17024
|
1 |
(* Title: HOL/Extraction/Pigeonhole.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Stefan Berghofer, TU Muenchen
|
|
4 |
*)
|
|
5 |
|
|
6 |
header {* The pigeonhole principle *}
|
|
7 |
|
|
8 |
theory Pigeonhole imports EfficientNat begin
|
|
9 |
|
|
10 |
text {*
|
|
11 |
We formalize two proofs of the pigeonhole principle, which lead
|
|
12 |
to extracted programs of quite different complexity. The original
|
|
13 |
formalization of these proofs in {\sc Nuprl} is due to
|
|
14 |
Aleksey Nogin \cite{Nogin-ENTCS-2000}.
|
|
15 |
|
|
16 |
We need decidability of equality on natural numbers:
|
|
17 |
*}
|
|
18 |
|
|
19 |
lemma nat_eq_dec: "\<And>n::nat. m = n \<or> m \<noteq> n"
|
|
20 |
apply (induct m)
|
|
21 |
apply (case_tac n)
|
|
22 |
apply (case_tac [3] n)
|
17604
|
23 |
apply (simp only: nat.simps, iprover?)+
|
17024
|
24 |
done
|
|
25 |
|
|
26 |
text {*
|
17027
|
27 |
We can decide whether an array @{term "f"} of length @{term "l"}
|
17024
|
28 |
contains an element @{term "x"}.
|
|
29 |
*}
|
|
30 |
|
|
31 |
lemma search: "(\<exists>j<(l::nat). (x::nat) = f j) \<or> \<not> (\<exists>j<l. x = f j)"
|
|
32 |
proof (induct l)
|
|
33 |
case 0
|
|
34 |
have "\<not> (\<exists>j<0. x = f j)"
|
|
35 |
proof
|
|
36 |
assume "\<exists>j<0. x = f j"
|
17604
|
37 |
then obtain j where j: "j < (0::nat)" by iprover
|
17024
|
38 |
thus "False" by simp
|
|
39 |
qed
|
|
40 |
thus ?case ..
|
|
41 |
next
|
|
42 |
case (Suc l)
|
|
43 |
thus ?case
|
|
44 |
proof
|
|
45 |
assume "\<exists>j<l. x = f j"
|
|
46 |
then obtain j where j: "j < l"
|
17604
|
47 |
and eq: "x = f j" by iprover
|
17024
|
48 |
from j have "j < Suc l" by simp
|
17604
|
49 |
with eq show ?case by iprover
|
17024
|
50 |
next
|
|
51 |
assume nex: "\<not> (\<exists>j<l. x = f j)"
|
|
52 |
from nat_eq_dec show ?case
|
|
53 |
proof
|
|
54 |
assume eq: "x = f l"
|
|
55 |
have "l < Suc l" by simp
|
17604
|
56 |
with eq show ?case by iprover
|
17024
|
57 |
next
|
|
58 |
assume neq: "x \<noteq> f l"
|
|
59 |
have "\<not> (\<exists>j<Suc l. x = f j)"
|
|
60 |
proof
|
|
61 |
assume "\<exists>j<Suc l. x = f j"
|
|
62 |
then obtain j where j: "j < Suc l"
|
17604
|
63 |
and eq: "x = f j" by iprover
|
17024
|
64 |
show False
|
|
65 |
proof cases
|
|
66 |
assume "j = l"
|
|
67 |
with eq have "x = f l" by simp
|
|
68 |
with neq show False ..
|
|
69 |
next
|
|
70 |
assume "j \<noteq> l"
|
|
71 |
with j have "j < l" by simp
|
17604
|
72 |
with nex and eq show False by iprover
|
17024
|
73 |
qed
|
|
74 |
qed
|
|
75 |
thus ?case ..
|
|
76 |
qed
|
|
77 |
qed
|
|
78 |
qed
|
|
79 |
|
|
80 |
text {*
|
|
81 |
This proof yields a polynomial program.
