| author | blanchet | 
| Wed, 15 Feb 2023 10:56:23 +0100 | |
| changeset 77269 | bc43f86c9598 | 
| parent 74383 | 107941e8fa01 | 
| child 78800 | 0b3700d31758 | 
| permissions | -rw-r--r-- | 
| 48124 | 1 | (* Title: HOL/Tools/set_comprehension_pointfree.ML | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 2 | Author: Felix Kuperjans, Lukas Bulwahn, TU Muenchen | 
| 48124 | 3 | Author: Rafal Kolanski, NICTA | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 4 | |
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 5 | Simproc for rewriting set comprehensions to pointfree expressions. | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 6 | *) | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 7 | |
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 8 | signature SET_COMPREHENSION_POINTFREE = | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 9 | sig | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 10 | val base_simproc : Proof.context -> cterm -> thm option | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 11 | val code_simproc : Proof.context -> cterm -> thm option | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 12 | val simproc : Proof.context -> cterm -> thm option | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 13 | end | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 14 | |
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 15 | structure Set_Comprehension_Pointfree : SET_COMPREHENSION_POINTFREE = | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 16 | struct | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 17 | |
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 18 | (* syntactic operations *) | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 19 | |
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 20 | fun mk_inf (t1, t2) = | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 21 | let | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 22 | val T = fastype_of t1 | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 23 | in | 
| 69593 | 24 | Const (\<^const_name>\<open>Lattices.inf_class.inf\<close>, T --> T --> T) $ t1 $ t2 | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 25 | end | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 26 | |
| 49768 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 27 | fun mk_sup (t1, t2) = | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 28 | let | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 29 | val T = fastype_of t1 | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 30 | in | 
| 69593 | 31 | Const (\<^const_name>\<open>Lattices.sup_class.sup\<close>, T --> T --> T) $ t1 $ t2 | 
| 49768 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 32 | end | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 33 | |
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 34 | fun mk_Compl t = | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 35 | let | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 36 | val T = fastype_of t | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 37 | in | 
| 69593 | 38 | Const (\<^const_name>\<open>Groups.uminus_class.uminus\<close>, T --> T) $ t | 
| 49768 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 39 | end | 
| 
3ecfba7e731d
adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
 bulwahn parents: 
49765diff
changeset | 40 | |
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 41 | fun mk_image t1 t2 = | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 42 | let | 
| 69593 | 43 | val T as Type (\<^type_name>\<open>fun\<close>, [_ , R]) = fastype_of t1 | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 44 | in | 
| 69593 | 45 | Const (\<^const_name>\<open>image\<close>, | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 46 | T --> fastype_of t2 --> HOLogic.mk_setT R) $ t1 $ t2 | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 47 | end; | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 48 | |
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 49 | fun mk_sigma (t1, t2) = | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 50 | let | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 51 | val T1 = fastype_of t1 | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 52 | val T2 = fastype_of t2 | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 53 | val setT = HOLogic.dest_setT T1 | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 54 | val resT = HOLogic.mk_setT (HOLogic.mk_prodT (setT, HOLogic.dest_setT T2)) | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 55 | in | 
| 69593 | 56 | Const (\<^const_name>\<open>Sigma\<close>, | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 57 | T1 --> (setT --> T2) --> resT) $ t1 $ absdummy setT t2 | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 58 | end; | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 59 | |
| 49874 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 60 | fun mk_vimage f s = | 
| 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 61 | let | 
| 69593 | 62 | val T as Type (\<^type_name>\<open>fun\<close>, [T1, T2]) = fastype_of f | 
| 49874 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 63 | in | 
| 69593 | 64 | Const (\<^const_name>\<open>vimage\<close>, T --> HOLogic.mk_setT T2 --> HOLogic.mk_setT T1) $ f $ s | 
| 49874 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 65 | end; | 
| 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 66 | |
| 69593 | 67 | fun dest_Collect (Const (\<^const_name>\<open>Collect\<close>, _) $ Abs (x, T, t)) = ((x, T), t) | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 68 |   | dest_Collect t = raise TERM ("dest_Collect", [t])
 | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 69 | |
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 70 | (* Copied from predicate_compile_aux.ML *) | 
| 69593 | 71 | fun strip_ex (Const (\<^const_name>\<open>Ex\<close>, _) $ Abs (x, T, t)) = | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 72 | let | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 73 | val (xTs, t') = strip_ex t | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 74 | in | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 75 | ((x, T) :: xTs, t') | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 76 | end | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 77 | | strip_ex t = ([], t) | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 78 | |
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 79 | fun mk_prod1 Ts (t1, t2) = | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 80 | let | 
| 59058 
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
 wenzelm parents: 
58963diff
changeset | 81 | val (T1, T2) = apply2 (curry fastype_of1 Ts) (t1, t2) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 82 | in | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 83 | HOLogic.pair_const T1 T2 $ t1 $ t2 | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 84 | end; | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 85 | |
| 49874 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 86 | fun mk_split_abs vs (Bound i) t = let val (x, T) = nth vs i in Abs (x, T, t) end | 
| 69593 | 87 | | mk_split_abs vs (Const (\<^const_name>\<open>Product_Type.Pair\<close>, _) $ u $ v) t = | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 88 | HOLogic.mk_case_prod (mk_split_abs vs u (mk_split_abs vs v t)) | 
