| 12776 |      1 | (*  Title:      ZF/AC/Cardinal_aux.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Krzysztof Grabczewski
 | 
|  |      4 | 
 | 
|  |      5 | Auxiliary lemmas concerning cardinalities
 | 
|  |      6 | *)
 | 
|  |      7 | 
 | 
|  |      8 | theory Cardinal_aux = AC_Equiv:
 | 
|  |      9 | 
 | 
|  |     10 | lemma Diff_lepoll: "[| A \<lesssim> succ(m); B \<subseteq> A; B\<noteq>0 |] ==> A-B \<lesssim> m"
 | 
| 12820 |     11 | apply (rule not_emptyE, assumption)
 | 
| 12776 |     12 | apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll])
 | 
|  |     13 | done
 | 
|  |     14 | 
 | 
|  |     15 | 
 | 
|  |     16 | (* ********************************************************************** *)
 | 
|  |     17 | (* Lemmas involving ordinals and cardinalities used in the proofs         *)
 | 
|  |     18 | (* concerning AC16 and DC                                                 *)
 | 
|  |     19 | (* ********************************************************************** *)
 | 
|  |     20 | 
 | 
|  |     21 | 
 | 
|  |     22 | (* j=|A| *)
 | 
|  |     23 | lemma lepoll_imp_ex_le_eqpoll:
 | 
|  |     24 |      "[| A \<lesssim> i; Ord(i) |] ==> \<exists>j. j le i & A \<approx> j"
 | 
|  |     25 | by (blast intro!: lepoll_cardinal_le well_ord_Memrel 
 | 
|  |     26 |                   well_ord_cardinal_eqpoll [THEN eqpoll_sym]
 | 
|  |     27 |           dest: lepoll_well_ord);
 | 
|  |     28 | 
 | 
|  |     29 | (* j=|A| *)
 | 
|  |     30 | lemma lesspoll_imp_ex_lt_eqpoll: 
 | 
|  |     31 |      "[| A \<prec> i; Ord(i) |] ==> \<exists>j. j<i & A \<approx> j"
 | 
|  |     32 | by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE)
 | 
|  |     33 | 
 | 
|  |     34 | lemma Inf_Ord_imp_InfCard_cardinal: "[| ~Finite(i); Ord(i) |] ==> InfCard(|i|)"
 | 
|  |     35 | apply (unfold InfCard_def)
 | 
|  |     36 | apply (rule conjI)
 | 
|  |     37 | apply (rule Card_cardinal)
 | 
|  |     38 | apply (rule Card_nat 
 | 
|  |     39 |             [THEN Card_def [THEN def_imp_iff, THEN iffD1, THEN ssubst]])
 | 
|  |     40 |   -- "rewriting would loop!"
 | 
|  |     41 | apply (rule well_ord_Memrel [THEN well_ord_lepoll_imp_Card_le], assumption) 
 | 
|  |     42 | apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption+)
 | 
|  |     43 | done
 | 
|  |     44 | 
 | 
|  |     45 | text{*An alternative and more general proof goes like this: A and B are both
 | 
|  |     46 | well-ordered (because they are injected into an ordinal), either A lepoll B
 | 
|  |     47 | or B lepoll A.  Also both are equipollent to their cardinalities, so
 | 
|  |     48 | (if A and B are infinite) then A Un B lepoll |A|+|B| = max(|A|,|B|) lepoll i.
