| 
76396
 | 
     1  | 
theory Document
  | 
| 
 | 
     2  | 
  imports Main
  | 
| 
 | 
     3  | 
begin
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
section \<open>Some section\<close>
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
subsection \<open>Some subsection\<close>
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
subsection \<open>Some subsubsection\<close>
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
subsubsection \<open>Some subsubsubsection\<close>
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
paragraph \<open>A paragraph.\<close>
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
text \<open>Informal bla bla.\<close>
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
definition "foo = True"  \<comment> \<open>side remark on \<^const>\<open>foo\<close>\<close>
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
definition "bar = False"  \<comment> \<open>side remark on \<^const>\<open>bar\<close>\<close>
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
lemma foo unfolding foo_def ..
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
paragraph \<open>Another paragraph.\<close>
  | 
| 
 | 
    25  | 
  | 
| 
76987
 | 
    26  | 
text \<open>See also \<^cite>\<open>\<open>\S3\<close> in "isabelle-system"\<close>.\<close>
  | 
| 
76396
 | 
    27  | 
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
section \<open>Formal proof of Cantor's theorem\<close>
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
text_raw \<open>\isakeeptag{proof}\<close>
 | 
| 
 | 
    32  | 
text \<open>
  | 
| 
 | 
    33  | 
  Cantor's Theorem states that there is no surjection from
  | 
| 
 | 
    34  | 
  a set to its powerset.  The proof works by diagonalization.  E.g.\ see
  | 
| 
 | 
    35  | 
  \<^item> \<^url>\<open>http://mathworld.wolfram.com/CantorDiagonalMethod.html\<close>
  | 
| 
 | 
    36  | 
  \<^item> \<^url>\<open>https://en.wikipedia.org/wiki/Cantor's_diagonal_argument\<close>
  | 
| 
 | 
    37  | 
\<close>
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
theorem Cantor: "\<nexists>f :: 'a \<Rightarrow> 'a set. \<forall>A. \<exists>x. A = f x"
  | 
| 
 | 
    40  | 
proof
  | 
| 
 | 
    41  | 
  assume "\<exists>f :: 'a \<Rightarrow> 'a set. \<forall>A. \<exists>x. A = f x"
  | 
| 
 | 
    42  | 
  then obtain f :: "'a \<Rightarrow> 'a set" where *: "\<forall>A. \<exists>x. A = f x" ..
  | 
| 
 | 
    43  | 
  let ?D = "{x. x \<notin> f x}"
 | 
| 
 | 
    44  | 
  from * obtain a where "?D = f a" by blast
  | 
| 
 | 
    45  | 
  moreover have "a \<in> ?D \<longleftrightarrow> a \<notin> f a" by blast
  | 
| 
 | 
    46  | 
  ultimately show False by blast
  | 
| 
 | 
    47  | 
qed
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
subsection \<open>Lorem ipsum dolor\<close>
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
text \<open>
  | 
| 
 | 
    53  | 
  Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec id ipsum
  | 
| 
 | 
    54  | 
  sapien. Vivamus malesuada enim nibh, a tristique nisi sodales ac. Praesent
  | 
| 
 | 
    55  | 
  ut sem consectetur, interdum tellus ac, sodales nulla. Quisque vel diam at
  | 
| 
 | 
    56  | 
  risus tempus tempor eget a tortor. Suspendisse potenti. Nulla erat lacus,
  | 
| 
 | 
    57  | 
  dignissim sed volutpat nec, feugiat non leo. Nunc blandit et justo sed
  | 
| 
 | 
    58  | 
  venenatis. Donec scelerisque placerat magna, et congue nulla convallis vel.
  | 
| 
 | 
    59  | 
  Cras tristique dolor consequat dolor tristique rutrum. Suspendisse ultrices
  | 
| 
 | 
    60  | 
  sem nibh, et suscipit felis ultricies at. Aliquam venenatis est vel nulla
  | 
| 
 | 
    61  | 
  efficitur ornare. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
  | 
| 
 | 
    62  | 
\<close>
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
end
  |