author | wenzelm |
Thu, 18 Jun 1998 18:35:07 +0200 | |
changeset 5052 | bbe3584b515b |
parent 4091 | 771b1f6422a8 |
child 5067 | 62b6288e6005 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/AC.ML |
484 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
484 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
For AC.thy. The Axiom of Choice |
|
7 |
*) |
|
8 |
||
9 |
open AC; |
|
10 |
||
11 |
(*The same as AC, but no premise a:A*) |
|
12 |
val [nonempty] = goal AC.thy |
|
13 |
"[| !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"; |
|
14 |
by (excluded_middle_tac "A=0" 1); |
|
4091 | 15 |
by (asm_simp_tac (simpset() addsimps [Pi_empty1]) 2 THEN Blast_tac 2); |
484 | 16 |
(*The non-trivial case*) |
4091 | 17 |
by (blast_tac (claset() addIs [AC, nonempty]) 1); |
760 | 18 |
qed "AC_Pi"; |
484 | 19 |
|
20 |
(*Using dtac, this has the advantage of DELETING the universal quantifier*) |
|
21 |
goal AC.thy "!!A B. ALL x:A. EX y. y:B(x) ==> EX y. y : Pi(A,B)"; |
|
1461 | 22 |
by (rtac AC_Pi 1); |
23 |
by (etac bspec 1); |
|
484 | 24 |
by (assume_tac 1); |
760 | 25 |
qed "AC_ball_Pi"; |
484 | 26 |
|
27 |
goal AC.thy "EX f. f: (PROD X: Pow(C)-{0}. X)"; |
|
3840 | 28 |
by (res_inst_tac [("B1", "%x. x")] (AC_Pi RS exE) 1); |
484 | 29 |
by (etac exI 2); |
3016 | 30 |
by (Blast_tac 1); |
760 | 31 |
qed "AC_Pi_Pow"; |
484 | 32 |
|
33 |
val [nonempty] = goal AC.thy |
|
1461 | 34 |
"[| !!x. x:A ==> (EX y. y:x) \ |
484 | 35 |
\ |] ==> EX f: A->Union(A). ALL x:A. f`x : x"; |
3840 | 36 |
by (res_inst_tac [("B1", "%x. x")] (AC_Pi RS exE) 1); |
484 | 37 |
by (etac nonempty 1); |
4091 | 38 |
by (blast_tac (claset() addDs [apply_type] addIs [Pi_type]) 1); |
760 | 39 |
qed "AC_func"; |
484 | 40 |
|
741 | 41 |
goal ZF.thy "!!x A. [| 0 ~: A; x: A |] ==> EX y. y:x"; |
42 |
by (subgoal_tac "x ~= 0" 1); |
|
3016 | 43 |
by (ALLGOALS Blast_tac); |
760 | 44 |
qed "non_empty_family"; |
484 | 45 |
|
46 |
goal AC.thy "!!A. 0 ~: A ==> EX f: A->Union(A). ALL x:A. f`x : x"; |
|
47 |
by (rtac AC_func 1); |
|
48 |
by (REPEAT (ares_tac [non_empty_family] 1)); |
|
760 | 49 |
qed "AC_func0"; |
484 | 50 |
|
51 |
goal AC.thy "EX f: (Pow(C)-{0}) -> C. ALL x:(Pow(C)-{0}). f`x : x"; |
|
52 |
by (resolve_tac [AC_func0 RS bexE] 1); |
|
53 |
by (rtac bexI 2); |
|
54 |
by (assume_tac 2); |
|
1461 | 55 |
by (etac fun_weaken_type 2); |
3016 | 56 |
by (ALLGOALS Blast_tac); |
760 | 57 |
qed "AC_func_Pow"; |
484 | 58 |
|
1074
d60f203eeddf
Modified proofs for new claset primitives. The problem is that they enforce
lcp
parents:
760
diff
changeset
|
59 |
goal AC.thy "!!A. 0 ~: A ==> EX f. f: (PROD x:A. x)"; |
d60f203eeddf
Modified proofs for new claset primitives. The problem is that they enforce
lcp
parents:
760
diff
changeset
|
60 |
by (rtac AC_Pi 1); |
d60f203eeddf
Modified proofs for new claset primitives. The problem is that they enforce
lcp
parents:
760
diff
changeset
|
61 |
by (REPEAT (ares_tac [non_empty_family] 1)); |
d60f203eeddf
Modified proofs for new claset primitives. The problem is that they enforce
lcp
parents:
760
diff
changeset
|
62 |
qed "AC_Pi0"; |
d60f203eeddf
Modified proofs for new claset primitives. The problem is that they enforce
lcp
parents:
760
diff
changeset
|
63 |