1461
|
1 |
(* Title: LCF/fix
|
660
|
2 |
ID: $Id$
|
1461
|
3 |
Author: Tobias Nipkow
|
660
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Fixedpoint theory
|
|
7 |
*)
|
|
8 |
|
0
|
9 |
signature FIX =
|
|
10 |
sig
|
|
11 |
val adm_eq: thm
|
|
12 |
val adm_not_eq_tr: thm
|
|
13 |
val adm_not_not: thm
|
|
14 |
val not_eq_TT: thm
|
|
15 |
val not_eq_FF: thm
|
|
16 |
val not_eq_UU: thm
|
|
17 |
val induct2: thm
|
|
18 |
val induct_tac: string -> int -> tactic
|
|
19 |
val induct2_tac: string*string -> int -> tactic
|
|
20 |
end;
|
|
21 |
|
|
22 |
structure Fix:FIX =
|
|
23 |
struct
|
|
24 |
|
3837
|
25 |
val adm_eq = prove_goal LCF.thy "adm(%x. t(x)=(u(x)::'a::cpo))"
|
1461
|
26 |
(fn _ => [rewtac eq_def,
|
|
27 |
REPEAT(rstac[adm_conj,adm_less]1)]);
|
0
|
28 |
|
|
29 |
val adm_not_not = prove_goal LCF.thy "adm(P) ==> adm(%x.~~P(x))"
|
1461
|
30 |
(fn prems => [simp_tac (LCF_ss addsimps prems) 1]);
|
0
|
31 |
|
|
32 |
|
|
33 |
val tac = rtac tr_induct 1 THEN REPEAT(simp_tac LCF_ss 1);
|
|
34 |
|
|
35 |
val not_eq_TT = prove_goal LCF.thy "ALL p. ~p=TT <-> (p=FF | p=UU)"
|
660
|
36 |
(fn _ => [tac]) RS spec;
|
0
|
37 |
|
|
38 |
val not_eq_FF = prove_goal LCF.thy "ALL p. ~p=FF <-> (p=TT | p=UU)"
|
660
|
39 |
(fn _ => [tac]) RS spec;
|
0
|
40 |
|
|
41 |
val not_eq_UU = prove_goal LCF.thy "ALL p. ~p=UU <-> (p=TT | p=FF)"
|
660
|
42 |
(fn _ => [tac]) RS spec;
|
0
|
43 |
|
3837
|
44 |
val adm_not_eq_tr = prove_goal LCF.thy "ALL p::tr. adm(%x. ~t(x)=p)"
|
660
|
45 |
(fn _ => [rtac tr_induct 1,
|
|
46 |
REPEAT(simp_tac (LCF_ss addsimps [not_eq_TT,not_eq_FF,not_eq_UU]) 1 THEN
|
1461
|
47 |
REPEAT(rstac [adm_disj,adm_eq] 1))]) RS spec;
|
0
|
48 |
|
|
49 |
val adm_lemmas = [adm_not_free,adm_eq,adm_less,adm_not_less,adm_not_eq_tr,
|
1461
|
50 |
adm_conj,adm_disj,adm_imp,adm_all];
|
0
|
51 |
|
|
52 |
fun induct_tac v i = res_inst_tac[("f",v)] induct i THEN
|
1461
|
53 |
REPEAT(rstac adm_lemmas i);
|
0
|
54 |
|
|
55 |
|
|
56 |
val least_FIX = prove_goal LCF.thy "f(p) = p ==> FIX(f) << p"
|
1461
|
57 |
(fn [prem] => [induct_tac "f" 1, rtac minimal 1, strip_tac 1,
|
|
58 |
stac (prem RS sym) 1, etac less_ap_term 1]);
|
0
|
59 |
|
|
60 |
val lfp_is_FIX = prove_goal LCF.thy
|
1461
|
61 |
"[| f(p) = p; ALL q. f(q)=q --> p << q |] ==> p = FIX(f)"
|
|
62 |
(fn [prem1,prem2] => [rtac less_anti_sym 1,
|
|
63 |
rtac (prem2 RS spec RS mp) 1, rtac FIX_eq 1,
|
|
64 |
rtac least_FIX 1, rtac prem1 1]);
|
0
|
65 |
|
|
66 |
val ffix = read_instantiate [("f","f::?'a=>?'a")] FIX_eq;
|
|
67 |
val gfix = read_instantiate [("f","g::?'a=>?'a")] FIX_eq;
|
|
68 |
val ss = LCF_ss addsimps [ffix,gfix];
|
|
69 |
|
|
70 |
val FIX_pair = prove_goal LCF.thy
|
|
71 |
"<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)"
|
|
72 |
(fn _ => [rtac lfp_is_FIX 1, simp_tac ss 1,
|
1461
|
73 |
strip_tac 1, simp_tac (LCF_ss addsimps [PROD_less]) 1,
|
|
74 |
rtac conjI 1, rtac least_FIX 1, etac subst 1, rtac (FST RS sym) 1,
|
|
75 |
rtac least_FIX 1, etac subst 1, rtac (SND RS sym) 1]);
|
0
|
76 |
|
|
77 |
val FIX_pair_conj = rewrite_rule (map mk_meta_eq [PROD_eq,FST,SND]) FIX_pair;
|
|
78 |
|
|
79 |
val FIX1 = FIX_pair_conj RS conjunct1;
|
|
80 |
val FIX2 = FIX_pair_conj RS conjunct2;
|
|
81 |
|
|
82 |
val induct2 = prove_goal LCF.thy
|
3837
|
83 |
"[| adm(%p. P(FST(p),SND(p))); P(UU::'a,UU::'b);\
|
1461
|
84 |
\ ALL x y. P(x,y) --> P(f(x),g(y)) |] ==> P(FIX(f),FIX(g))"
|
|
85 |
(fn prems => [EVERY1
|
|
86 |
[res_inst_tac [("f","f"),("g","g")] (standard(FIX1 RS ssubst)),
|
|
87 |
res_inst_tac [("f","f"),("g","g")] (standard(FIX2 RS ssubst)),
|
|
88 |
res_inst_tac [("f","%x. <f(FST(x)),g(SND(x))>")] induct,
|
|
89 |
rstac prems, simp_tac ss, rstac prems,
|
|
90 |
simp_tac (LCF_ss addsimps [expand_all_PROD]), rstac prems]]);
|
0
|
91 |
|
|
92 |
fun induct2_tac (f,g) i = res_inst_tac[("f",f),("g",g)] induct2 i THEN
|
1461
|
93 |
REPEAT(rstac adm_lemmas i);
|
0
|
94 |
|
|
95 |
end;
|
|
96 |
|
|
97 |
open Fix;
|