| 49874 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 89 |   | mk_split_abs _ t _ = raise TERM ("mk_split_abs: bad term", [t]);
 | 
| 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 90 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 91 | (* a variant of HOLogic.strip_ptupleabs *) | 
| 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 92 | val strip_ptupleabs = | 
| 49901 
58cac1b3b535
comprehension conversion reuses suggested names for bound variables instead of invented fresh ones; tuned tactic
 bulwahn parents: 
49900diff
changeset | 93 | let | 
| 
58cac1b3b535
comprehension conversion reuses suggested names for bound variables instead of invented fresh ones; tuned tactic
 bulwahn parents: 
49900diff
changeset | 94 | fun strip [] qs vs t = (t, rev vs, qs) | 
| 69593 | 95 | | strip (p :: ps) qs vs (Const (\<^const_name>\<open>case_prod\<close>, _) $ t) = | 
| 49901 
58cac1b3b535
comprehension conversion reuses suggested names for bound variables instead of invented fresh ones; tuned tactic
 bulwahn parents: 
49900diff
changeset | 96 | strip ((1 :: p) :: (2 :: p) :: ps) (p :: qs) vs t | 
| 49957 
6250121bfffb
passing around the simpset instead of the context; rewriting tactics to avoid the 'renamed bound variable' warnings in nested simplifier calls
 bulwahn parents: 
49946diff
changeset | 97 | | strip (_ :: ps) qs vs (Abs (s, T, t)) = strip ps qs ((s, T) :: vs) t | 
| 
6250121bfffb
passing around the simpset instead of the context; rewriting tactics to avoid the 'renamed bound variable' warnings in nested simplifier calls
 bulwahn parents: 
49946diff
changeset | 98 | | strip (_ :: ps) qs vs t = strip ps qs | 
| 49901 
58cac1b3b535
comprehension conversion reuses suggested names for bound variables instead of invented fresh ones; tuned tactic
 bulwahn parents: 
49900diff
changeset | 99 | ((Name.uu_, hd (binder_types (fastype_of1 (map snd vs, t)))) :: vs) | 
| 
58cac1b3b535
comprehension conversion reuses suggested names for bound variables instead of invented fresh ones; tuned tactic
 bulwahn parents: 
49900diff
changeset | 100 | (incr_boundvars 1 t $ Bound 0) | 
| 
58cac1b3b535
comprehension conversion reuses suggested names for bound variables instead of invented fresh ones; tuned tactic
 bulwahn parents: 
49900diff
changeset | 101 | in strip [[]] [] [] end; | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 102 | |
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 103 | (* patterns *) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 104 | |
| 50024 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 105 | datatype pattern = Pattern of int list | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 106 | |
| 50024 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 107 | fun dest_Pattern (Pattern bs) = bs | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 108 | |
| 50024 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 109 | fun dest_bound (Bound i) = i | 
| 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 110 |   | dest_bound t = raise TERM("dest_bound", [t]);
 | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 111 | |
| 50024 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 112 | fun type_of_pattern Ts (Pattern bs) = HOLogic.mk_tupleT (map (nth Ts) bs) | 
| 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 113 | |
| 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 114 | fun term_of_pattern Ts (Pattern bs) = | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 115 | let | 
| 50024 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 116 | fun mk [b] = Bound b | 
| 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 117 | | mk (b :: bs) = HOLogic.pair_const (nth Ts b) (type_of_pattern Ts (Pattern bs)) | 
| 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 118 | $ Bound b $ mk bs | 
| 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 119 | in mk bs end; | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 120 | |
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 121 | (* formulas *) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 122 | |
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 123 | datatype formula = Atom of (pattern * term) | Int of formula * formula | Un of formula * formula | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 124 | |
| 49900 
89b118c0c070
checking for bound variables in the set expression; handling negation more generally
 bulwahn parents: 
49898diff
changeset | 125 | fun map_atom f (Atom a) = Atom (f a) | 
| 
89b118c0c070
checking for bound variables in the set expression; handling negation more generally
 bulwahn parents: 
49898diff
changeset | 126 | | map_atom _ x = x | 
| 
89b118c0c070
checking for bound variables in the set expression; handling negation more generally
 bulwahn parents: 
49898diff
changeset | 127 | |
| 69593 | 128 | fun is_collect_atom (Atom (_, Const(\<^const_name>\<open>Collect\<close>, _) $ _)) = true | 
| 129 | | is_collect_atom (Atom (_, Const (\<^const_name>\<open>Groups.uminus_class.uminus\<close>, _) $ (Const(\<^const_name>\<open>Collect\<close>, _) $ _))) = true | |
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 130 | | is_collect_atom _ = false | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 131 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 132 | fun mk_case_prod _ [(x, T)] t = (T, Abs (x, T, t)) | 
| 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 133 | | mk_case_prod rT ((x, T) :: vs) t = | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 134 | let | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 135 | val (T', t') = mk_case_prod rT vs t | 
| 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 136 | val t'' = HOLogic.case_prod_const (T, T', rT) $ (Abs (x, T, t')) | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 137 | in (domain_type (fastype_of t''), t'') end | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 138 | |
| 50030 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 139 | fun mk_term vs t = | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 140 | let | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 141 | val bs = loose_bnos t | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 142 | val vs' = map (nth (rev vs)) bs | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 143 | val subst = map_index (fn (i, j) => (j, Bound i)) (rev bs) | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 144 | |> sort (fn (p1, p2) => int_ord (fst p1, fst p2)) | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 145 | |> (fn subst' => map (fn i => the_default (Bound i) (AList.lookup (op =) subst' i)) (0 upto (fst (snd (split_last subst'))))) | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 146 | val t' = subst_bounds (subst, t) | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 147 | val tuple = Pattern bs | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 148 | in (tuple, (vs', t')) end | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 149 | |
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 150 | fun default_atom vs t = | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 151 | let | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 152 | val (tuple, (vs', t')) = mk_term vs t | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 153 | val T = HOLogic.mk_tupleT (map snd vs') | 
