| 1478 |      1 | (*  Title:      ZF/univ.thy
 | 
| 0 |      2 |     ID:         $Id$
 | 
| 1478 |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
| 0 |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | The cumulative hierarchy and a small universe for recursive types
 | 
|  |      7 | 
 | 
|  |      8 | Standard notation for Vset(i) is V(i), but users might want V for a variable
 | 
| 516 |      9 | 
 | 
|  |     10 | NOTE: univ(A) could be a translation; would simplify many proofs!
 | 
|  |     11 |   But Ind_Syntax.univ refers to the constant "univ"
 | 
| 0 |     12 | *)
 | 
|  |     13 | 
 | 
| 2469 |     14 | Univ = Arith + Sum + Finite + mono +
 | 
| 3923 |     15 | 
 | 
|  |     16 | global
 | 
|  |     17 | 
 | 
| 0 |     18 | consts
 | 
| 1401 |     19 |     Vfrom       :: [i,i]=>i
 | 
|  |     20 |     Vset        :: i=>i
 | 
|  |     21 |     Vrec        :: [i, [i,i]=>i] =>i
 | 
|  |     22 |     univ        :: i=>i
 | 
| 0 |     23 | 
 | 
|  |     24 | translations
 | 
| 1478 |     25 |     "Vset(x)"   ==      "Vfrom(0,x)"
 | 
| 0 |     26 | 
 | 
| 3940 |     27 | local
 | 
| 3923 |     28 | 
 | 
| 753 |     29 | defs
 | 
| 0 |     30 |     Vfrom_def   "Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))"
 | 
|  |     31 | 
 | 
|  |     32 |     Vrec_def
 | 
| 1478 |     33 |         "Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).      
 | 
| 1155 |     34 |                              H(z, lam w:Vset(x). g`rank(w)`w)) ` a"
 | 
| 0 |     35 | 
 | 
|  |     36 |     univ_def    "univ(A) == Vfrom(A,nat)"
 | 
|  |     37 | 
 | 
|  |     38 | end
 |