|
5261
|
1 |
(* Title: HOL/Lambda/ListApplication.thy
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Tobias Nipkow
|
|
|
4 |
Copyright 1998 TU Muenchen
|
|
|
5 |
|
|
|
6 |
Application of a term to a list of terms
|
|
|
7 |
*)
|
|
|
8 |
|
|
9771
|
9 |
theory ListApplication = Lambda:
|
|
|
10 |
|
|
|
11 |
syntax
|
|
|
12 |
"_list_application" :: "dB => dB list => dB" (infixl "$$" 150)
|
|
|
13 |
translations
|
|
|
14 |
"t $$ ts" == "foldl (op $) t ts"
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
lemma apps_eq_tail_conv [iff]: "(r $$ ts = s $$ ts) = (r = s)"
|
|
|
18 |
apply (induct_tac ts rule: rev_induct)
|
|
|
19 |
apply auto
|
|
|
20 |
done
|
|
|
21 |
|
|
|
22 |
lemma Var_eq_apps_conv [rulify, iff]:
|
|
|
23 |
"\<forall>s. (Var m = s $$ ss) = (Var m = s \<and> ss = [])"
|
|
|
24 |
apply (induct_tac ss)
|
|
|
25 |
apply auto
|
|
|
26 |
done
|
|
|
27 |
|
|
|
28 |
lemma Var_apps_eq_Var_apps_conv [rulify, iff]:
|
|
|
29 |
"\<forall>ss. (Var m $$ rs = Var n $$ ss) = (m = n \<and> rs = ss)"
|
|
|
30 |
apply (induct_tac rs rule: rev_induct)
|
|
|
31 |
apply simp
|
|
|
32 |
apply blast
|
|
|
33 |
apply (rule allI)
|
|
|
34 |
apply (induct_tac ss rule: rev_induct)
|
|
|
35 |
apply auto
|
|
|
36 |
done
|
|
|
37 |
|
|
|
38 |
lemma App_eq_foldl_conv:
|
|
|
39 |
"(r $ s = t $$ ts) =
|
|
|
40 |
(if ts = [] then r $ s = t
|
|
|
41 |
else (\<exists>ss. ts = ss @ [s] \<and> r = t $$ ss))"
|
|
|
42 |
apply (rule_tac xs = ts in rev_exhaust)
|
|
|
43 |
apply auto
|
|
|
44 |
done
|
|
|
45 |
|
|
|
46 |
lemma Abs_eq_apps_conv [iff]:
|
|
|
47 |
"(Abs r = s $$ ss) = (Abs r = s \<and> ss = [])"
|
|
|
48 |
apply (induct_tac ss rule: rev_induct)
|
|
|
49 |
apply auto
|
|
|
50 |
done
|
|
|
51 |
|
|
|
52 |
lemma apps_eq_Abs_conv [iff]: "(s $$ ss = Abs r) = (s = Abs r \<and> ss = [])"
|
|
|
53 |
apply (induct_tac ss rule: rev_induct)
|
|
|
54 |
apply auto
|
|
|
55 |
done
|
|
|
56 |
|
|
|
57 |
lemma Abs_apps_eq_Abs_apps_conv [iff]:
|
|
|
58 |
"\<forall>ss. (Abs r $$ rs = Abs s $$ ss) = (r = s \<and> rs = ss)"
|
|
|
59 |
apply (induct_tac rs rule: rev_induct)
|
|
|
60 |
apply simp
|
|
|
61 |
apply blast
|
|
|
62 |
apply (rule allI)
|
|
|
63 |
apply (induct_tac ss rule: rev_induct)
|
|
|
64 |
apply auto
|
|
|
65 |
done
|
|
|
66 |
|
|
|
67 |
lemma Abs_App_neq_Var_apps [iff]:
|
|
|
68 |
"\<forall>s t. Abs s $ t ~= Var n $$ ss"
|
|
|
69 |
apply (induct_tac ss rule: rev_induct)
|
|
|
70 |
apply auto
|
|
|
71 |
done
|
|
|
72 |
|
|
|
73 |
lemma Var_apps_neq_Abs_apps [rulify, iff]:
|
|
|
74 |
"\<forall>ts. Var n $$ ts ~= Abs r $$ ss"
|
|
|
75 |
apply (induct_tac ss rule: rev_induct)
|
|
|
76 |
apply simp
|
|
|
77 |
apply (rule allI)
|
|
|
78 |
apply (induct_tac ts rule: rev_induct)
|
|
|
79 |
apply auto
|
|
|
80 |
done
|
|
5261
|
81 |
