| author | traytel |
| Thu, 08 Aug 2013 15:30:25 +0200 | |
| changeset 52912 | bdd610910e2c |
| parent 52825 | 71fef62c4213 |
| child 54297 | 3fc1b77ef750 |
| permissions | -rw-r--r-- |
| 44070 | 1 |
header "Constant Folding" |
2 |
||
| 52072 | 3 |
theory Fold imports Sem_Equiv Vars begin |
| 44070 | 4 |
|
| 44850 | 5 |
subsection "Simple folding of arithmetic expressions" |
| 44070 | 6 |
|
| 45134 | 7 |
type_synonym |
| 45212 | 8 |
tab = "vname \<Rightarrow> val option" |
| 44070 | 9 |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
10 |
fun afold :: "aexp \<Rightarrow> tab \<Rightarrow> aexp" where |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
11 |
"afold (N n) _ = N n" | |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
12 |
"afold (V x) t = (case t x of None \<Rightarrow> V x | Some k \<Rightarrow> N k)" | |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
13 |
"afold (Plus e1 e2) t = (case (afold e1 t, afold e2 t) of |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
14 |
(N n1, N n2) \<Rightarrow> N(n1+n2) | (e1',e2') \<Rightarrow> Plus e1' e2')" |
| 44070 | 15 |
|
16 |
definition "approx t s \<longleftrightarrow> (ALL x k. t x = Some k \<longrightarrow> s x = k)" |
|
17 |
||
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
18 |
theorem aval_afold[simp]: |
| 44070 | 19 |
assumes "approx t s" |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
20 |
shows "aval (afold a t) s = aval a s" |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
21 |
using assms |
| 44070 | 22 |
by (induct a) (auto simp: approx_def split: aexp.split option.split) |
23 |
||
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
24 |
theorem aval_afold_N: |
| 44070 | 25 |
assumes "approx t s" |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
26 |
shows "afold a t = N n \<Longrightarrow> aval a s = n" |
| 51573 | 27 |
by (metis assms aval.simps(1) aval_afold) |
| 44070 | 28 |
|
29 |
definition |
|
30 |
"merge t1 t2 = (\<lambda>m. if t1 m = t2 m then t1 m else None)" |
|
31 |
||
32 |
primrec "defs" :: "com \<Rightarrow> tab \<Rightarrow> tab" where |
|
33 |
"defs SKIP t = t" | |
|
34 |
"defs (x ::= a) t = |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
35 |
(case afold a t of N k \<Rightarrow> t(x \<mapsto> k) | _ \<Rightarrow> t(x:=None))" | |
|
52046
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
nipkow
parents:
51573
diff
changeset
|
36 |
"defs (c1;;c2) t = (defs c2 o defs c1) t" | |
| 44070 | 37 |
"defs (IF b THEN c1 ELSE c2) t = merge (defs c1 t) (defs c2 t)" | |
| 52072 | 38 |
"defs (WHILE b DO c) t = t |` (-lvars c)" |
| 44070 | 39 |
|
40 |
primrec fold where |
|
41 |
"fold SKIP _ = SKIP" | |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
42 |
"fold (x ::= a) t = (x ::= (afold a t))" | |
|
52046
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
nipkow
parents:
51573
diff
changeset
|
43 |
"fold (c1;;c2) t = (fold c1 t;; fold c2 (defs c1 t))" | |
| 44070 | 44 |
"fold (IF b THEN c1 ELSE c2) t = IF b THEN fold c1 t ELSE fold c2 t" | |
| 52072 | 45 |
"fold (WHILE b DO c) t = WHILE b DO fold c (t |` (-lvars c))" |
| 44070 | 46 |
|
47 |
lemma approx_merge: |
|
48 |
"approx t1 s \<or> approx t2 s \<Longrightarrow> approx (merge t1 t2) s" |
|
|
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44850
diff
changeset
|
49 |
by (fastforce simp: merge_def approx_def) |
| 44070 | 50 |
|
51 |
lemma approx_map_le: |
|
52 |