|
|
82 |
*}
|
|
83 |
|
|
84 |
theorem pigeonhole:
|
|
85 |
"\<And>f. (\<And>i. i \<le> Suc n \<Longrightarrow> f i \<le> n) \<Longrightarrow> \<exists>i j. i \<le> Suc n \<and> j < i \<and> f i = f j"
|
|
86 |
proof (induct n)
|
|
87 |
case 0
|
|
88 |
hence "Suc 0 \<le> Suc 0 \<and> 0 < Suc 0 \<and> f (Suc 0) = f 0" by simp
|
17604
|
89 |
thus ?case by iprover
|
17024
|
90 |
next
|
|
91 |
case (Suc n)
|
|
92 |
{
|
|
93 |
fix k
|
|
94 |
have
|
|
95 |
"k \<le> Suc (Suc n) \<Longrightarrow>
|
|
96 |
(\<And>i j. Suc k \<le> i \<Longrightarrow> i \<le> Suc (Suc n) \<Longrightarrow> j < i \<Longrightarrow> f i \<noteq> f j) \<Longrightarrow>
|
|
97 |
(\<exists>i j. i \<le> k \<and> j < i \<and> f i = f j)"
|
|
98 |
proof (induct k)
|
|
99 |
case 0
|
|
100 |
let ?f = "\<lambda>i. if f i = Suc n then f (Suc (Suc n)) else f i"
|
|
101 |
have "\<not> (\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j)"
|
|
102 |
proof
|
|
103 |
assume "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j"
|
|
104 |
then obtain i j where i: "i \<le> Suc n" and j: "j < i"
|
17604
|
105 |
and f: "?f i = ?f j" by iprover
|
17024
|
106 |
from j have i_nz: "Suc 0 \<le> i" by simp
|
|
107 |
from i have iSSn: "i \<le> Suc (Suc n)" by simp
|
|
108 |
have S0SSn: "Suc 0 \<le> Suc (Suc n)" by simp
|
|
109 |
show False
|
|
110 |
proof cases
|
|
111 |
assume fi: "f i = Suc n"
|
|
112 |
show False
|
|
113 |
proof cases
|
|
114 |
assume fj: "f j = Suc n"
|
|
115 |
from i_nz and iSSn and j have "f i \<noteq> f j" by (rule 0)
|
|
116 |
moreover from fi have "f i = f j"
|
|
117 |
by (simp add: fj [symmetric])
|
|
118 |
ultimately show ?thesis ..
|
|
119 |
next
|
|
120 |
from i and j have "j < Suc (Suc n)" by simp
|
|
121 |
with S0SSn and le_refl have "f (Suc (Suc n)) \<noteq> f j"
|
|
122 |
by (rule 0)
|
|
123 |
moreover assume "f j \<noteq> Suc n"
|
|
124 |
with fi and f have "f (Suc (Suc n)) = f j" by simp
|
|
125 |
ultimately show False ..
|
|
126 |
qed
|
|
127 |
next
|
|
128 |
assume fi: "f i \<noteq> Suc n"
|
|
129 |
show False
|
|
130 |
proof cases
|
|
131 |
from i have "i < Suc (Suc n)" by simp
|
|
132 |
with S0SSn and le_refl have "f (Suc (Suc n)) \<noteq> f i"
|
|
133 |
by (rule 0)
|
|
134 |
moreover assume "f j = Suc n"
|
|
135 |
with fi and f have "f (Suc (Suc n)) = f i" by simp
|
|
136 |
ultimately show False ..
|
|
137 |
next
|
|
138 |
from i_nz and iSSn and j
|
|
139 |
have "f i \<noteq> f j" by (rule 0)
|
|
140 |
moreover assume "f j \<noteq> Suc n"
|
|
141 |
with fi and f have "f i = f j" by simp
|
|
142 |
ultimately show False ..
|
|
143 |
qed
|
|
144 |
qed
|
|
145 |
qed
|
|
146 |
moreover have "\<And>i. i \<le> Suc n \<Longrightarrow> ?f i \<le> n"
|
|
147 |
proof -
|
|
148 |
fix i assume "i \<le> Suc n"
|
|
149 |
hence i: "i < Suc (Suc n)" by simp
|
|
150 |
have "f (Suc (Suc n)) \<noteq> f i"
|
|
151 |
by (rule 0) (simp_all add: i)
|
|
152 |
moreover have "f (Suc (Suc n)) \<le> Suc n"
|
|
153 |
by (rule Suc) simp
|
|
154 |
moreover from i have "i \<le> Suc (Suc n)" by simp
|
|
155 |
hence "f i \<le> Suc n" by (rule Suc)
|
|
156 |
ultimately show "?thesis i"
|
|
157 |
by simp
|
|
158 |
qed
|
|
159 |
hence "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j"
|
|
160 |
by (rule Suc)
|
|
161 |
ultimately show ?case ..
