| author | bulwahn | 
| Wed, 19 May 2010 18:24:03 +0200 | |
| changeset 37001 | bcffdb899167 | 
| parent 36543 | 0e7fc5bf38de | 
| child 38715 | 6513ea67d95d | 
| permissions | -rw-r--r-- | 
| 2469 | 1 | (* Title: ZF/AC/OrdQuant.thy | 
| 2 | Authors: Krzysztof Grabczewski and L C Paulson | |
| 3 | *) | |
| 4 | ||
| 13253 | 5 | header {*Special quantifiers*}
 | 
| 6 | ||
| 16417 | 7 | theory OrdQuant imports Ordinal begin | 
| 2469 | 8 | |
| 13253 | 9 | subsection {*Quantifiers and union operator for ordinals*}
 | 
| 10 | ||
| 24893 | 11 | definition | 
| 2469 | 12 | (* Ordinal Quantifiers *) | 
| 24893 | 13 | oall :: "[i, i => o] => o" where | 
| 12620 | 14 | "oall(A, P) == ALL x. x<A --> P(x)" | 
| 13298 | 15 | |
| 24893 | 16 | definition | 
| 17 | oex :: "[i, i => o] => o" where | |
| 12620 | 18 | "oex(A, P) == EX x. x<A & P(x)" | 
| 2469 | 19 | |
| 24893 | 20 | definition | 
| 2469 | 21 | (* Ordinal Union *) | 
| 24893 | 22 | OUnion :: "[i, i => i] => i" where | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 23 |     "OUnion(i,B) == {z: \<Union>x\<in>i. B(x). Ord(i)}"
 | 
| 13298 | 24 | |
| 2469 | 25 | syntax | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 26 |   "_oall"     :: "[idt, i, o] => o"        ("(3ALL _<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 27 |   "_oex"      :: "[idt, i, o] => o"        ("(3EX _<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 28 |   "_OUNION"   :: "[idt, i, i] => i"        ("(3UN _<_./ _)" 10)
 | 
| 2469 | 29 | |
| 30 | translations | |
| 24893 | 31 | "ALL x<a. P" == "CONST oall(a, %x. P)" | 
| 32 | "EX x<a. P" == "CONST oex(a, %x. P)" | |
| 33 | "UN x<a. B" == "CONST OUnion(a, %x. B)" | |
| 2469 | 34 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
6093diff
changeset | 35 | syntax (xsymbols) | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 36 |   "_oall"     :: "[idt, i, o] => o"        ("(3\<forall>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 37 |   "_oex"      :: "[idt, i, o] => o"        ("(3\<exists>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 38 |   "_OUNION"   :: "[idt, i, i] => i"        ("(3\<Union>_<_./ _)" 10)
 | 
| 14565 | 39 | syntax (HTML output) | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 40 |   "_oall"     :: "[idt, i, o] => o"        ("(3\<forall>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 41 |   "_oex"      :: "[idt, i, o] => o"        ("(3\<exists>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 42 |   "_OUNION"   :: "[idt, i, i] => i"        ("(3\<Union>_<_./ _)" 10)
 | 
| 12620 | 43 | |
| 44 | ||
| 13302 | 45 | subsubsection {*simplification of the new quantifiers*}
 | 
| 12825 | 46 | |
| 47 | ||
| 13169 | 48 | (*MOST IMPORTANT that this is added to the simpset BEFORE Ord_atomize | 
| 13298 | 49 | is proved. Ord_atomize would convert this rule to | 