"approx t2 s \<Longrightarrow> t1 \<subseteq>\<^sub>m t2 \<Longrightarrow> approx t1 s" |
|
53 |
by (clarsimp simp: approx_def map_le_def dom_def) |
|
54 |
||
55 |
lemma restrict_map_le [intro!, simp]: "t |` S \<subseteq>\<^sub>m t" |
|
56 |
by (clarsimp simp: restrict_map_def map_le_def) |
|
57 |
||
58 |
lemma merge_restrict: |
|
59 |
assumes "t1 |` S = t |` S" |
|
60 |
assumes "t2 |` S = t |` S" |
|
61 |
shows "merge t1 t2 |` S = t |` S" |
|
62 |
proof - |
|
63 |
from assms |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
64 |
have "\<forall>x. (t1 |` S) x = (t |` S) x" |
| 44070 | 65 |
and "\<forall>x. (t2 |` S) x = (t |` S) x" by auto |
66 |
thus ?thesis |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
67 |
by (auto simp: merge_def restrict_map_def |
| 51506 | 68 |
split: if_splits) |
| 44070 | 69 |
qed |
70 |
||
71 |
||
72 |
lemma defs_restrict: |
|
| 52072 | 73 |
"defs c t |` (- lvars c) = t |` (- lvars c)" |
| 45015 | 74 |
proof (induction c arbitrary: t) |
| 47818 | 75 |
case (Seq c1 c2) |
| 52072 | 76 |
hence "defs c1 t |` (- lvars c1) = t |` (- lvars c1)" |
| 44070 | 77 |
by simp |
| 52072 | 78 |
hence "defs c1 t |` (- lvars c1) |` (-lvars c2) = |
79 |
t |` (- lvars c1) |` (-lvars c2)" by simp |
|
| 44070 | 80 |
moreover |
| 47818 | 81 |
from Seq |
| 52072 | 82 |
have "defs c2 (defs c1 t) |` (- lvars c2) = |
83 |
defs c1 t |` (- lvars c2)" |
|
| 44070 | 84 |
by simp |
| 52072 | 85 |
hence "defs c2 (defs c1 t) |` (- lvars c2) |` (- lvars c1) = |
86 |
defs c1 t |` (- lvars c2) |` (- lvars c1)" |
|
| 44070 | 87 |
by simp |
88 |
ultimately |
|
89 |
show ?case by (clarsimp simp: Int_commute) |
|
90 |
next |
|
91 |
case (If b c1 c2) |
|
| 52072 | 92 |
hence "defs c1 t |` (- lvars c1) = t |` (- lvars c1)" by simp |
93 |
hence "defs c1 t |` (- lvars c1) |` (-lvars c2) = |
|
94 |
t |` (- lvars c1) |` (-lvars c2)" by simp |
|
| 44070 | 95 |
moreover |
96 |
from If |
|
| 52072 | 97 |
have "defs c2 t |` (- lvars c2) = t |` (- lvars c2)" by simp |
98 |
hence "defs c2 t |` (- lvars c2) |` (-lvars c1) = |
|
99 |
t |` (- lvars c2) |` (-lvars c1)" by simp |
|
| 44070 | 100 |
ultimately |
101 |
show ?case by (auto simp: Int_commute intro: merge_restrict) |
|
102 |
qed (auto split: aexp.split) |
|
103 |
||
104 |
||
105 |
lemma big_step_pres_approx: |
|
106 |
"(c,s) \<Rightarrow> s' \<Longrightarrow> approx t s \<Longrightarrow> approx (defs c t) s'" |
|
| 45015 | 107 |
proof (induction arbitrary: t rule: big_step_induct) |
| 44070 | 108 |
case Skip thus ?case by simp |
109 |
next |
|
110 |
case Assign |
|
111 |
thus ?case |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
112 |
by (clarsimp simp: aval_afold_N approx_def split: aexp.split) |
| 44070 | 113 |
next |
| 47818 | 114 |
case (Seq c1 s1 s2 c2 s3) |
115 |
have "approx (defs c1 t) s2" by (rule Seq.IH(1)[OF Seq.prems]) |
|
116 |
hence "approx (defs c2 (defs c1 t)) s3" by (rule Seq.IH(2)) |
|
| 44070 | 117 |
thus ?case by simp |
118 |
next |
|
119 |
case (IfTrue b s c1 s') |
|
120 |
hence "approx (defs c1 t) s'" by simp |
|
121 |
thus ?case by (simp add: approx_merge) |
|
122 |
next |
|
123 |
case (IfFalse b s c2 s') |
|
124 |
hence "approx (defs c2 t) s'" by simp |
|
125 |
thus ?case by (simp add: approx_merge) |
|
126 |
next |
|
127 |
case WhileFalse |
|
128 |
thus ?case by (simp add: approx_def restrict_map_def) |
|
129 |
next |
|
130 |
case (WhileTrue b s1 c s2 s3) |
|
131 |
hence "approx (defs c t) s2" by simp |
|
132 |
with WhileTrue |