| 69593 | 154 | val s = HOLogic.Collect_const T $ (snd (mk_case_prod \<^typ>\<open>bool\<close> vs' t')) | 
| 50030 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 155 | in | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 156 | (tuple, Atom (tuple, s)) | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 157 | end | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 158 | |
| 69593 | 159 | fun mk_atom vs (t as Const (\<^const_name>\<open>Set.member\<close>, _) $ x $ s) = | 
| 49900 
89b118c0c070
checking for bound variables in the set expression; handling negation more generally
 bulwahn parents: 
49898diff
changeset | 160 | if not (null (loose_bnos s)) then | 
| 50032 
a439a9d14ba3
handling x : S y pattern with the default mechanism instead of raising an exception in the set_comprehension_pointfree simproc
 bulwahn parents: 
50031diff
changeset | 161 | default_atom vs t | 
| 49900 
89b118c0c070
checking for bound variables in the set expression; handling negation more generally
 bulwahn parents: 
49898diff
changeset | 162 | else | 
| 50030 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 163 | (case try ((map dest_bound) o HOLogic.strip_tuple) x of | 
| 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 164 | SOME pat => (Pattern pat, Atom (Pattern pat, s)) | 
| 49874 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 165 | | NONE => | 
| 49900 
89b118c0c070
checking for bound variables in the set expression; handling negation more generally
 bulwahn parents: 
49898diff
changeset | 166 | let | 
| 50030 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 167 | val (tuple, (vs', x')) = mk_term vs x | 
| 49900 
89b118c0c070
checking for bound variables in the set expression; handling negation more generally
 bulwahn parents: 
49898diff
changeset | 168 | val rT = HOLogic.dest_setT (fastype_of s) | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 169 | val s = mk_vimage (snd (mk_case_prod rT vs' x')) s | 
| 50030 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 170 | in (tuple, Atom (tuple, s)) end) | 
| 69593 | 171 | | mk_atom vs (Const (\<^const_name>\<open>HOL.Not\<close>, _) $ t) = apsnd (map_atom (apsnd mk_Compl)) (mk_atom vs t) | 
| 50030 
349f651ec203
syntactic tuning and restructuring of set_comprehension_pointfree simproc
 bulwahn parents: 
50029diff
changeset | 172 | | mk_atom vs t = default_atom vs t | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 173 | |
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 174 | fun merge' [] (pats1, pats2) = ([], (pats1, pats2)) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 175 | | merge' pat (pats, []) = (pat, (pats, [])) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 176 | | merge' pat (pats1, pats) = | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 177 | let | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 178 | fun disjoint_to_pat p = null (inter (op =) pat p) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 179 | val overlap_pats = filter_out disjoint_to_pat pats | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 180 | val rem_pats = filter disjoint_to_pat pats | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 181 | val (pat, (pats', pats1')) = merge' (distinct (op =) (flat overlap_pats @ pat)) (rem_pats, pats1) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 182 | in | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 183 | (pat, (pats1', pats')) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 184 | end | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 185 | |
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 186 | fun merge ([], pats) = pats | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 187 | | merge (pat :: pats', pats) = | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 188 | let val (pat', (pats1', pats2')) = merge' pat (pats', pats) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 189 | in pat' :: merge (pats1', pats2') end; | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 190 | |
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 191 | fun restricted_merge ([], pats) = pats | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 192 | | restricted_merge (pat :: pats', pats) = | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 193 | let | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 194 | fun disjoint_to_pat p = null (inter (op =) pat p) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 195 | val overlap_pats = filter_out disjoint_to_pat pats | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 196 | val rem_pats = filter disjoint_to_pat pats | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 197 | in | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 198 | case overlap_pats of | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 199 | [] => pat :: restricted_merge (pats', rem_pats) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 200 | | [pat'] => if subset (op =) (pat, pat') then | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 201 | pat' :: restricted_merge (pats', rem_pats) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 202 | else if subset (op =) (pat', pat) then | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 203 | pat :: restricted_merge (pats', rem_pats) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 204 | else error "restricted merge: two patterns require relational join" | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 205 | | _ => error "restricted merge: multiple patterns overlap" | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 206 | end; | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 207 | |
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 208 | fun map_atoms f (Atom a) = Atom (f a) | 
| 59058 
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
 wenzelm parents: 
58963diff
changeset | 209 | | map_atoms f (Un (fm1, fm2)) = Un (apply2 (map_atoms f) (fm1, fm2)) | 
| 
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
 wenzelm parents: 
58963diff
changeset | 210 | | map_atoms f (Int (fm1, fm2)) = Int (apply2 (map_atoms f) (fm1, fm2)) | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 211 | |
| 50028 
d05f859558a0
improving the extension of sets in case of more than one bound variable; rearranging the tactic to prefer simpler steps before more involved ones
 bulwahn parents: 
50026diff
changeset | 212 | fun extend Ts bs t = foldr1 mk_sigma (t :: map (fn b => HOLogic.mk_UNIV (nth Ts b)) bs) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 213 | |
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 214 | fun rearrange vs (pat, pat') t = | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 215 | let | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 216 | val subst = map_index (fn (i, b) => (b, i)) (rev pat) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 217 | val vs' = map (nth (rev vs)) pat | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 218 | val Ts' = map snd (rev vs') | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 219 | val bs = map (fn b => the (AList.lookup (op =) subst b)) pat' | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 220 | val rt = term_of_pattern Ts' (Pattern bs) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 221 | val rT = type_of_pattern Ts' (Pattern bs) | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 222 | val (_, f) = mk_case_prod rT vs' rt | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 223 | in | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 224 | mk_image f t | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 225 | end; | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 226 | |