|
|
162 |
next
|
|
163 |
case (Suc k)
|
|
164 |
from search show ?case
|
|
165 |
proof
|
|
166 |
assume "\<exists>j<Suc k. f (Suc k) = f j"
|
17604
|
167 |
thus ?case by (iprover intro: le_refl)
|
17024
|
168 |
next
|
|
169 |
assume nex: "\<not> (\<exists>j<Suc k. f (Suc k) = f j)"
|
|
170 |
have "\<exists>i j. i \<le> k \<and> j < i \<and> f i = f j"
|
|
171 |
proof (rule Suc)
|
|
172 |
from Suc show "k \<le> Suc (Suc n)" by simp
|
|
173 |
fix i j assume k: "Suc k \<le> i" and i: "i \<le> Suc (Suc n)"
|
|
174 |
and j: "j < i"
|
|
175 |
show "f i \<noteq> f j"
|
|
176 |
proof cases
|
|
177 |
assume eq: "i = Suc k"
|
|
178 |
show ?thesis
|
|
179 |
proof
|
|
180 |
assume "f i = f j"
|
|
181 |
hence "f (Suc k) = f j" by (simp add: eq)
|
17604
|
182 |
with nex and j and eq show False by iprover
|
17024
|
183 |
qed
|
|
184 |
next
|
|
185 |
assume "i \<noteq> Suc k"
|
|
186 |
with k have "Suc (Suc k) \<le> i" by simp
|
|
187 |
thus ?thesis using i and j by (rule Suc)
|
|
188 |
qed
|
|
189 |
qed
|
17604
|
190 |
thus ?thesis by (iprover intro: le_SucI)
|
17024
|
191 |
qed
|
|
192 |
qed
|
|
193 |
}
|
|
194 |
note r = this
|
|
195 |
show ?case by (rule r) simp_all
|
|
196 |
qed
|
|
197 |
|
|
198 |
text {*
|
|
199 |
The following proof, although quite elegant from a mathematical point of view,
|
|
200 |
leads to an exponential program:
|
|
201 |
*}
|
|
202 |
|
|
203 |
theorem pigeonhole_slow:
|
|
204 |
"\<And>f. (\<And>i. i \<le> Suc n \<Longrightarrow> f i \<le> n) \<Longrightarrow> \<exists>i j. i \<le> Suc n \<and> j < i \<and> f i = f j"
|
|
205 |
proof (induct n)
|
|
206 |
case 0
|
|
207 |
have "Suc 0 \<le> Suc 0" ..
|
|
208 |
moreover have "0 < Suc 0" ..
|
|
209 |
moreover from 0 have "f (Suc 0) = f 0" by simp
|
17604
|
210 |
ultimately show ?case by iprover
|
17024
|
211 |
next
|
|
212 |
case (Suc n)
|
|
213 |
from search show ?case
|
|
214 |
proof
|
|
215 |
assume "\<exists>j < Suc (Suc n). f (Suc (Suc n)) = f j"
|
17604
|
216 |
thus ?case by (iprover intro: le_refl)
|
17024
|
217 |
next
|
|
218 |
assume "\<not> (\<exists>j < Suc (Suc n). f (Suc (Suc n)) = f j)"
|
17604
|
219 |
hence nex: "\<forall>j < Suc (Suc n). f (Suc (Suc n)) \<noteq> f j" by iprover
|
17024
|
220 |
let ?f = "\<lambda>i. if f i = Suc n then f (Suc (Suc n)) else f i"
|
|
221 |
have "\<And>i. i \<le> Suc n \<Longrightarrow> ?f i \<le> n"
|
|
222 |
proof -
|
|
223 |
fix i assume i: "i \<le> Suc n"
|
|
224 |
show "?thesis i"
|
|
225 |
proof (cases "f i = Suc n")
|
|
226 |
case True
|
|
227 |
from i and nex have "f (Suc (Suc n)) \<noteq> f i" by simp
|
|
228 |
with True have "f (Suc (Suc n)) \<noteq> Suc n" by simp
|
|
229 |
moreover from Suc have "f (Suc (Suc n)) \<le> Suc n" by simp
|
|
230 |
ultimately have "f (Suc (Suc n)) \<le> n" by simp