|
| 52072 | 133 |
have "approx (defs c t |` (-lvars c)) s3" by simp |
| 44070 | 134 |
thus ?case by (simp add: defs_restrict) |
135 |
qed |
|
136 |
||
137 |
||
138 |
lemma big_step_pres_approx_restrict: |
|
| 52072 | 139 |
"(c,s) \<Rightarrow> s' \<Longrightarrow> approx (t |` (-lvars c)) s \<Longrightarrow> approx (t |` (-lvars c)) s'" |
| 45015 | 140 |
proof (induction arbitrary: t rule: big_step_induct) |
| 44070 | 141 |
case Assign |
142 |
thus ?case by (clarsimp simp: approx_def) |
|
143 |
next |
|
| 47818 | 144 |
case (Seq c1 s1 s2 c2 s3) |
| 52072 | 145 |
hence "approx (t |` (-lvars c2) |` (-lvars c1)) s1" |
| 44070 | 146 |
by (simp add: Int_commute) |
| 52072 | 147 |
hence "approx (t |` (-lvars c2) |` (-lvars c1)) s2" |
| 47818 | 148 |
by (rule Seq) |
| 52072 | 149 |
hence "approx (t |` (-lvars c1) |` (-lvars c2)) s2" |
| 44070 | 150 |
by (simp add: Int_commute) |
| 52072 | 151 |
hence "approx (t |` (-lvars c1) |` (-lvars c2)) s3" |
| 47818 | 152 |
by (rule Seq) |
| 44070 | 153 |
thus ?case by simp |
154 |
next |
|
155 |
case (IfTrue b s c1 s' c2) |
|
| 52072 | 156 |
hence "approx (t |` (-lvars c2) |` (-lvars c1)) s" |
| 44070 | 157 |
by (simp add: Int_commute) |
| 52072 | 158 |
hence "approx (t |` (-lvars c2) |` (-lvars c1)) s'" |
| 44070 | 159 |
by (rule IfTrue) |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
160 |
thus ?case by (simp add: Int_commute) |
| 44070 | 161 |
next |
162 |
case (IfFalse b s c2 s' c1) |
|
| 52072 | 163 |
hence "approx (t |` (-lvars c1) |` (-lvars c2)) s" |
| 44070 | 164 |
by simp |
| 52072 | 165 |
hence "approx (t |` (-lvars c1) |` (-lvars c2)) s'" |
| 44070 | 166 |
by (rule IfFalse) |
167 |
thus ?case by simp |
|
168 |
qed auto |
|
169 |
||
170 |
||
171 |
declare assign_simp [simp] |
|
172 |
||
173 |
lemma approx_eq: |
|
174 |
"approx t \<Turnstile> c \<sim> fold c t" |
|
| 45015 | 175 |
proof (induction c arbitrary: t) |
| 44070 | 176 |
case SKIP show ?case by simp |
177 |
next |
|
178 |
case Assign |
|
179 |
show ?case by (simp add: equiv_up_to_def) |
|
180 |
next |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
181 |
case Seq |
|
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
182 |
thus ?case by (auto intro!: equiv_up_to_seq big_step_pres_approx) |
| 44070 | 183 |
next |
184 |
case If |
|
185 |
thus ?case by (auto intro!: equiv_up_to_if_weak) |
|
186 |
next |
|
187 |
case (While b c) |
|
| 52072 | 188 |
hence "approx (t |` (- lvars c)) \<Turnstile> |
189 |
WHILE b DO c \<sim> WHILE b DO fold c (t |` (- lvars c))" |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
190 |
by (auto intro: equiv_up_to_while_weak big_step_pres_approx_restrict) |
|
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
191 |
thus ?case |
| 44070 | 192 |
by (auto intro: equiv_up_to_weaken approx_map_le) |
193 |
qed |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
194 |
|
| 44070 | 195 |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
196 |
lemma approx_empty [simp]: |
| 44070 | 197 |
"approx empty = (\<lambda>_. True)" |
| 51506 | 198 |
by (auto simp: approx_def) |
| 44070 | 199 |
|
200 |
||
201 |
theorem constant_folding_equiv: |
|
202 |
"fold c empty \<sim> c" |
|
203 |
using approx_eq [of empty c] |
|
| 52825 | 204 |
by (simp add: equiv_up_to_True sim_sym) |
| 44070 | 205 |
|
206 |
||
207 |
||
| 44850 | 208 |
subsection {* More ambitious folding including boolean expressions *}
|
| 44070 | 209 |
|
210 |
||