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 227 | fun adjust vs pats (Pattern pat, t) = | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 228 | let | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 229 | val SOME p = find_first (fn p => not (null (inter (op =) pat p))) pats | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 230 | val missing = subtract (op =) pat p | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 231 | val Ts = rev (map snd vs) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 232 | val t' = extend Ts missing t | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 233 | in (Pattern p, rearrange vs (pat @ missing, p) t') end | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 234 | |
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 235 | fun adjust_atoms vs pats fm = map_atoms (adjust vs pats) fm | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 236 | |
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 237 | fun merge_inter vs (pats1, fm1) (pats2, fm2) = | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 238 | let | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 239 | val pats = restricted_merge (map dest_Pattern pats1, map dest_Pattern pats2) | 
| 59058 
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
 wenzelm parents: 
58963diff
changeset | 240 | val (fm1', fm2') = apply2 (adjust_atoms vs pats) (fm1, fm2) | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 241 | in | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 242 | (map Pattern pats, Int (fm1', fm2')) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 243 | end; | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 244 | |
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 245 | fun merge_union vs (pats1, fm1) (pats2, fm2) = | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 246 | let | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 247 | val pats = merge (map dest_Pattern pats1, map dest_Pattern pats2) | 
| 59058 
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
 wenzelm parents: 
58963diff
changeset | 248 | val (fm1', fm2') = apply2 (adjust_atoms vs pats) (fm1, fm2) | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 249 | in | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 250 | (map Pattern pats, Un (fm1', fm2')) | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 251 | end; | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 252 | |
| 74383 | 253 | fun mk_formula vs \<^Const_>\<open>conj for t1 t2\<close> = merge_inter vs (mk_formula vs t1) (mk_formula vs t2) | 
| 254 | | mk_formula vs \<^Const_>\<open>disj for t1 t2\<close> = merge_union vs (mk_formula vs t1) (mk_formula vs t2) | |
| 49874 
72b6d5fb407f
term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
 bulwahn parents: 
49873diff
changeset | 255 | | mk_formula vs t = apfst single (mk_atom vs t) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 256 | |
| 49852 
caaa1956f0da
refined tactic in set_comprehension_pointfree simproc
 bulwahn parents: 
49850diff
changeset | 257 | fun strip_Int (Int (fm1, fm2)) = fm1 :: (strip_Int fm2) | 
| 
caaa1956f0da
refined tactic in set_comprehension_pointfree simproc
 bulwahn parents: 
49850diff
changeset | 258 | | strip_Int fm = [fm] | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 259 | |
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 260 | (* term construction *) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 261 | |
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 262 | fun reorder_bounds pats t = | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 263 | let | 
| 50024 
b7265db3a1dc
simplified structure of patterns in set_comprehension_simproc
 bulwahn parents: 
49959diff
changeset | 264 | val bounds = maps dest_Pattern pats | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 265 | val bperm = bounds ~~ ((length bounds - 1) downto 0) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 266 | |> sort (fn (i,j) => int_ord (fst i, fst j)) |> map snd | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 267 | in | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 268 | subst_bounds (map Bound bperm, t) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 269 | end; | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 270 | |
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 271 | fun is_reordering t = | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 272 | let val (t', _, _) = HOLogic.strip_ptupleabs t | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 273 | in forall (fn Bound _ => true) (HOLogic.strip_tuple t') end | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 274 | |
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 275 | fun mk_pointfree_expr t = | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 276 | let | 
| 49857 
7bf407d77152
setcomprehension_pointfree simproc also works for set comprehension without an equation
 bulwahn parents: 
49852diff
changeset | 277 | val ((x, T), (vs, t'')) = apsnd strip_ex (dest_Collect t) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 278 | val Ts = map snd (rev vs) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 279 | fun mk_mem_UNIV n = HOLogic.mk_mem (Bound n, HOLogic.mk_UNIV (nth Ts n)) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 280 | fun lookup (pat', t) pat = if pat = pat' then t else HOLogic.mk_UNIV (type_of_pattern Ts pat) | 
| 49761 
b7772f3b6c03
set_comprehension_pointfree also handles terms where the equation is not at the first position, which is a necessary generalisation to eventually handle bounded existentials; tuned
 bulwahn parents: 
48128diff
changeset | 281 | val conjs = HOLogic.dest_conj t'' | 
| 49857 
7bf407d77152
setcomprehension_pointfree simproc also works for set comprehension without an equation
 bulwahn parents: 
49852diff
changeset | 282 | val refl = HOLogic.eq_const T $ Bound (length vs) $ Bound (length vs) | 
| 49761 
b7772f3b6c03
set_comprehension_pointfree also handles terms where the equation is not at the first position, which is a necessary generalisation to eventually handle bounded existentials; tuned
 bulwahn parents: 
48128diff
changeset | 283 | val is_the_eq = | 
| 
b7772f3b6c03
set_comprehension_pointfree also handles terms where the equation is not at the first position, which is a necessary generalisation to eventually handle bounded existentials; tuned
 bulwahn parents: 
48128diff
changeset | 284 | the_default false o (try (fn eq => fst (HOLogic.dest_eq eq) = Bound (length vs))) | 
| 49857 
7bf407d77152
setcomprehension_pointfree simproc also works for set comprehension without an equation
 bulwahn parents: 
49852diff
changeset | 285 | val eq = the_default refl (find_first is_the_eq conjs) | 
| 49761 
b7772f3b6c03