|
|
231 |
with True show ?thesis by simp
|
|
232 |
next
|
|
233 |
case False
|
|
234 |
from Suc and i have "f i \<le> Suc n" by simp
|
|
235 |
with False show ?thesis by simp
|
|
236 |
qed
|
|
237 |
qed
|
|
238 |
hence "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j" by (rule Suc)
|
|
239 |
then obtain i j where i: "i \<le> Suc n" and ji: "j < i" and f: "?f i = ?f j"
|
17604
|
240 |
by iprover
|
17024
|
241 |
have "f i = f j"
|
|
242 |
proof (cases "f i = Suc n")
|
|
243 |
case True
|
|
244 |
show ?thesis
|
|
245 |
proof (cases "f j = Suc n")
|
|
246 |
assume "f j = Suc n"
|
|
247 |
with True show ?thesis by simp
|
|
248 |
next
|
|
249 |
assume "f j \<noteq> Suc n"
|
|
250 |
moreover from i ji nex have "f (Suc (Suc n)) \<noteq> f j" by simp
|
|
251 |
ultimately show ?thesis using True f by simp
|
|
252 |
qed
|
|
253 |
next
|
|
254 |
case False
|
|
255 |
show ?thesis
|
|
256 |
proof (cases "f j = Suc n")
|
|
257 |
assume "f j = Suc n"
|
|
258 |
moreover from i nex have "f (Suc (Suc n)) \<noteq> f i" by simp
|
|
259 |
ultimately show ?thesis using False f by simp
|
|
260 |
next
|
|
261 |
assume "f j \<noteq> Suc n"
|
|
262 |
with False f show ?thesis by simp
|
|
263 |
qed
|
|
264 |
qed
|
|
265 |
moreover from i have "i \<le> Suc (Suc n)" by simp
|
17604
|
266 |
ultimately show ?thesis using ji by iprover
|
17024
|
267 |
qed
|
|
268 |
qed
|
|
269 |
|
|
270 |
extract pigeonhole pigeonhole_slow
|
|
271 |
|
|
272 |
text {*
|
|
273 |
The programs extracted from the above proofs look as follows:
|
|
274 |
@{thm [display] pigeonhole_def}
|
|
275 |
@{thm [display] pigeonhole_slow_def}
|
|
276 |
The program for searching for an element in an array is
|
|
277 |
@{thm [display,eta_contract=false] search_def}
|
|
278 |
The correctness statement for @{term "pigeonhole"} is
|
|
279 |
@{thm [display] pigeonhole_correctness [no_vars]}
|
|
280 |
|
|
281 |
In order to analyze the speed of the above programs,
|
|
282 |
we generate ML code from them.
|
|
283 |
*}
|
|
284 |
|
|
285 |
consts_code
|
|
286 |
arbitrary :: "nat \<times> nat" ("{* (0::nat, 0::nat) *}")
|
|
287 |
|
17145
|
288 |
code_module PH
|
|
289 |
contains
|
17024
|
290 |
test = "\<lambda>n. pigeonhole n (\<lambda>m. m - 1)"
|
|
291 |
test' = "\<lambda>n. pigeonhole_slow n (\<lambda>m. m - 1)"
|
|
292 |
sel = "op !"
|
|
293 |
|
17145
|
294 |
ML "timeit (fn () => PH.test 10)"
|
|
295 |
ML "timeit (fn () => PH.test' 10)"
|
|
296 |
ML "timeit (fn () => PH.test 20)"
|
|
297 |
ML "timeit (fn () => PH.test' 20)"
|
|
298 |
ML "timeit (fn () => PH.test 25)"
|
|
299 |
ML "timeit (fn () => PH.test' 25)"
|
|
300 |
ML "timeit (fn () => PH.test 500)"
|
17024
|
301 |
|
17145
|
302 |
ML "PH.pigeonhole 8 (PH.sel [0,1,2,3,4,5,6,3,7,8])"
|
17024
|
303 |
|
|
304 |
end
|