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
211 |
fun bfold :: "bexp \<Rightarrow> tab \<Rightarrow> bexp" where |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
212 |
"bfold (Less a1 a2) t = less (afold a1 t) (afold a2 t)" | |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
213 |
"bfold (And b1 b2) t = and (bfold b1 t) (bfold b2 t)" | |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
214 |
"bfold (Not b) t = not(bfold b t)" | |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
215 |
"bfold (Bc bc) _ = Bc bc" |
| 44070 | 216 |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
217 |
theorem bval_bfold [simp]: |
| 44070 | 218 |
assumes "approx t s" |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
219 |
shows "bval (bfold b t) s = bval b s" |
| 44070 | 220 |
using assms by (induct b) auto |
221 |
||
| 45200 | 222 |
lemma not_Bc [simp]: "not (Bc v) = Bc (\<not>v)" |
| 44070 | 223 |
by (cases v) auto |
224 |
||
| 45200 | 225 |
lemma not_Bc_eq [simp]: "(not b = Bc v) = (b = Bc (\<not>v))" |
| 44070 | 226 |
by (cases b) auto |
227 |
||
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
228 |
lemma and_Bc_eq: |
| 45200 | 229 |
"(and a b = Bc v) = |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
230 |
(a = Bc False \<and> \<not>v \<or> b = Bc False \<and> \<not>v \<or> |
| 45200 | 231 |
(\<exists>v1 v2. a = Bc v1 \<and> b = Bc v2 \<and> v = v1 \<and> v2))" |
| 44070 | 232 |
by (rule and.induct) auto |
233 |
||
| 45200 | 234 |
lemma less_Bc_eq [simp]: |
235 |
"(less a b = Bc v) = (\<exists>n1 n2. a = N n1 \<and> b = N n2 \<and> v = (n1 < n2))" |
|
| 44070 | 236 |
by (rule less.induct) auto |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
237 |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
238 |
theorem bval_bfold_Bc: |
| 44070 | 239 |
assumes "approx t s" |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
240 |
shows "bfold b t = Bc v \<Longrightarrow> bval b s = v" |
| 44070 | 241 |
using assms |
242 |
by (induct b arbitrary: v) |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
243 |
(auto simp: approx_def and_Bc_eq aval_afold_N |
| 44070 | 244 |
split: bexp.splits bool.splits) |
245 |
||
246 |
||
247 |
primrec "bdefs" :: "com \<Rightarrow> tab \<Rightarrow> tab" where |
|
248 |
"bdefs SKIP t = t" | |
|
249 |
"bdefs (x ::= a) t = |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
250 |
(case afold a t of N k \<Rightarrow> t(x \<mapsto> k) | _ \<Rightarrow> t(x:=None))" | |
|
52046
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
nipkow
parents:
51573
diff
changeset
|
251 |
"bdefs (c1;;c2) t = (bdefs c2 o bdefs c1) t" | |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
252 |
"bdefs (IF b THEN c1 ELSE c2) t = (case bfold b t of |
| 45200 | 253 |
Bc True \<Rightarrow> bdefs c1 t |
254 |
| Bc False \<Rightarrow> bdefs c2 t |
|
| 44070 | 255 |
| _ \<Rightarrow> merge (bdefs c1 t) (bdefs c2 t))" | |
| 52072 | 256 |
"bdefs (WHILE b DO c) t = t |` (-lvars c)" |
| 44070 | 257 |
|
258 |
||
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
259 |
primrec fold' where |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
260 |
"fold' SKIP _ = SKIP" | |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
261 |
"fold' (x ::= a) t = (x ::= (afold a t))" | |
|
52046
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
nipkow
parents:
51573
diff
changeset
|
262 |
"fold' (c1;;c2) t = (fold' c1 t;; fold' c2 (bdefs c1 t))" | |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