set_comprehension_pointfree also handles terms where the equation is not at the first position, which is a necessary generalisation to eventually handle bounded existentials; tuned
 bulwahn parents: 
48128diff
changeset | 286 | val f = snd (HOLogic.dest_eq eq) | 
| 
b7772f3b6c03
set_comprehension_pointfree also handles terms where the equation is not at the first position, which is a necessary generalisation to eventually handle bounded existentials; tuned
 bulwahn parents: 
48128diff
changeset | 287 | val conjs' = filter_out (fn t => eq = t) conjs | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 288 | val unused_bounds = subtract (op =) (distinct (op =) (maps loose_bnos conjs')) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 289 | (0 upto (length vs - 1)) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 290 | val (pats, fm) = | 
| 49943 
6a26fed71755
passing names and types of all bounds around in the simproc
 bulwahn parents: 
49942diff
changeset | 291 | mk_formula ((x, T) :: vs) (foldr1 HOLogic.mk_conj (conjs' @ map mk_mem_UNIV unused_bounds)) | 
| 50031 | 292 | fun mk_set (Atom pt) = foldr1 mk_sigma (map (lookup pt) pats) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 293 | | mk_set (Un (f1, f2)) = mk_sup (mk_set f1, mk_set f2) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 294 | | mk_set (Int (f1, f2)) = mk_inf (mk_set f1, mk_set f2) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 295 | val pat = foldr1 (mk_prod1 Ts) (map (term_of_pattern Ts) pats) | 
| 49857 
7bf407d77152
setcomprehension_pointfree simproc also works for set comprehension without an equation
 bulwahn parents: 
49852diff
changeset | 296 | val t = mk_split_abs (rev ((x, T) :: vs)) pat (reorder_bounds pats f) | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 297 | in | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 298 | if the_default false (try is_reordering t) andalso is_collect_atom fm then | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 299 | error "mk_pointfree_expr: trivial case" | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 300 | else (fm, mk_image t (mk_set fm)) | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 301 | end; | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 302 | |
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 303 | val rewrite_term = try mk_pointfree_expr | 
| 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 304 | |
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 305 | |
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 306 | (* proof tactic *) | 
| 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 307 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 308 | val case_prod_beta = @{lemma "case_prod g x z = case_prod (\<lambda>x y. (g x y) z) x" by (simp add: case_prod_beta)}
 | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 309 | |
| 49944 
28cd3c9ca278
tuned tactic in set_comprehension_pointfree simproc to handle composition of negation and vimage
 bulwahn parents: 
49943diff
changeset | 310 | val vimageI2' = @{lemma "f a \<notin> A ==> a \<notin> f -` A" by simp}
 | 
| 
28cd3c9ca278
tuned tactic in set_comprehension_pointfree simproc to handle composition of negation and vimage
 bulwahn parents: 
49943diff
changeset | 311 | val vimageE' = | 
| 
28cd3c9ca278
tuned tactic in set_comprehension_pointfree simproc to handle composition of negation and vimage
 bulwahn parents: 
49943diff
changeset | 312 |   @{lemma "a \<notin> f -` B ==> (\<And> x. f a = x ==> x \<notin> B ==> P) ==> P" by simp}
 | 
| 
28cd3c9ca278
tuned tactic in set_comprehension_pointfree simproc to handle composition of negation and vimage
 bulwahn parents: 
49943diff
changeset | 313 | |
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 314 | val collectI' = @{lemma "\<not> P a ==> a \<notin> {x. P x}" by auto}
 | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 315 | val collectE' = @{lemma "a \<notin> {x. P x} ==> (\<not> P a ==> Q) ==> Q" by auto}
 | 
| 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 316 | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 317 | fun elim_Collect_tac ctxt = | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 318 |   dresolve_tac ctxt @{thms iffD1 [OF mem_Collect_eq]}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 319 |   THEN' (REPEAT_DETERM o (eresolve_tac ctxt @{thms exE}))
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 320 |   THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms conjE}
 | 
| 51798 | 321 | THEN' TRY o hyp_subst_tac ctxt; | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 322 | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 323 | fun intro_image_tac ctxt = | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 324 |   resolve_tac ctxt @{thms image_eqI}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 325 | THEN' (REPEAT_DETERM1 o | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 326 |       (resolve_tac ctxt @{thms refl}
 | 
| 67399 | 327 |       ORELSE' resolve_tac ctxt @{thms arg_cong2 [OF refl, where f = "(=)", OF prod.case, THEN iffD2]}
 | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 328 | ORELSE' CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 | 
| 51315 
536a5603a138
provide common HOLogic.conj_conv and HOLogic.eq_conv;
 wenzelm parents: 
51314diff
changeset | 329 | (HOLogic.Trueprop_conv | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 330 | (HOLogic.eq_conv Conv.all_conv (Conv.rewr_conv (mk_meta_eq case_prod_beta)))))) ctxt))) | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 331 | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 332 | fun elim_image_tac ctxt = | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 333 |   eresolve_tac ctxt @{thms imageE}
 | 
| 50028 
d05f859558a0
improving the extension of sets in case of more than one bound variable; rearranging the tactic to prefer simpler steps before more involved ones
 bulwahn parents: 
50026diff
changeset | 334 | THEN' REPEAT_DETERM o CHANGED o | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55414diff
changeset | 335 |     (TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms split_paired_all prod.case})
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 336 |     THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject}
 | 
| 51798 | 337 | THEN' TRY o hyp_subst_tac ctxt) | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 338 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 339 | fun tac1_of_formula ctxt (Int (fm1, fm2)) = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 340 |     TRY o eresolve_tac ctxt @{thms conjE}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 341 |     THEN' resolve_tac ctxt @{thms IntI}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 342 | THEN' (fn i => tac1_of_formula ctxt fm2 (i + 1)) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 343 | THEN' tac1_of_formula ctxt fm1 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 344 | | tac1_of_formula ctxt (Un (fm1, fm2)) = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 345 |     eresolve_tac ctxt @{thms disjE} THEN' resolve_tac ctxt @{thms UnI1}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 346 | THEN' tac1_of_formula ctxt fm1 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 347 |     THEN' resolve_tac ctxt @{thms UnI2}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 348 | THEN' tac1_of_formula ctxt fm2 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 349 | | tac1_of_formula ctxt (Atom _) = | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58839diff