|
|
9771
|
82 |
lemma ex_head_tail:
|
|
|
83 |
"\<exists>ts h. t = h $$ ts \<and> ((\<exists>n. h = Var n) \<or> (\<exists>u. h = Abs u))"
|
|
|
84 |
apply (induct_tac t)
|
|
|
85 |
apply (rule_tac x = "[]" in exI)
|
|
|
86 |
apply simp
|
|
|
87 |
apply clarify
|
|
|
88 |
apply (rename_tac ts1 ts2 h1 h2)
|
|
|
89 |
apply (rule_tac x = "ts1 @ [h2 $$ ts2]" in exI)
|
|
|
90 |
apply simp
|
|
|
91 |
apply simp
|
|
|
92 |
done
|
|
|
93 |
|
|
|
94 |
lemma size_apps [simp]:
|
|
|
95 |
"size (r $$ rs) = size r + foldl (op +) 0 (map size rs) + length rs"
|
|
|
96 |
apply (induct_tac rs rule: rev_induct)
|
|
|
97 |
apply auto
|
|
|
98 |
done
|
|
|
99 |
|
|
|
100 |
lemma lem0: "[| (0::nat) < k; m <= n |] ==> m < n + k"
|
|
|
101 |
apply simp
|
|
|
102 |
done
|
|
|
103 |
|
|
|
104 |
text {* A customized induction schema for @{text "$$"} *}
|
|
|
105 |
|
|
|
106 |
lemma lem [rulify]:
|
|
|
107 |
"[| !!n ts. \<forall>t \<in> set ts. P t ==> P (Var n $$ ts);
|
|
|
108 |
!!u ts. [| P u; \<forall>t \<in> set ts. P t |] ==> P (Abs u $$ ts)
|
|
|
109 |
|] ==> \<forall>t. size t = n --> P t"
|
|
|
110 |
proof -
|
|
|
111 |
case antecedent
|
|
|
112 |
show ?thesis
|
|
|
113 |
apply (induct_tac n rule: less_induct)
|
|
|
114 |
apply (rule allI)
|
|
|
115 |
apply (cut_tac t = t in ex_head_tail)
|
|
|
116 |
apply clarify
|
|
|
117 |
apply (erule disjE)
|
|
|
118 |
apply clarify
|
|
|
119 |
apply (rule prems)
|
|
|
120 |
apply clarify
|
|
|
121 |
apply (erule allE, erule impE)
|
|
|
122 |
prefer 2
|
|
|
123 |
apply (erule allE, erule mp, rule refl)
|
|
|
124 |
apply simp
|
|
|
125 |
apply (rule lem0)
|
|
|
126 |
apply force
|
|
|
127 |
apply (rule elem_le_sum)
|
|
|
128 |
apply force
|
|
|
129 |
apply clarify
|
|
|
130 |
apply (rule prems)
|
|
|
131 |
apply (erule allE, erule impE)
|
|
|
132 |
prefer 2
|
|
|
133 |
apply (erule allE, erule mp, rule refl)
|
|
|
134 |
apply simp
|
|
|
135 |
apply clarify
|
|
|
136 |
apply (erule allE, erule impE)
|
|
|
137 |
prefer 2
|
|
|
138 |
apply (erule allE, erule mp, rule refl)
|
|
|
139 |
apply simp
|
|
|
140 |
apply (rule le_imp_less_Suc)
|
|
|
141 |
apply (rule trans_le_add1)
|
|
|
142 |
apply (rule trans_le_add2)
|
|
|
143 |
apply (rule elem_le_sum)
|
|
|
144 |
apply force
|
|
|
145 |
done
|
|
|
146 |
qed
|
|
|
147 |
|
|
|
148 |
lemma Apps_dB_induct:
|
|
|
149 |
"[| !!n ts. \<forall>t \<in> set ts. P t ==> P (Var n $$ ts);
|
|
|
150 |
!!u ts. [| P u; \<forall>t \<in> set ts. P t |] ==> P (Abs u $$ ts)
|
|
|
151 |
|] ==> P t"
|
|
|
152 |
proof -
|
|
|
153 |
case antecedent
|
|
|
154 |
show ?thesis
|
|
|
155 |
apply (rule_tac t = t in lem)
|
|
|
156 |
prefer 3
|
|
|
157 |
apply (rule refl)
|
|
|
158 |
apply (assumption | rule prems)+
|
|
|
159 |
done
|
|
|
160 |
qed
|
|
5261
|
161 |
|
|
|
162 |
end
|