset | 408 | SIMPLE_METHOD (Smartcard.possibility_tac ctxt)) *} | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 409 | "for proving possibility theorems" | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 410 | |
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 411 | method_setup basic_possibility = {*
 | 
| 30549 | 412 | Scan.succeed (fn ctxt => | 
| 30510 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 wenzelm parents: 
24122diff
changeset | 413 | SIMPLE_METHOD (Smartcard.basic_possibility_tac ctxt)) *} | 
| 18886 | 414 | "for proving possibility theorems" | 
| 415 | ||
| 416 | lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)" | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 417 | by (induct e) (auto simp: knows_Cons) | 
| 18886 | 418 | |
| 419 | (*Needed for actual protocols that will follow*) | |
| 420 | declare shrK_disj_crdK[THEN not_sym, iff] | |
| 421 | declare shrK_disj_pin[THEN not_sym, iff] | |
| 422 | declare pairK_disj_shrK[THEN not_sym, iff] | |
| 423 | declare pairK_disj_crdK[THEN not_sym, iff] | |
| 424 | declare pairK_disj_pin[THEN not_sym, iff] | |
| 425 | declare crdK_disj_pin[THEN not_sym, iff] | |
| 426 | ||
| 427 | declare legalUse_def [iff] illegalUse_def [iff] | |
| 428 | ||
| 429 | end |