| 12825 | 50 | x < 0 ==> P(x) == True, which causes dire effects!*) | 
| 51 | lemma [simp]: "(ALL x<0. P(x))" | |
| 13298 | 52 | by (simp add: oall_def) | 
| 12825 | 53 | |
| 54 | lemma [simp]: "~(EX x<0. P(x))" | |
| 13298 | 55 | by (simp add: oex_def) | 
| 12825 | 56 | |
| 57 | lemma [simp]: "(ALL x<succ(i). P(x)) <-> (Ord(i) --> P(i) & (ALL x<i. P(x)))" | |
| 13298 | 58 | apply (simp add: oall_def le_iff) | 
| 59 | apply (blast intro: lt_Ord2) | |
| 12825 | 60 | done | 
| 61 | ||
| 62 | lemma [simp]: "(EX x<succ(i). P(x)) <-> (Ord(i) & (P(i) | (EX x<i. P(x))))" | |
| 13298 | 63 | apply (simp add: oex_def le_iff) | 
| 64 | apply (blast intro: lt_Ord2) | |
| 12825 | 65 | done | 
| 66 | ||
| 13302 | 67 | subsubsection {*Union over ordinals*}
 | 
| 13118 | 68 | |
| 12620 | 69 | lemma Ord_OUN [intro,simp]: | 
| 13162 
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
 paulson parents: 
13149diff
changeset | 70 | "[| !!x. x<A ==> Ord(B(x)) |] ==> Ord(\<Union>x<A. B(x))" | 
| 13298 | 71 | by (simp add: OUnion_def ltI Ord_UN) | 
| 12620 | 72 | |
| 73 | lemma OUN_upper_lt: | |
| 13162 
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
 paulson parents: 
13149diff
changeset | 74 | "[| a<A; i < b(a); Ord(\<Union>x<A. b(x)) |] ==> i < (\<Union>x<A. b(x))" | 
| 12620 | 75 | by (unfold OUnion_def lt_def, blast ) | 
| 76 | ||
| 77 | lemma OUN_upper_le: | |
| 13162 
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
 paulson parents: 
13149diff
changeset | 78 | "[| a<A; i\<le>b(a); Ord(\<Union>x<A. b(x)) |] ==> i \<le> (\<Union>x<A. b(x))" | 
| 12820 | 79 | apply (unfold OUnion_def, auto) | 
| 12620 | 80 | apply (rule UN_upper_le ) | 
| 13298 | 81 | apply (auto simp add: lt_def) | 
| 12620 | 82 | done | 
| 2469 | 83 | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 84 | lemma Limit_OUN_eq: "Limit(i) ==> (\<Union>x<i. x) = i" | 
| 12620 | 85 | by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord) | 
| 86 | ||
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 87 | (* No < version; consider (\<Union>i\<in>nat.i)=nat *) | 
| 12620 | 88 | lemma OUN_least: | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 89 | "(!!x. x<A ==> B(x) \<subseteq> C) ==> (\<Union>x<A. B(x)) \<subseteq> C" | 
| 12620 | 90 | by (simp add: OUnion_def UN_least ltI) | 
| 91 | ||
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 92 | (* No < version; consider (\<Union>i\<in>nat.i)=nat *) | 
| 12620 | 93 | lemma OUN_least_le: | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 94 | "[| Ord(i); !!x. x<A ==> b(x) \<le> i |] ==> (\<Union>x<A. b(x)) \<le> i" | 
| 12620 | 95 | by (simp add: OUnion_def UN_least_le ltI Ord_0_le) | 
| 96 | ||
| 97 | lemma le_implies_OUN_le_OUN: | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 98 | "[| !!x. x<A ==> c(x) \<le> d(x) |] ==> (\<Union>x<A. c(x)) \<le> (\<Union>x<A. d(x))" | 