 | 
|  |     49 | In fact, the correctly strengthened version of this theorem appears below.*}
 | 
|  |     50 | lemma Un_lepoll_Inf_Ord_weak:
 | 
|  |     51 |      "[|A \<approx> i; B \<approx> i; \<not> Finite(i); Ord(i)|] ==> A \<union> B \<lesssim> i"
 | 
|  |     52 | apply (rule Un_lepoll_sum [THEN lepoll_trans])
 | 
|  |     53 | apply (rule lepoll_imp_sum_lepoll_prod [THEN lepoll_trans])
 | 
|  |     54 | apply (erule eqpoll_trans [THEN eqpoll_imp_lepoll]) 
 | 
|  |     55 | apply (erule eqpoll_sym) 
 | 
|  |     56 | apply (rule subset_imp_lepoll [THEN lepoll_trans, THEN lepoll_trans]) 
 | 
|  |     57 | apply (rule nat_2I [THEN OrdmemD], rule Ord_nat) 
 | 
|  |     58 | apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption+) 
 | 
|  |     59 | apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll]) 
 | 
|  |     60 | apply (erule prod_eqpoll_cong [THEN eqpoll_imp_lepoll, THEN lepoll_trans],
 | 
|  |     61 |        assumption)
 | 
|  |     62 | apply (rule eqpoll_imp_lepoll) 
 | 
|  |     63 | apply (rule well_ord_Memrel [THEN well_ord_InfCard_square_eq], assumption) 
 | 
|  |     64 | apply (rule Inf_Ord_imp_InfCard_cardinal, assumption+) 
 | 
|  |     65 | done
 | 
|  |     66 | 
 | 
|  |     67 | lemma Un_eqpoll_Inf_Ord:
 | 
|  |     68 |      "[| A \<approx> i; B \<approx> i; ~Finite(i); Ord(i) |] ==> A Un B \<approx> i"
 | 
|  |     69 | apply (rule eqpollI)
 | 
|  |     70 | apply (blast intro: Un_lepoll_Inf_Ord_weak) 
 | 
|  |     71 | apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans]) 
 | 
|  |     72 | apply (rule Un_upper1 [THEN subset_imp_lepoll]) 
 | 
|  |     73 | done
 | 
|  |     74 | 
 | 
|  |     75 | lemma paired_bij: "?f \<in> bij({{y,z}. y \<in> x}, x)"
 | 
|  |     76 | apply (rule RepFun_bijective)
 | 
|  |     77 | apply (simp add: doubleton_eq_iff, blast)
 | 
|  |     78 | done
 | 
|  |     79 | 
 | 
|  |     80 | lemma paired_eqpoll: "{{y,z}. y \<in> x} \<approx> x"
 | 
|  |     81 | by (unfold eqpoll_def, fast intro!: paired_bij)
 | 
|  |     82 | 
 | 
|  |     83 | lemma ex_eqpoll_disjoint: "\<exists>B. B \<approx> A & B Int C = 0"
 | 
|  |     84 | by (fast intro!: paired_eqpoll equals0I elim: mem_asym)
 | 
|  |     85 | 
 | 
|  |     86 | (*Finally we reach this result.  Surely there's a simpler proof, as sketched
 | 
|  |     87 |   above?*)
 | 
|  |     88 | lemma Un_lepoll_Inf_Ord:
 | 
|  |     89 |      "[| A \<lesssim> i; B \<lesssim> i; ~Finite(i); Ord(i) |] ==> A Un B \<lesssim> i"
 | 
|  |     90 | apply (rule_tac A1 = "i" and C1 = "i" in ex_eqpoll_disjoint [THEN exE])
 | 
|  |     91 | apply (erule conjE)
 | 
|  |     92 | apply (drule lepoll_trans) 
 | 
|  |     93 | apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])
 | 
|  |     94 | apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+))
 | 
|  |     95 | apply (blast intro: eqpoll_refl Un_eqpoll_Inf_Ord eqpoll_imp_lepoll) 
 | 
|  |     96 | done
 | 
|  |     97 | 
 | 
|  |     98 | lemma Least_in_Ord: "[| P(i); i \<in> j; Ord(j) |] ==> (LEAST i. P(i)) \<in> j"
 | 
|  |     99 | apply (erule Least_le [THEN leE])
 | 
|  |    100 | apply (erule Ord_in_Ord, assumption)
 | 
|  |    101 | apply (erule ltE)
 | 