263 |
"fold' (IF b THEN c1 ELSE c2) t = (case bfold b t of |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
264 |
Bc True \<Rightarrow> fold' c1 t |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
265 |
| Bc False \<Rightarrow> fold' c2 t |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
266 |
| _ \<Rightarrow> IF bfold b t THEN fold' c1 t ELSE fold' c2 t)" | |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
267 |
"fold' (WHILE b DO c) t = (case bfold b t of |
| 45200 | 268 |
Bc False \<Rightarrow> SKIP |
| 52072 | 269 |
| _ \<Rightarrow> WHILE bfold b (t |` (-lvars c)) DO fold' c (t |` (-lvars c)))" |
| 44070 | 270 |
|
271 |
||
272 |
lemma bdefs_restrict: |
|
| 52072 | 273 |
"bdefs c t |` (- lvars c) = t |` (- lvars c)" |
| 45015 | 274 |
proof (induction c arbitrary: t) |
| 47818 | 275 |
case (Seq c1 c2) |
| 52072 | 276 |
hence "bdefs c1 t |` (- lvars c1) = t |` (- lvars c1)" |
| 44070 | 277 |
by simp |
| 52072 | 278 |
hence "bdefs c1 t |` (- lvars c1) |` (-lvars c2) = |
279 |
t |` (- lvars c1) |` (-lvars c2)" by simp |
|
| 44070 | 280 |
moreover |
| 47818 | 281 |
from Seq |
| 52072 | 282 |
have "bdefs c2 (bdefs c1 t) |` (- lvars c2) = |
283 |
bdefs c1 t |` (- lvars c2)" |
|
| 44070 | 284 |
by simp |
| 52072 | 285 |
hence "bdefs c2 (bdefs c1 t) |` (- lvars c2) |` (- lvars c1) = |
286 |
bdefs c1 t |` (- lvars c2) |` (- lvars c1)" |
|
| 44070 | 287 |
by simp |
288 |
ultimately |
|
289 |
show ?case by (clarsimp simp: Int_commute) |
|
290 |
next |
|
291 |
case (If b c1 c2) |
|
| 52072 | 292 |
hence "bdefs c1 t |` (- lvars c1) = t |` (- lvars c1)" by simp |
293 |
hence "bdefs c1 t |` (- lvars c1) |` (-lvars c2) = |
|
294 |
t |` (- lvars c1) |` (-lvars c2)" by simp |
|
| 44070 | 295 |
moreover |
296 |
from If |
|
| 52072 | 297 |
have "bdefs c2 t |` (- lvars c2) = t |` (- lvars c2)" by simp |
298 |
hence "bdefs c2 t |` (- lvars c2) |` (-lvars c1) = |
|
299 |
t |` (- lvars c2) |` (-lvars c1)" by simp |
|
| 44070 | 300 |
ultimately |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
301 |
show ?case |
|
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
302 |
by (auto simp: Int_commute intro: merge_restrict |
| 44070 | 303 |
split: bexp.splits bool.splits) |
304 |
qed (auto split: aexp.split bexp.split bool.split) |
|
305 |
||
306 |
||
307 |
lemma big_step_pres_approx_b: |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
308 |
"(c,s) \<Rightarrow> s' \<Longrightarrow> approx t s \<Longrightarrow> approx (bdefs c t) s'" |
| 45015 | 309 |
proof (induction arbitrary: t rule: big_step_induct) |
| 44070 | 310 |
case Skip thus ?case by simp |
311 |
next |
|
312 |
case Assign |
|
313 |
thus ?case |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
314 |
by (clarsimp simp: aval_afold_N approx_def split: aexp.split) |
| 44070 | 315 |
next |
| 47818 | 316 |
case (Seq c1 s1 s2 c2 s3) |
317 |
have "approx (bdefs c1 t) s2" by (rule Seq.IH(1)[OF Seq.prems]) |
|
318 |
hence "approx (bdefs c2 (bdefs c1 t)) s3" by (rule Seq.IH(2)) |
|
| 44070 | 319 |
thus ?case by simp |
320 |
next |
|
321 |
case (IfTrue b s c1 s') |
|
322 |
hence "approx (bdefs c1 t) s'" by simp |
|
323 |
thus ?case using `bval b s` `approx t s` |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
324 |
by (clarsimp simp: approx_merge bval_bfold_Bc |
| 44070 | 325 |
split: bexp.splits bool.splits) |
326 |
next |
|
327 |
case (IfFalse b s c2 s') |
|
328 |