| 12620 | 99 | by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN) | 
| 100 | ||
| 101 | lemma OUN_UN_eq: | |
| 102 | "(!!x. x:A ==> Ord(B(x))) | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 103 | ==> (\<Union>z < (\<Union>x\<in>A. B(x)). C(z)) = (\<Union>x\<in>A. \<Union>z < B(x). C(z))" | 
| 13298 | 104 | by (simp add: OUnion_def) | 
| 12620 | 105 | |
| 106 | lemma OUN_Union_eq: | |
| 107 | "(!!x. x:X ==> Ord(x)) | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 108 | ==> (\<Union>z < Union(X). C(z)) = (\<Union>x\<in>X. \<Union>z < x. C(z))" | 
| 13298 | 109 | by (simp add: OUnion_def) | 
| 12620 | 110 | |
| 12763 | 111 | (*So that rule_format will get rid of ALL x<A...*) | 
| 112 | lemma atomize_oall [symmetric, rulify]: | |
| 113 | "(!!x. x<A ==> P(x)) == Trueprop (ALL x<A. P(x))" | |
| 114 | by (simp add: oall_def atomize_all atomize_imp) | |
| 115 | ||
| 13302 | 116 | subsubsection {*universal quantifier for ordinals*}
 | 
| 13169 | 117 | |
| 118 | lemma oallI [intro!]: | |
| 119 | "[| !!x. x<A ==> P(x) |] ==> ALL x<A. P(x)" | |
| 13298 | 120 | by (simp add: oall_def) | 
| 13169 | 121 | |
| 122 | lemma ospec: "[| ALL x<A. P(x); x<A |] ==> P(x)" | |
| 13298 | 123 | by (simp add: oall_def) | 
| 13169 | 124 | |
| 125 | lemma oallE: | |
| 126 | "[| ALL x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q" | |
| 13298 | 127 | by (simp add: oall_def, blast) | 
| 13169 | 128 | |
| 129 | lemma rev_oallE [elim]: | |
| 130 | "[| ALL x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q" | |
| 13298 | 131 | by (simp add: oall_def, blast) | 
| 13169 | 132 | |
| 133 | ||
| 134 | (*Trival rewrite rule; (ALL x<a.P)<->P holds only if a is not 0!*) | |
| 135 | lemma oall_simp [simp]: "(ALL x<a. True) <-> True" | |
| 13170 | 136 | by blast | 
| 13169 | 137 | |
| 138 | (*Congruence rule for rewriting*) | |
| 139 | lemma oall_cong [cong]: | |
| 13298 | 140 | "[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] | 
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 141 | ==> oall(a, %x. P(x)) <-> oall(a', %x. P'(x))" | 
| 13169 | 142 | by (simp add: oall_def) | 
| 143 | ||
| 144 | ||
| 13302 | 145 | subsubsection {*existential quantifier for ordinals*}
 | 
| 13169 | 146 | |
| 147 | lemma oexI [intro]: | |
| 148 | "[| P(x); x<A |] ==> EX x<A. P(x)" | |
| 13298 | 149 | apply (simp add: oex_def, blast) | 
| 13169 | 150 | done | 
| 151 | ||
| 152 | (*Not of the general form for such rules; ~EX has become ALL~ *) | |
| 153 | lemma oexCI: | |
| 154 | "[| ALL x<A. ~P(x) ==> P(a); a<A |] ==> EX x<A. P(x)" | |
| 13298 | 155 | apply (simp add: oex_def, blast) | 
| 13169 | 156 | done | 
| 157 | ||
| 158 | lemma oexE [elim!]: | |
| 159 | "[| EX x<A. P(x); !!x. [| x<A; P(x) |] ==> Q |] ==> Q" | |
| 13298 | 160 | apply (simp add: oex_def, blast) | 
| 13169 | 161 | done | 
| 162 | ||
| 163 | lemma oex_cong [cong]: | |