|  |    102 | apply (fast dest: OrdmemD)
 | 
|  |    103 | apply (erule subst_elem, assumption)
 | 
|  |    104 | done
 | 
| 1196 |    105 | 
 | 
| 12776 |    106 | lemma Diff_first_lepoll:
 | 
|  |    107 |      "[| well_ord(x,r); y \<subseteq> x; y \<lesssim> succ(n); n \<in> nat |] 
 | 
|  |    108 |       ==> y - {THE b. first(b,y,r)} \<lesssim> n"
 | 
|  |    109 | apply (case_tac "y=0", simp add: empty_lepollI) 
 | 
|  |    110 | apply (fast intro!: Diff_sing_lepoll the_first_in)
 | 
|  |    111 | done
 | 
|  |    112 | 
 | 
|  |    113 | lemma UN_subset_split:
 | 
|  |    114 |      "(\<Union>x \<in> X. P(x)) \<subseteq> (\<Union>x \<in> X. P(x)-Q(x)) Un (\<Union>x \<in> X. Q(x))"
 | 
|  |    115 | by blast
 | 
|  |    116 | 
 | 
|  |    117 | lemma UN_sing_lepoll: "Ord(a) ==> (\<Union>x \<in> a. {P(x)}) \<lesssim> a"
 | 
|  |    118 | apply (unfold lepoll_def)
 | 
|  |    119 | apply (rule_tac x = "\<lambda>z \<in> (\<Union>x \<in> a. {P (x) }) . (LEAST i. P (i) =z) " in exI)
 | 
|  |    120 | apply (rule_tac d = "%z. P (z) " in lam_injective)
 | 
|  |    121 | apply (fast intro!: Least_in_Ord)
 | 
|  |    122 | apply (fast intro: LeastI elim!: Ord_in_Ord)
 | 
|  |    123 | done
 | 
|  |    124 | 
 | 
|  |    125 | lemma UN_fun_lepoll_lemma [rule_format]:
 | 
|  |    126 |      "[| well_ord(T, R); ~Finite(a); Ord(a); n \<in> nat |] 
 | 
|  |    127 |       ==> \<forall>f. (\<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T) --> (\<Union>b \<in> a. f`b) \<lesssim> a"
 | 
|  |    128 | apply (induct_tac "n")
 | 
|  |    129 | apply (rule allI)
 | 
|  |    130 | apply (rule impI)
 | 
|  |    131 | apply (rule_tac b = "\<Union>b \<in> a. f`b" in subst)
 | 
|  |    132 | apply (rule_tac [2] empty_lepollI)
 | 
|  |    133 | apply (rule equals0I [symmetric], clarify) 
 | 
|  |    134 | apply (fast dest: lepoll_0_is_0 [THEN subst])
 | 
|  |    135 | apply (rule allI)
 | 
|  |    136 | apply (rule impI)
 | 
|  |    137 | apply (erule_tac x = "\<lambda>x \<in> a. f`x - {THE b. first (b,f`x,R) }" in allE)
 | 
|  |    138 | apply (erule impE, simp)
 | 
|  |    139 | apply (fast intro!: Diff_first_lepoll, simp)
 | 
|  |    140 | apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans])
 | 
|  |    141 | apply (fast intro: Un_lepoll_Inf_Ord UN_sing_lepoll) 
 | 
|  |    142 | done
 | 
|  |    143 | 
 | 
|  |    144 | lemma UN_fun_lepoll:
 | 
|  |    145 |      "[| \<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T; well_ord(T, R);   
 | 
|  |    146 |          ~Finite(a); Ord(a); n \<in> nat |] ==> (\<Union>b \<in> a. f`b) \<lesssim> a"
 | 
|  |    147 | by (blast intro: UN_fun_lepoll_lemma); 
 | 
|  |    148 | 
 | 
|  |    149 | lemma UN_lepoll:
 | 
|  |    150 |      "[| \<forall>b \<in> a. F(b) \<lesssim> n & F(b) \<subseteq> T; well_ord(T, R);   
 | 
|  |    151 |          ~Finite(a); Ord(a); n \<in> nat |] 
 | 
|  |    152 |       ==> (\<Union>b \<in> a. F(b)) \<lesssim> a"
 | 
|  |    153 | apply (rule rev_mp) 
 | 
| 12820 |    154 | apply (rule_tac f="\<lambda>b \<in> a. F (b)" in UN_fun_lepoll)
 | 
| 12776 |    155 | apply auto
 | 
|  |    156 | done
 | 
|  |    157 | 
 | 
|  |    158 | lemma UN_eq_UN_Diffs:
 | 
