13020
|
1 |
header {* \section{Generation of Verification Conditions} *}
|
|
2 |
|
15425
|
3 |
theory OG_Tactics imports OG_Hoare
|
|
4 |
begin
|
13020
|
5 |
|
|
6 |
lemmas ann_hoare_intros=AnnBasic AnnSeq AnnCond1 AnnCond2 AnnWhile AnnAwait AnnConseq
|
|
7 |
lemmas oghoare_intros=Parallel Basic Seq Cond While Conseq
|
|
8 |
|
|
9 |
lemma ParallelConseqRule:
|
|
10 |
"\<lbrakk> p \<subseteq> (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts ! i))));
|
|
11 |
\<parallel>- (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts ! i))))
|
|
12 |
(Parallel Ts)
|
|
13 |
(\<Inter>i\<in>{i. i<length Ts}. post(Ts ! i));
|
|
14 |
(\<Inter>i\<in>{i. i<length Ts}. post(Ts ! i)) \<subseteq> q \<rbrakk>
|
|
15 |
\<Longrightarrow> \<parallel>- p (Parallel Ts) q"
|
|
16 |
apply (rule Conseq)
|
|
17 |
prefer 2
|
|
18 |
apply fast
|
|
19 |
apply assumption+
|
|
20 |
done
|
|
21 |
|
|
22 |
lemma SkipRule: "p \<subseteq> q \<Longrightarrow> \<parallel>- p (Basic id) q"
|
|
23 |
apply(rule oghoare_intros)
|
|
24 |
prefer 2 apply(rule Basic)
|
|
25 |
prefer 2 apply(rule subset_refl)
|
|
26 |
apply(simp add:Id_def)
|
|
27 |
done
|
|
28 |
|
|
29 |
lemma BasicRule: "p \<subseteq> {s. (f s)\<in>q} \<Longrightarrow> \<parallel>- p (Basic f) q"
|
|
30 |
apply(rule oghoare_intros)
|
|
31 |
prefer 2 apply(rule oghoare_intros)
|
|
32 |
prefer 2 apply(rule subset_refl)
|
|
33 |
apply assumption
|
|
34 |
done
|
|
35 |
|
|
36 |
lemma SeqRule: "\<lbrakk> \<parallel>- p c1 r; \<parallel>- r c2 q \<rbrakk> \<Longrightarrow> \<parallel>- p (Seq c1 c2) q"
|
|
37 |
apply(rule Seq)
|
|
38 |
apply fast+
|
|
39 |
done
|
|
40 |
|
|
41 |
lemma CondRule:
|
|
42 |
"\<lbrakk> p \<subseteq> {s. (s\<in>b \<longrightarrow> s\<in>w) \<and> (s\<notin>b \<longrightarrow> s\<in>w')}; \<parallel>- w c1 q; \<parallel>- w' c2 q \<rbrakk>
|
|
43 |
\<Longrightarrow> \<parallel>- p (Cond b c1 c2) q"
|
|
44 |
apply(rule Cond)
|
|
45 |
apply(rule Conseq)
|
|
46 |
prefer 4 apply(rule Conseq)
|
|
47 |
apply simp_all
|
|
48 |
apply force+
|
|
49 |
done
|
|
50 |
|
|
51 |
lemma WhileRule: "\<lbrakk> p \<subseteq> i; \<parallel>- (i \<inter> b) c i ; (i \<inter> (-b)) \<subseteq> q \<rbrakk>
|
|
52 |
\<Longrightarrow> \<parallel>- p (While b i c) q"
|
|
53 |
apply(rule Conseq)
|
|
54 |
prefer 2 apply(rule While)
|
|
55 |
apply assumption+
|
|
56 |
done
|
|
57 |
|
|
58 |
text {* Three new proof rules for special instances of the @{text
|
|
59 |
AnnBasic} and the @{text AnnAwait} commands when the transformation
|
|
60 |
performed on the state is the identity, and for an @{text AnnAwait}
|
|
61 |
command where the boolean condition is @{text "{s. True}"}: *}
|
|
62 |
|
|
63 |
lemma AnnatomRule:
|
|
64 |
"\<lbrakk> atom_com(c); \<parallel>- r c q \<rbrakk> \<Longrightarrow> \<turnstile> (AnnAwait r {s. True} c) q"
|
|
65 |
apply(rule AnnAwait)
|
|
66 |
apply simp_all
|
|
67 |
done
|
|
68 |
|
|
69 |
lemma AnnskipRule:
|
|
70 |
"r \<subseteq> q \<Longrightarrow> \<turnstile> (AnnBasic r id) q"
|
|
71 |
apply(rule AnnBasic)
|
|
72 |
apply simp
|
|
73 |
done
|
|
74 |
|
|
75 |
lemma AnnwaitRule:
|
|
76 |
"\<lbrakk> (r \<inter> b) \<subseteq> q \<rbrakk> \<Longrightarrow> \<turnstile> (AnnAwait r b (Basic id)) q"
|
|
77 |
apply(rule AnnAwait)
|
|
78 |
apply simp
|
|
79 |
apply(rule BasicRule)
|
|
80 |
apply simp
|
|
81 |
done
|
|
82 |
|
|
83 |
text {* Lemmata to avoid using the definition of @{text
|
|
84 |
map_ann_hoare}, @{text interfree_aux}, @{text interfree_swap} and
|
|
85 |
@{text interfree} by splitting it into different cases: *}
|
|
86 |
|
|
87 |