| 13298 | 164 | "[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] | 
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 165 | ==> oex(a, %x. P(x)) <-> oex(a', %x. P'(x))" | 
| 13169 | 166 | apply (simp add: oex_def cong add: conj_cong) | 
| 167 | done | |
| 168 | ||
| 169 | ||
| 13302 | 170 | subsubsection {*Rules for Ordinal-Indexed Unions*}
 | 
| 13169 | 171 | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 172 | lemma OUN_I [intro]: "[| a<i; b: B(a) |] ==> b: (\<Union>z<i. B(z))" | 
| 13170 | 173 | by (unfold OUnion_def lt_def, blast) | 
| 13169 | 174 | |
| 175 | lemma OUN_E [elim!]: | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 176 | "[| b : (\<Union>z<i. B(z)); !!a.[| b: B(a); a<i |] ==> R |] ==> R" | 
| 13170 | 177 | apply (unfold OUnion_def lt_def, blast) | 
| 13169 | 178 | done | 
| 179 | ||
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 180 | lemma OUN_iff: "b : (\<Union>x<i. B(x)) <-> (EX x<i. b : B(x))" | 
| 13170 | 181 | by (unfold OUnion_def oex_def lt_def, blast) | 
| 13169 | 182 | |
| 183 | lemma OUN_cong [cong]: | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 184 | "[| i=j; !!x. x<j ==> C(x)=D(x) |] ==> (\<Union>x<i. C(x)) = (\<Union>x<j. D(x))" | 
| 13169 | 185 | by (simp add: OUnion_def lt_def OUN_iff) | 
| 186 | ||
| 13298 | 187 | lemma lt_induct: | 
| 13169 | 188 | "[| i<k; !!x.[| x<k; ALL y<x. P(y) |] ==> P(x) |] ==> P(i)" | 
| 189 | apply (simp add: lt_def oall_def) | |
| 13298 | 190 | apply (erule conjE) | 
| 191 | apply (erule Ord_induct, assumption, blast) | |
| 13169 | 192 | done | 
| 193 | ||
| 13253 | 194 | |
| 195 | subsection {*Quantification over a class*}
 | |
| 196 | ||
| 24893 | 197 | definition | 
| 198 | "rall" :: "[i=>o, i=>o] => o" where | |
| 13253 | 199 | "rall(M, P) == ALL x. M(x) --> P(x)" | 
| 200 | ||
| 24893 | 201 | definition | 
| 202 | "rex" :: "[i=>o, i=>o] => o" where | |
| 13253 | 203 | "rex(M, P) == EX x. M(x) & P(x)" | 
| 204 | ||
| 205 | syntax | |
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 206 |   "_rall"     :: "[pttrn, i=>o, o] => o"        ("(3ALL _[_]./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 207 |   "_rex"      :: "[pttrn, i=>o, o] => o"        ("(3EX _[_]./ _)" 10)
 | 
| 13253 | 208 | |
| 209 | syntax (xsymbols) | |
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 210 |   "_rall"     :: "[pttrn, i=>o, o] => o"        ("(3\<forall>_[_]./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 211 |   "_rex"      :: "[pttrn, i=>o, o] => o"        ("(3\<exists>_[_]./ _)" 10)
 | 
| 14565 | 212 | syntax (HTML output) | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 213 |   "_rall"     :: "[pttrn, i=>o, o] => o"        ("(3\<forall>_[_]./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 214 |   "_rex"      :: "[pttrn, i=>o, o] => o"        ("(3\<exists>_[_]./ _)" 10)