|  |    159 |      "Ord(a) ==> (\<Union>b \<in> a. F(b)) = (\<Union>b \<in> a. F(b) - (\<Union>c \<in> b. F(c)))"
 | 
|  |    160 | apply (rule equalityI)
 | 
|  |    161 |  prefer 2 apply fast
 | 
|  |    162 | apply (rule subsetI)
 | 
|  |    163 | apply (erule UN_E)
 | 
|  |    164 | apply (rule UN_I)
 | 
|  |    165 |  apply (rule_tac P = "%z. x \<in> F (z) " in Least_in_Ord, (assumption+))
 | 
|  |    166 | apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify)
 | 
|  |    167 | apply (erule_tac P = "%z. x \<in> F (z) " and i = "c" in less_LeastE)
 | 
|  |    168 | apply (blast intro: Ord_Least ltI)
 | 
|  |    169 | done
 | 
|  |    170 | 
 | 
|  |    171 | lemma lepoll_imp_eqpoll_subset: 
 | 
|  |    172 |      "a \<lesssim> X ==> \<exists>Y. Y \<subseteq> X & a \<approx> Y"
 | 
|  |    173 | apply (unfold lepoll_def eqpoll_def, clarify) 
 | 
|  |    174 | apply (blast intro: restrict_bij
 | 
|  |    175 |              dest: inj_is_fun [THEN fun_is_rel, THEN image_subset]) 
 | 
|  |    176 | done
 | 
|  |    177 | 
 | 
|  |    178 | (* ********************************************************************** *)
 | 
|  |    179 | (* Diff_lesspoll_eqpoll_Card                                              *)
 | 
|  |    180 | (* ********************************************************************** *)
 | 
|  |    181 | 
 | 
|  |    182 | lemma Diff_lesspoll_eqpoll_Card_lemma:
 | 
|  |    183 |      "[| A\<approx>a; ~Finite(a); Card(a); B \<prec> a; A-B \<prec> a |] ==> P"
 | 
|  |    184 | apply (elim lesspoll_imp_ex_lt_eqpoll [THEN exE] Card_is_Ord conjE)
 | 
|  |    185 | apply (frule_tac j=xa in Un_upper1_le [OF lt_Ord lt_Ord], assumption)
 | 
|  |    186 | apply (frule_tac j=xa in Un_upper2_le [OF lt_Ord lt_Ord], assumption)
 | 
|  |    187 | apply (drule Un_least_lt, assumption)
 | 
|  |    188 | apply (drule eqpoll_imp_lepoll [THEN lepoll_trans], 
 | 
|  |    189 |        rule le_imp_lepoll, assumption)+
 | 
| 12820 |    190 | apply (case_tac "Finite(x Un xa)")
 | 
| 12776 |    191 | txt{*finite case*}
 | 
|  |    192 |  apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+) 
 | 
|  |    193 |  apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite])
 | 
|  |    194 |  apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite])
 | 
|  |    195 | txt{*infinite case*}
 | 
|  |    196 | apply (drule Un_lepoll_Inf_Ord, (assumption+))
 | 
|  |    197 | apply (blast intro: le_Ord2) 
 | 
|  |    198 | apply (drule lesspoll_trans1 
 | 
|  |    199 |              [OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans] 
 | 
|  |    200 |                  lt_Card_imp_lesspoll], assumption+)
 | 
|  |    201 | apply (simp add: lesspoll_def) 
 | 
|  |    202 | done
 | 
|  |    203 | 
 | 
|  |    204 | lemma Diff_lesspoll_eqpoll_Card:
 | 
|  |    205 |      "[| A \<approx> a; ~Finite(a); Card(a); B \<prec> a |] ==> A - B \<approx> a"
 | 
|  |    206 | apply (rule ccontr)
 | 
|  |    207 | apply (rule Diff_lesspoll_eqpoll_Card_lemma, (assumption+))
 | 
|  |    208 | apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2] 
 | 
|  |    209 |                     subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)
 | 
|  |    210 | done
 | 
|  |    211 | 
 | 
|  |    212 | end
 |