changeset | 350 | REPEAT_DETERM1 o (assume_tac ctxt | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 351 |       ORELSE' resolve_tac ctxt @{thms SigmaI}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 352 |       ORELSE' ((resolve_tac ctxt @{thms CollectI} ORELSE' resolve_tac ctxt [collectI']) THEN'
 | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55414diff
changeset | 353 |         TRY o simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}]))
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 354 |       ORELSE' ((resolve_tac ctxt @{thms vimageI2} ORELSE' resolve_tac ctxt [vimageI2']) THEN'
 | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55414diff
changeset | 355 |         TRY o simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}]))
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 356 |       ORELSE' (resolve_tac ctxt @{thms image_eqI} THEN'
 | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 357 | (REPEAT_DETERM o | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 358 |       (resolve_tac ctxt @{thms refl}
 | 
| 67399 | 359 |       ORELSE' resolve_tac ctxt @{thms arg_cong2[OF refl, where f = "(=)", OF prod.case, THEN iffD2]})))
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 360 |       ORELSE' resolve_tac ctxt @{thms UNIV_I}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 361 |       ORELSE' resolve_tac ctxt @{thms iffD2[OF Compl_iff]}
 | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58839diff
changeset | 362 | ORELSE' assume_tac ctxt) | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 363 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 364 | fun tac2_of_formula ctxt (Int (fm1, fm2)) = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 365 |     TRY o eresolve_tac ctxt @{thms IntE}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 366 |     THEN' TRY o resolve_tac ctxt @{thms conjI}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 367 | THEN' (fn i => tac2_of_formula ctxt fm2 (i + 1)) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 368 | THEN' tac2_of_formula ctxt fm1 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 369 | | tac2_of_formula ctxt (Un (fm1, fm2)) = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 370 |     eresolve_tac ctxt @{thms UnE} THEN' resolve_tac ctxt @{thms disjI1}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 371 | THEN' tac2_of_formula ctxt fm1 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 372 |     THEN' resolve_tac ctxt @{thms disjI2}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 373 | THEN' tac2_of_formula ctxt fm2 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 374 | | tac2_of_formula ctxt (Atom _) = | 
| 50025 
19965e6a705e
handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
 bulwahn parents: 
50024diff
changeset | 375 | REPEAT_DETERM o | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58839diff
changeset | 376 | (assume_tac ctxt | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 377 |        ORELSE' dresolve_tac ctxt @{thms iffD1[OF mem_Sigma_iff]}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 378 |        ORELSE' eresolve_tac ctxt @{thms conjE}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 379 |        ORELSE' ((eresolve_tac ctxt @{thms CollectE} ORELSE' eresolve_tac ctxt [collectE']) THEN'
 | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55414diff
changeset | 380 |          TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}]) THEN'
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 381 |          REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject} THEN' TRY o hyp_subst_tac ctxt THEN'
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 382 |          TRY o resolve_tac ctxt @{thms refl})
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 383 |        ORELSE' (eresolve_tac ctxt @{thms imageE}
 | 
| 50028 
d05f859558a0
improving the extension of sets in case of more than one bound variable; rearranging the tactic to prefer simpler steps before more involved ones
 bulwahn parents: 
50026diff
changeset | 384 | THEN' (REPEAT_DETERM o CHANGED o | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55414diff
changeset | 385 |          (TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms split_paired_all prod.case})
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 386 |          THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 387 |          THEN' TRY o hyp_subst_tac ctxt THEN' TRY o resolve_tac ctxt @{thms refl})))
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 388 |        ORELSE' eresolve_tac ctxt @{thms ComplE}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 389 |        ORELSE' ((eresolve_tac ctxt @{thms vimageE} ORELSE' eresolve_tac ctxt [vimageE'])
 | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55414diff
changeset | 390 |         THEN' TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}])
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 391 |         THEN' TRY o hyp_subst_tac ctxt THEN' TRY o resolve_tac ctxt @{thms refl}))
 | 
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 392 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 393 | fun tac ctxt fm = | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 394 | let | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 395 |     val subset_tac1 = resolve_tac ctxt @{thms subsetI}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 396 | THEN' elim_Collect_tac ctxt | 
| 50029 
31c9294eebe6
using more proper simpset in tactic of set_comprehension_pointfree simproc to avoid renamed bound variable warnings in recursive simplifier calls
 bulwahn parents: 
50028diff
changeset | 397 | THEN' intro_image_tac ctxt | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 398 | THEN' tac1_of_formula ctxt fm | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 399 |     val subset_tac2 = resolve_tac ctxt @{thms subsetI}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 400 | THEN' elim_image_tac ctxt | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 401 |       THEN' resolve_tac ctxt @{thms iffD2[OF mem_Collect_eq]}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 402 |       THEN' REPEAT_DETERM o resolve_tac ctxt @{thms exI}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 403 |       THEN' (TRY o REPEAT_ALL_NEW (resolve_tac ctxt @{thms conjI}))
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 404 |       THEN' (K (TRY (FIRSTGOAL ((TRY o hyp_subst_tac ctxt) THEN' resolve_tac ctxt @{thms refl}))))
 | 
| 49852 
caaa1956f0da
refined tactic in set_comprehension_pointfree simproc
 bulwahn parents: 
49850diff
changeset | 405 | THEN' (fn i => EVERY (rev (map_index (fn (j, f) => | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 406 |         REPEAT_DETERM (eresolve_tac ctxt @{thms IntE} (i + j)) THEN
 | 
| 58839 | 407 | tac2_of_formula ctxt f (i + j)) (strip_Int fm)))) | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 408 | in | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 409 |     resolve_tac ctxt @{thms subset_antisym} THEN' subset_tac1 THEN' subset_tac2
 | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 410 | end; | 
| 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 411 | |
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 412 | |
| 49896 
a39deedd5c3f
employing a preprocessing conversion that rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} in set_comprehension_pointfree simproc
 bulwahn parents: 
49875diff
changeset | 413 | (* preprocessing conversion: | 
| 
a39deedd5c3f
employing a preprocessing conversion that rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} in set_comprehension_pointfree simproc
 bulwahn parents: 
49875diff
changeset | 414 |   rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} *)
 | 
| 
a39deedd5c3f
employing a preprocessing conversion that rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} in set_comprehension_pointfree simproc
 bulwahn parents: 
49875diff
changeset | 415 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 416 | fun comprehension_conv ctxt ct = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 417 | let | 
| 69593 | 418 | fun dest_Collect (Const (\<^const_name>\<open>Collect\<close>, T) $ t) = (HOLogic.dest_setT (body_type T), t) | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 419 |       | dest_Collect t = raise TERM ("dest_Collect", [t])
 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 420 | fun list_ex vs t = fold_rev (fn (x, T) => fn t => HOLogic.exists_const T $ Abs (x, T, t)) vs t | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 421 | fun mk_term t = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 422 | let | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 423 | val (T, t') = dest_Collect t | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61125diff
changeset | 424 | val (t'', vs, fp) = case strip_ptupleabs t' of | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 425 |             (_, [_], _) => raise TERM("mk_term", [t'])
 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 426 | | (t'', vs, fp) => (t'', vs, fp) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 427 | val Ts = map snd vs | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 428 | val eq = HOLogic.eq_const T $ Bound (length Ts) $ | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 429 | (HOLogic.mk_ptuple fp (HOLogic.mk_ptupleT fp Ts) (rev (map_index (fn (i, _) => Bound i) Ts))) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 430 | in | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 431 | HOLogic.Collect_const T $ absdummy T (list_ex vs (HOLogic.mk_conj (eq, t''))) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 432 | end; | 
| 59582 | 433 | fun is_eq th = is_some (try (HOLogic.dest_eq o HOLogic.dest_Trueprop) (Thm.prop_of th)) | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55414diff
changeset | 434 |     val unfold_thms = @{thms split_paired_all mem_Collect_eq prod.case}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 435 | fun tac ctxt = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 436 |       resolve_tac ctxt @{thms set_eqI}
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 437 | THEN' simp_tac (put_simpset HOL_basic_ss ctxt addsimps unfold_thms) | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 438 |       THEN' resolve_tac ctxt @{thms iffI}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 439 |       THEN' REPEAT_DETERM o resolve_tac ctxt @{thms exI}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 440 |       THEN' resolve_tac ctxt @{thms conjI} THEN' resolve_tac ctxt @{thms refl} THEN' assume_tac ctxt
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 441 |       THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms exE}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 442 |       THEN' eresolve_tac ctxt @{thms conjE}
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59058diff
changeset | 443 |       THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject}
 | 
| 60696 | 444 |       THEN' Subgoal.FOCUS (fn {prems, context = ctxt', ...} =>
 | 
| 445 | simp_tac (put_simpset HOL_basic_ss ctxt' addsimps (filter is_eq prems)) 1) ctxt | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58839diff
changeset | 446 | THEN' TRY o assume_tac ctxt | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 447 | in | 
| 59582 | 448 | case try mk_term (Thm.term_of ct) of | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 449 | NONE => Thm.reflexive ct | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 450 | | SOME t' => | 
| 59582 | 451 | Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (Thm.term_of ct, t'))) | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 452 |           (fn {context, ...} => tac context 1)
 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 453 |         RS @{thm eq_reflection}
 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 454 | end | 
| 49896 
a39deedd5c3f
employing a preprocessing conversion that rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} in set_comprehension_pointfree simproc
 bulwahn parents: 
49875diff
changeset | 455 | |
| 
a39deedd5c3f
employing a preprocessing conversion that rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} in set_comprehension_pointfree simproc
 bulwahn parents: 
49875diff
changeset | 456 | |
| 49849 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 457 | (* main simprocs *) | 
| 
d9822ec4f434
extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
 bulwahn parents: 
49831diff
changeset | 458 | |
| 49942 
50e457bbc5fe
locally inverting previously applied simplifications with ex_simps in set_comprehension_pointfree
 bulwahn parents: 
49901diff
changeset | 459 | val prep_thms = | 
| 
50e457bbc5fe
locally inverting previously applied simplifications with ex_simps in set_comprehension_pointfree
 bulwahn parents: 
49901diff
changeset | 460 |   map mk_meta_eq ([@{thm Bex_def}, @{thm Pow_iff[symmetric]}] @ @{thms ex_simps[symmetric]})
 | 
| 49873 
4b7c2e4991fc
extending preprocessing of simproc to rewrite subset inequality into membership of powerset
 bulwahn parents: 
49857diff
changeset | 461 | |
| 49850 
873fa7156468
adding postprocessing of computed pointfree expression in set_comprehension_pointfree simproc
 bulwahn parents: 
49849diff
changeset | 462 | val post_thms = | 
| 
873fa7156468
adding postprocessing of computed pointfree expression in set_comprehension_pointfree simproc
 bulwahn parents: 
49849diff
changeset | 463 |   map mk_meta_eq [@{thm Times_Un_distrib1[symmetric]},
 | 
| 
873fa7156468
adding postprocessing of computed pointfree expression in set_comprehension_pointfree simproc
 bulwahn parents: 
49849diff
changeset | 464 |   @{lemma "A \<times> B \<union> A \<times> C = A \<times> (B \<union> C)" by auto},
 | 
| 
873fa7156468
adding postprocessing of computed pointfree expression in set_comprehension_pointfree simproc
 bulwahn parents: 
49849diff
changeset | 465 |   @{lemma "(A \<times> B \<inter> C \<times> D) = (A \<inter> C) \<times> (B \<inter> D)" by auto}]
 | 
| 
873fa7156468
adding postprocessing of computed pointfree expression in set_comprehension_pointfree simproc
 bulwahn parents: 
49849diff
changeset | 466 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 467 | fun conv ctxt t = | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 468 | let | 