 | 
| 13253 | 215 | |
| 216 | translations | |
| 24893 | 217 | "ALL x[M]. P" == "CONST rall(M, %x. P)" | 
| 218 | "EX x[M]. P" == "CONST rex(M, %x. P)" | |
| 13253 | 219 | |
| 13298 | 220 | |
| 221 | subsubsection{*Relativized universal quantifier*}
 | |
| 13253 | 222 | |
| 223 | lemma rallI [intro!]: "[| !!x. M(x) ==> P(x) |] ==> ALL x[M]. P(x)" | |
| 224 | by (simp add: rall_def) | |
| 225 | ||
| 226 | lemma rspec: "[| ALL x[M]. P(x); M(x) |] ==> P(x)" | |
| 227 | by (simp add: rall_def) | |
| 228 | ||
| 229 | (*Instantiates x first: better for automatic theorem proving?*) | |
| 13298 | 230 | lemma rev_rallE [elim]: | 
| 13253 | 231 | "[| ALL x[M]. P(x); ~ M(x) ==> Q; P(x) ==> Q |] ==> Q" | 
| 13298 | 232 | by (simp add: rall_def, blast) | 
| 13253 | 233 | |
| 234 | lemma rallE: "[| ALL x[M]. P(x); P(x) ==> Q; ~ M(x) ==> Q |] ==> Q" | |
| 235 | by blast | |
| 236 | ||
| 237 | (*Trival rewrite rule; (ALL x[M].P)<->P holds only if A is nonempty!*) | |
| 238 | lemma rall_triv [simp]: "(ALL x[M]. P) <-> ((EX x. M(x)) --> P)" | |
| 239 | by (simp add: rall_def) | |
| 240 | ||
| 241 | (*Congruence rule for rewriting*) | |
| 242 | lemma rall_cong [cong]: | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
13302diff
changeset | 243 | "(!!x. M(x) ==> P(x) <-> P'(x)) ==> (ALL x[M]. P(x)) <-> (ALL x[M]. P'(x))" | 
| 13253 | 244 | by (simp add: rall_def) | 
| 245 | ||
| 13298 | 246 | |
| 247 | subsubsection{*Relativized existential quantifier*}
 | |
| 13253 | 248 | |
| 249 | lemma rexI [intro]: "[| P(x); M(x) |] ==> EX x[M]. P(x)" | |
| 250 | by (simp add: rex_def, blast) | |
| 251 | ||
| 252 | (*The best argument order when there is only one M(x)*) | |
| 253 | lemma rev_rexI: "[| M(x); P(x) |] ==> EX x[M]. P(x)" | |
| 254 | by blast | |
| 255 | ||
| 256 | (*Not of the general form for such rules; ~EX has become ALL~ *) | |
| 257 | lemma rexCI: "[| ALL x[M]. ~P(x) ==> P(a); M(a) |] ==> EX x[M]. P(x)" | |
| 258 | by blast | |
| 259 | ||
| 260 | lemma rexE [elim!]: "[| EX x[M]. P(x); !!x. [| M(x); P(x) |] ==> Q |] ==> Q" | |
| 261 | by (simp add: rex_def, blast) | |
| 262 | ||
| 263 | (*We do not even have (EX x[M]. True) <-> True unless A is nonempty!!*) | |
| 264 | lemma rex_triv [simp]: "(EX x[M]. P) <-> ((EX x. M(x)) & P)" | |
| 265 | by (simp add: rex_def) | |
| 266 | ||
| 267 | lemma rex_cong [cong]: | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
13302diff
changeset | 268 | "(!!x. M(x) ==> P(x) <-> P'(x)) ==> (EX x[M]. P(x)) <-> (EX x[M]. P'(x))" | 
| 13253 | 269 | by (simp add: rex_def cong: conj_cong) | 
| 270 | ||
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 271 | lemma rall_is_ball [simp]: "(\<forall>x[%z. z\<in>A]. P(x)) <-> (\<forall>x\<in>A. P(x))" | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 272 | by blast | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 273 | |