hence "approx (bdefs c2 t) s'" by simp |
|
329 |
thus ?case using `\<not>bval b s` `approx t s` |
|
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
330 |
by (clarsimp simp: approx_merge bval_bfold_Bc |
| 44070 | 331 |
split: bexp.splits bool.splits) |
332 |
next |
|
333 |
case WhileFalse |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
334 |
thus ?case |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
335 |
by (clarsimp simp: bval_bfold_Bc approx_def restrict_map_def |
| 44070 | 336 |
split: bexp.splits bool.splits) |
337 |
next |
|
338 |
case (WhileTrue b s1 c s2 s3) |
|
339 |
hence "approx (bdefs c t) s2" by simp |
|
340 |
with WhileTrue |
|
| 52072 | 341 |
have "approx (bdefs c t |` (- lvars c)) s3" |
| 44070 | 342 |
by simp |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
343 |
thus ?case |
| 44070 | 344 |
by (simp add: bdefs_restrict) |
345 |
qed |
|
346 |
||
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
347 |
lemma fold'_equiv: |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
348 |
"approx t \<Turnstile> c \<sim> fold' c t" |
| 45015 | 349 |
proof (induction c arbitrary: t) |
| 44070 | 350 |
case SKIP show ?case by simp |
351 |
next |
|
352 |
case Assign |
|
353 |
thus ?case by (simp add: equiv_up_to_def) |
|
354 |
next |
|
| 47818 | 355 |
case Seq |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
356 |
thus ?case by (auto intro!: equiv_up_to_seq big_step_pres_approx_b) |
| 44070 | 357 |
next |
358 |
case (If b c1 c2) |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
359 |
hence "approx t \<Turnstile> IF b THEN c1 ELSE c2 \<sim> |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
360 |
IF bfold b t THEN fold' c1 t ELSE fold' c2 t" |
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
361 |
by (auto intro: equiv_up_to_if_weak simp: bequiv_up_to_def) |
| 44070 | 362 |
thus ?case using If |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
363 |
by (fastforce simp: bval_bfold_Bc split: bexp.splits bool.splits |
| 44070 | 364 |
intro: equiv_up_to_trans) |
365 |
next |
|
366 |
case (While b c) |
|
| 52072 | 367 |
hence "approx (t |` (- lvars c)) \<Turnstile> |
| 44070 | 368 |
WHILE b DO c \<sim> |
| 52072 | 369 |
WHILE bfold b (t |` (- lvars c)) |
370 |
DO fold' c (t |` (- lvars c))" (is "_ \<Turnstile> ?W \<sim> ?W'") |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
371 |
by (auto intro: equiv_up_to_while_weak big_step_pres_approx_restrict |
| 44070 | 372 |
simp: bequiv_up_to_def) |
373 |
hence "approx t \<Turnstile> ?W \<sim> ?W'" |
|
374 |
by (auto intro: equiv_up_to_weaken approx_map_le) |
|
375 |
thus ?case |
|
|
48909
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
376 |
by (auto split: bexp.splits bool.splits |
|
b2dea007e55e
remove Hoare dependency from Fold.thy
Gerwin Klein <gerwin.klein@nicta.com.au>
parents:
47818
diff
changeset
|
377 |
intro: equiv_up_to_while_False |
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
378 |
simp: bval_bfold_Bc) |
| 44070 | 379 |
qed |
380 |
||
381 |
||
|
51514
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
382 |
theorem constant_folding_equiv': |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
383 |
"fold' c empty \<sim> c" |
|
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
kleing
parents:
51506
diff
changeset
|
384 |
using fold'_equiv [of empty c] |
| 52825 | 385 |
by (simp add: equiv_up_to_True sim_sym) |
| 44070 | 386 |
|
387 |
||
388 |
end |