| 70326 | 469 | val (t', ctxt') = yield_singleton (Variable.import_terms true) t (Variable.declare_term t ctxt) | 
| 59621 
291934bac95e
Thm.cterm_of and Thm.ctyp_of operate on local context;
 wenzelm parents: 
59582diff
changeset | 470 | val ct = Thm.cterm_of ctxt' t' | 
| 49957 
6250121bfffb
passing around the simpset instead of the context; rewriting tactics to avoid the 'renamed bound variable' warnings in nested simplifier calls
 bulwahn parents: 
49946diff
changeset | 471 | fun unfold_conv thms = | 
| 
6250121bfffb
passing around the simpset instead of the context; rewriting tactics to avoid the 'renamed bound variable' warnings in nested simplifier calls
 bulwahn parents: 
49946diff
changeset | 472 | Raw_Simplifier.rewrite_cterm (false, false, false) (K (K NONE)) | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 473 | (empty_simpset ctxt' addsimps thms) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 474 | val prep_eq = (comprehension_conv ctxt' then_conv unfold_conv prep_thms) ct | 
| 59582 | 475 | val t'' = Thm.term_of (Thm.rhs_of prep_eq) | 
| 50026 
d9871e5ea0e1
importing term with schematic type variables properly before passing it to the tactic in the set_comprehension_pointfree simproc
 bulwahn parents: 
50025diff
changeset | 476 | fun mk_thm (fm, t''') = Goal.prove ctxt' [] [] | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 477 |       (HOLogic.mk_Trueprop (HOLogic.mk_eq (t'', t'''))) (fn {context, ...} => tac context fm 1)
 | 
| 67710 
cc2db3239932
added HOLogic.mk_obj_eq convenience and eliminated some clones;
 wenzelm parents: 
67399diff
changeset | 478 |     fun unfold th = th RS (HOLogic.mk_obj_eq prep_eq RS @{thm trans})
 | 
| 51315 
536a5603a138
provide common HOLogic.conj_conv and HOLogic.eq_conv;
 wenzelm parents: 
51314diff
changeset | 479 | val post = | 
| 
536a5603a138
provide common HOLogic.conj_conv and HOLogic.eq_conv;
 wenzelm parents: 
51314diff
changeset | 480 | Conv.fconv_rule | 
| 
536a5603a138
provide common HOLogic.conj_conv and HOLogic.eq_conv;
 wenzelm parents: 
51314diff
changeset | 481 | (HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (unfold_conv post_thms))) | 
| 50026 
d9871e5ea0e1
importing term with schematic type variables properly before passing it to the tactic in the set_comprehension_pointfree simproc
 bulwahn parents: 
50025diff
changeset | 482 | val export = singleton (Variable.export ctxt' ctxt) | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 483 | in | 
| 50026 
d9871e5ea0e1
importing term with schematic type variables properly before passing it to the tactic in the set_comprehension_pointfree simproc
 bulwahn parents: 
50025diff
changeset | 484 | Option.map (export o post o unfold o mk_thm) (rewrite_term t'') | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 485 | end; | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 486 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 487 | fun base_simproc ctxt redex = | 
| 48122 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 488 | let | 
| 59582 | 489 | val set_compr = Thm.term_of redex | 
| 48122 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 490 | in | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 491 | conv ctxt set_compr | 
| 48122 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 492 |     |> Option.map (fn thm => thm RS @{thm eq_reflection})
 | 
| 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 493 | end; | 
| 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 494 | |
| 49763 
bed063d0c526
generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
 bulwahn parents: 
49761diff
changeset | 495 | fun instantiate_arg_cong ctxt pred = | 
| 
bed063d0c526
generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
 bulwahn parents: 
49761diff
changeset | 496 | let | 
| 49831 
b28dbb7a45d9
increading indexes to avoid clashes in the set_comprehension_pointfree simproc
 bulwahn parents: 
49768diff
changeset | 497 |     val arg_cong = Thm.incr_indexes (maxidx_of_term pred + 1) @{thm arg_cong}
 | 
| 60781 | 498 | val (Var (f, _) $ _, _) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.concl_of arg_cong)) | 
| 49763 
bed063d0c526
generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
 bulwahn parents: 
49761diff
changeset | 499 | in | 
| 60781 | 500 | infer_instantiate ctxt [(f, Thm.cterm_of ctxt pred)] arg_cong | 
| 49763 
bed063d0c526
generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
 bulwahn parents: 
49761diff
changeset | 501 | end; | 
| 
bed063d0c526
generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
 bulwahn parents: 
49761diff
changeset | 502 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 503 | fun simproc ctxt redex = | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 504 | let | 
| 59582 | 505 | val pred $ set_compr = Thm.term_of redex | 
| 49763 
bed063d0c526
generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
 bulwahn parents: 
49761diff
changeset | 506 | val arg_cong' = instantiate_arg_cong ctxt pred | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 507 | in | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 508 | conv ctxt set_compr | 
| 49763 
bed063d0c526
generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
 bulwahn parents: 
49761diff
changeset | 509 |     |> Option.map (fn thm => thm RS arg_cong' RS @{thm eq_reflection})
 | 
| 48108 
f93433b451b8
Improved tactic for rewriting set comprehensions into pointfree form.
 Rafal Kolanski <rafal.kolanski@nicta.com.au> parents: 
48055diff
changeset | 510 | end; | 
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 511 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 512 | fun code_simproc ctxt redex = | 
| 48122 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 513 | let | 
| 50033 
c78f9cddc907
rewriting with the simpset that is passed to the simproc
 bulwahn parents: 
50032diff
changeset | 514 | fun unfold_conv thms = | 
| 
c78f9cddc907
rewriting with the simpset that is passed to the simproc
 bulwahn parents: 
50032diff
changeset | 515 | Raw_Simplifier.rewrite_cterm (false, false, false) (K (K NONE)) | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 516 | (empty_simpset ctxt addsimps thms) | 
| 50033 
c78f9cddc907
rewriting with the simpset that is passed to the simproc
 bulwahn parents: 
50032diff
changeset | 517 |     val prep_thm = unfold_conv @{thms eq_equal[symmetric]} redex
 | 
| 48122 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 518 | in | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51315diff
changeset | 519 | case base_simproc ctxt (Thm.rhs_of prep_thm) of | 
| 48122 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 520 | SOME rewr_thm => SOME (transitive_thm OF [transitive_thm OF [prep_thm, rewr_thm], | 
| 50033 
c78f9cddc907
rewriting with the simpset that is passed to the simproc
 bulwahn parents: 
50032diff
changeset | 521 |         unfold_conv @{thms eq_equal} (Thm.rhs_of rewr_thm)])
 | 
| 48122 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 522 | | NONE => NONE | 
| 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 523 | end; | 
| 
f479f36ed2ff
adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions;
 bulwahn parents: 
48109diff
changeset | 524 | |
| 48049 
d862b0d56c49
adding incompleted simproc to rewrite set comprehensions into pointfree expressions on sets
 bulwahn parents: diff
changeset | 525 | end; |