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 274 | lemma rex_is_bex [simp]: "(\<exists>x[%z. z\<in>A]. P(x)) <-> (\<exists>x\<in>A. P(x))" | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 275 | by blast | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 276 | |
| 13253 | 277 | lemma atomize_rall: "(!!x. M(x) ==> P(x)) == Trueprop (ALL x[M]. P(x))"; | 
| 278 | by (simp add: rall_def atomize_all atomize_imp) | |
| 279 | ||
| 280 | declare atomize_rall [symmetric, rulify] | |
| 281 | ||
| 282 | lemma rall_simps1: | |
| 283 | "(ALL x[M]. P(x) & Q) <-> (ALL x[M]. P(x)) & ((ALL x[M]. False) | Q)" | |
| 284 | "(ALL x[M]. P(x) | Q) <-> ((ALL x[M]. P(x)) | Q)" | |
| 285 | "(ALL x[M]. P(x) --> Q) <-> ((EX x[M]. P(x)) --> Q)" | |
| 13298 | 286 | "(~(ALL x[M]. P(x))) <-> (EX x[M]. ~P(x))" | 
| 13253 | 287 | by blast+ | 
| 288 | ||
| 289 | lemma rall_simps2: | |
| 290 | "(ALL x[M]. P & Q(x)) <-> ((ALL x[M]. False) | P) & (ALL x[M]. Q(x))" | |
| 291 | "(ALL x[M]. P | Q(x)) <-> (P | (ALL x[M]. Q(x)))" | |
| 292 | "(ALL x[M]. P --> Q(x)) <-> (P --> (ALL x[M]. Q(x)))" | |
| 293 | by blast+ | |
| 294 | ||
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 295 | lemmas rall_simps [simp] = rall_simps1 rall_simps2 | 
| 13253 | 296 | |
| 297 | lemma rall_conj_distrib: | |
| 298 | "(ALL x[M]. P(x) & Q(x)) <-> ((ALL x[M]. P(x)) & (ALL x[M]. Q(x)))" | |
| 299 | by blast | |
| 300 | ||
| 301 | lemma rex_simps1: | |
| 302 | "(EX x[M]. P(x) & Q) <-> ((EX x[M]. P(x)) & Q)" | |
| 303 | "(EX x[M]. P(x) | Q) <-> (EX x[M]. P(x)) | ((EX x[M]. True) & Q)" | |
| 304 | "(EX x[M]. P(x) --> Q) <-> ((ALL x[M]. P(x)) --> ((EX x[M]. True) & Q))" | |
| 305 | "(~(EX x[M]. P(x))) <-> (ALL x[M]. ~P(x))" | |
| 306 | by blast+ | |
| 307 | ||
| 308 | lemma rex_simps2: | |
| 309 | "(EX x[M]. P & Q(x)) <-> (P & (EX x[M]. Q(x)))" | |
| 310 | "(EX x[M]. P | Q(x)) <-> ((EX x[M]. True) & P) | (EX x[M]. Q(x))" | |
| 311 | "(EX x[M]. P --> Q(x)) <-> (((ALL x[M]. False) | P) --> (EX x[M]. Q(x)))" | |
| 312 | by blast+ | |
| 313 | ||
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 314 | lemmas rex_simps [simp] = rex_simps1 rex_simps2 | 
| 13253 | 315 | |
| 316 | lemma rex_disj_distrib: | |
| 317 | "(EX x[M]. P(x) | Q(x)) <-> ((EX x[M]. P(x)) | (EX x[M]. Q(x)))" | |
| 318 | by blast | |
| 319 | ||
| 320 | ||
| 13298 | 321 | subsubsection{*One-point rule for bounded quantifiers*}
 | 
| 13253 | 322 | |
| 323 | lemma rex_triv_one_point1 [simp]: "(EX x[M]. x=a) <-> ( M(a))" | |
| 324 | by blast | |
| 325 | ||
| 326 | lemma rex_triv_one_point2 [simp]: "(EX x[M]. a=x) <-> ( M(a))" | |
| 327 | by blast | |
| 328 | ||
| 329 | lemma rex_one_point1 [simp]: "(EX x[M]. x=a & P(x)) <-> ( M(a) & P(a))" | |
| 330 | by blast | |
| 331 | ||
| 332 | lemma rex_one_point2 [simp]: "(EX x[M]. a=x & P(x)) <-> ( M(a) & P(a))" | |
| 333 | by blast | |
