| 0 |      1 | (*  Title: 	CCL/lfp
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 | 
 | 
|  |      4 | Modified version of
 | 
|  |      5 |     Title: 	HOL/lfp.ML
 | 
|  |      6 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      7 |     Copyright   1992  University of Cambridge
 | 
|  |      8 | 
 | 
|  |      9 | For lfp.thy.  The Knaster-Tarski Theorem
 | 
|  |     10 | *)
 | 
|  |     11 | 
 | 
|  |     12 | open Lfp;
 | 
|  |     13 | 
 | 
|  |     14 | (*** Proof of Knaster-Tarski Theorem ***)
 | 
|  |     15 | 
 | 
|  |     16 | (* lfp(f) is the greatest lower bound of {u. f(u) <= u} *)
 | 
|  |     17 | 
 | 
|  |     18 | val prems = goalw Lfp.thy [lfp_def] "[| f(A) <= A |] ==> lfp(f) <= A";
 | 
|  |     19 | by (rtac (CollectI RS Inter_lower) 1);
 | 
|  |     20 | by (resolve_tac prems 1);
 | 
|  |     21 | val lfp_lowerbound = result();
 | 
|  |     22 | 
 | 
|  |     23 | val prems = goalw Lfp.thy [lfp_def]
 | 
|  |     24 |     "[| !!u. f(u) <= u ==> A<=u |] ==> A <= lfp(f)";
 | 
|  |     25 | by (REPEAT (ares_tac ([Inter_greatest]@prems) 1));
 | 
|  |     26 | by (etac CollectD 1);
 | 
|  |     27 | val lfp_greatest = result();
 | 
|  |     28 | 
 | 
|  |     29 | val [mono] = goal Lfp.thy "mono(f) ==> f(lfp(f)) <= lfp(f)";
 | 
|  |     30 | by (EVERY1 [rtac lfp_greatest, rtac subset_trans,
 | 
|  |     31 | 	    rtac (mono RS monoD), rtac lfp_lowerbound, atac, atac]);
 | 
|  |     32 | val lfp_lemma2 = result();
 | 
|  |     33 | 
 | 
|  |     34 | val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) <= f(lfp(f))";
 | 
|  |     35 | by (EVERY1 [rtac lfp_lowerbound, rtac (mono RS monoD), 
 | 
|  |     36 | 	    rtac lfp_lemma2, rtac mono]);
 | 
|  |     37 | val lfp_lemma3 = result();
 | 
|  |     38 | 
 | 
|  |     39 | val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) = f(lfp(f))";
 | 
|  |     40 | by (REPEAT (resolve_tac [equalityI,lfp_lemma2,lfp_lemma3,mono] 1));
 | 
|  |     41 | val lfp_Tarski = result();
 | 
|  |     42 | 
 | 
|  |     43 | 
 | 
|  |     44 | (*** General induction rule for least fixed points ***)
 | 
|  |     45 | 
 | 
|  |     46 | val [lfp,mono,indhyp] = goal Lfp.thy
 | 
|  |     47 |     "[| a: lfp(f);  mono(f);  				\
 | 
|  |     48 | \       !!x. [| x: f(lfp(f) Int {x.P(x)}) |] ==> P(x) 	\
 | 
|  |     49 | \    |] ==> P(a)";
 | 
|  |     50 | by (res_inst_tac [("a","a")] (Int_lower2 RS subsetD RS CollectD) 1);
 | 
|  |     51 | by (rtac (lfp RSN (2, lfp_lowerbound RS subsetD)) 1);
 | 
|  |     52 | by (EVERY1 [rtac Int_greatest, rtac subset_trans, 
 | 
|  |     53 | 	    rtac (Int_lower1 RS (mono RS monoD)),
 | 
|  |     54 | 	    rtac (mono RS lfp_lemma2),
 | 
|  |     55 | 	    rtac (CollectI RS subsetI), rtac indhyp, atac]);
 | 
|  |     56 | val induct = result();
 | 
|  |     57 | 
 | 
|  |     58 | (** Definition forms of lfp_Tarski and induct, to control unfolding **)
 | 
|  |     59 | 
 | 
|  |     60 | val [rew,mono] = goal Lfp.thy "[| h==lfp(f);  mono(f) |] ==> h = f(h)";
 | 
|  |     61 | by (rewtac rew);
 | 
|  |     62 | by (rtac (mono RS lfp_Tarski) 1);
 | 
|  |     63 | val def_lfp_Tarski = result();
 | 
|  |     64 | 
 | 
|  |     65 | val rew::prems = goal Lfp.thy
 | 
|  |     66 |     "[| A == lfp(f);  a:A;  mono(f);   			\
 | 
|  |     67 | \       !!x. [| x: f(A Int {x.P(x)}) |] ==> P(x) 	\
 | 
|  |     68 | \    |] ==> P(a)";
 | 
|  |     69 | by (EVERY1 [rtac induct,	(*backtracking to force correct induction*)
 | 
|  |     70 | 	    REPEAT1 o (ares_tac (map (rewrite_rule [rew]) prems))]);
 | 
|  |     71 | val def_induct = result();
 | 
|  |     72 | 
 | 
|  |     73 | (*Monotonicity of lfp!*)
 | 
|  |     74 | val prems = goal Lfp.thy
 | 
|  |     75 |     "[| mono(g);  !!Z. f(Z)<=g(Z) |] ==> lfp(f) <= lfp(g)";
 | 
|  |     76 | by (rtac lfp_lowerbound 1);
 | 
|  |     77 | by (rtac subset_trans 1);
 | 
|  |     78 | by (resolve_tac prems 1);
 | 
|  |     79 | by (rtac lfp_lemma2 1);
 | 
|  |     80 | by (resolve_tac prems 1);
 | 
|  |     81 | val lfp_mono = result();
 | 
|  |     82 | 
 |