| 334 | ||
| 335 | lemma rall_one_point1 [simp]: "(ALL x[M]. x=a --> P(x)) <-> ( M(a) --> P(a))" | |
| 336 | by blast | |
| 337 | ||
| 338 | lemma rall_one_point2 [simp]: "(ALL x[M]. a=x --> P(x)) <-> ( M(a) --> P(a))" | |
| 339 | by blast | |
| 340 | ||
| 341 | ||
| 13298 | 342 | subsubsection{*Sets as Classes*}
 | 
| 343 | ||
| 24893 | 344 | definition | 
| 345 |   setclass :: "[i,i] => o"       ("##_" [40] 40)  where
 | |
| 13362 | 346 | "setclass(A) == %x. x : A" | 
| 13298 | 347 | |
| 13362 | 348 | lemma setclass_iff [simp]: "setclass(A,x) <-> x : A" | 
| 349 | by (simp add: setclass_def) | |
| 13298 | 350 | |
| 13807 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 paulson parents: 
13615diff
changeset | 351 | lemma rall_setclass_is_ball [simp]: "(\<forall>x[##A]. P(x)) <-> (\<forall>x\<in>A. P(x))" | 
| 13298 | 352 | by auto | 
| 353 | ||
| 13807 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 paulson parents: 
13615diff
changeset | 354 | lemma rex_setclass_is_bex [simp]: "(\<exists>x[##A]. P(x)) <-> (\<exists>x\<in>A. P(x))" | 
| 13298 | 355 | by auto | 
| 356 | ||
| 357 | ||
| 13169 | 358 | ML | 
| 359 | {*
 | |
| 360 | val Ord_atomize = | |
| 24893 | 361 |     atomize ([("OrdQuant.oall", [@{thm ospec}]),("OrdQuant.rall", [@{thm rspec}])]@
 | 
| 13298 | 362 | ZF_conn_pairs, | 
| 13253 | 363 | ZF_mem_pairs); | 
| 26339 | 364 | *} | 
| 365 | declaration {* fn _ =>
 | |
| 36543 
0e7fc5bf38de
proper context for mksimps etc. -- via simpset of the running Simplifier;
 wenzelm parents: 
35112diff
changeset | 366 | Simplifier.map_ss (fn ss => ss setmksimps (K (map mk_eq o Ord_atomize o gen_all))) | 
| 13169 | 367 | *} | 
| 368 | ||
| 13462 | 369 | text {* Setting up the one-point-rule simproc *}
 | 
| 13253 | 370 | |
| 26480 | 371 | ML {*
 | 
| 13462 | 372 | local | 
| 13253 | 373 | |
| 24893 | 374 | val unfold_rex_tac = unfold_tac [@{thm rex_def}];
 | 
| 18324 | 375 | fun prove_rex_tac ss = unfold_rex_tac ss THEN Quantifier1.prove_one_point_ex_tac; | 
| 13253 | 376 | val rearrange_bex = Quantifier1.rearrange_bex prove_rex_tac; | 
| 377 | ||
| 24893 | 378 | val unfold_rall_tac = unfold_tac [@{thm rall_def}];
 | 
| 18324 | 379 | fun prove_rall_tac ss = unfold_rall_tac ss THEN Quantifier1.prove_one_point_all_tac; | 
| 13253 | 380 | val rearrange_ball = Quantifier1.rearrange_ball prove_rall_tac; | 
| 381 | ||
| 382 | in | |
| 383 | ||
| 32010 | 384 | val defREX_regroup = Simplifier.simproc @{theory}
 | 
| 13462 | 385 | "defined REX" ["EX x[M]. P(x) & Q(x)"] rearrange_bex; | 
| 32010 | 386 | val defRALL_regroup = Simplifier.simproc @{theory}
 | 
| 13462 | 387 | "defined RALL" ["ALL x[M]. P(x) --> Q(x)"] rearrange_ball; | 
| 13253 | 388 | |
| 389 | end; | |
| 13462 | 390 | |
| 391 | Addsimprocs [defRALL_regroup,defREX_regroup]; | |
| 13253 | 392 | *} | 
| 393 | ||
| 2469 | 394 | end |