lemma interfree_aux_rule1: "interfree_aux(co, q, None)"
|
|
88 |
by(simp add:interfree_aux_def)
|
|
89 |
|
|
90 |
lemma interfree_aux_rule2:
|
|
91 |
"\<forall>(R,r)\<in>(atomics a). \<parallel>- (q \<inter> R) r q \<Longrightarrow> interfree_aux(None, q, Some a)"
|
|
92 |
apply(simp add:interfree_aux_def)
|
|
93 |
apply(force elim:oghoare_sound)
|
|
94 |
done
|
|
95 |
|
|
96 |
lemma interfree_aux_rule3:
|
|
97 |
"(\<forall>(R, r)\<in>(atomics a). \<parallel>- (q \<inter> R) r q \<and> (\<forall>p\<in>(assertions c). \<parallel>- (p \<inter> R) r p))
|
|
98 |
\<Longrightarrow> interfree_aux(Some c, q, Some a)"
|
|
99 |
apply(simp add:interfree_aux_def)
|
|
100 |
apply(force elim:oghoare_sound)
|
|
101 |
done
|
|
102 |
|
|
103 |
lemma AnnBasic_assertions:
|
|
104 |
"\<lbrakk>interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)\<rbrakk> \<Longrightarrow>
|
|
105 |
interfree_aux(Some (AnnBasic r f), q, Some a)"
|
|
106 |
apply(simp add: interfree_aux_def)
|
|
107 |
by force
|
|
108 |
|
|
109 |
lemma AnnSeq_assertions:
|
|
110 |
"\<lbrakk> interfree_aux(Some c1, q, Some a); interfree_aux(Some c2, q, Some a)\<rbrakk>\<Longrightarrow>
|
|
111 |
interfree_aux(Some (AnnSeq c1 c2), q, Some a)"
|
|
112 |
apply(simp add: interfree_aux_def)
|
|
113 |
by force
|
|
114 |
|
|
115 |
lemma AnnCond1_assertions:
|
|
116 |
"\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(Some c1, q, Some a);
|
|
117 |
interfree_aux(Some c2, q, Some a)\<rbrakk>\<Longrightarrow>
|
|
118 |
interfree_aux(Some(AnnCond1 r b c1 c2), q, Some a)"
|
|
119 |
apply(simp add: interfree_aux_def)
|
|
120 |
by force
|
|
121 |
|
|
122 |
lemma AnnCond2_assertions:
|
|
123 |
"\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(Some c, q, Some a)\<rbrakk>\<Longrightarrow>
|
|
124 |
interfree_aux(Some (AnnCond2 r b c), q, Some a)"
|
|
125 |
apply(simp add: interfree_aux_def)
|
|
126 |
by force
|
|
127 |
|
|
128 |
lemma AnnWhile_assertions:
|
|
129 |
"\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(None, i, Some a);
|
|
130 |
interfree_aux(Some c, q, Some a)\<rbrakk>\<Longrightarrow>
|
|
131 |
interfree_aux(Some (AnnWhile r b i c), q, Some a)"
|
|
132 |
apply(simp add: interfree_aux_def)
|
|
133 |
by force
|
|
134 |
|
|
135 |
lemma AnnAwait_assertions:
|
|
136 |
"\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)\<rbrakk>\<Longrightarrow>
|
|
137 |
interfree_aux(Some (AnnAwait r b c), q, Some a)"
|
|
138 |
apply(simp add: interfree_aux_def)
|
|
139 |
by force
|
|
140 |
|
|
141 |
lemma AnnBasic_atomics:
|
|
142 |
"\<parallel>- (q \<inter> r) (Basic f) q \<Longrightarrow> interfree_aux(None, q, Some (AnnBasic r f))"
|
|
143 |
by(simp add: interfree_aux_def oghoare_sound)
|
|
144 |
|
|
145 |
lemma AnnSeq_atomics:
|
|
146 |
"\<lbrakk> interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)\<rbrakk>\<Longrightarrow>
|
|
147 |
interfree_aux(Any, q, Some (AnnSeq a1 a2))"
|
|
148 |
apply(simp add: interfree_aux_def)
|
|
149 |
by force
|
|
150 |
|
|
151 |
lemma AnnCond1_atomics:
|
|
152 |
"\<lbrakk> interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)\<rbrakk>\<Longrightarrow>
|
|
153 |
interfree_aux(Any, q, Some (AnnCond1 r b a1 a2))"
|
|
154 |
apply(simp add: interfree_aux_def)
|
|
155 |
by force
|
|
156 |
|
|
157 |
lemma AnnCond2_atomics:
|
|
158 |
"interfree_aux (Any, q, Some a)\<Longrightarrow> interfree_aux(Any, q, Some (AnnCond2 r b a))"
|
|
159 |
by(simp add: interfree_aux_def)
|
|
160 |
|
|
161 |
lemma AnnWhile_atomics: "interfree_aux (Any, q, Some a)
|
|
162 |
\<Longrightarrow> interfree_aux(Any, q, Some (AnnWhile r b i a))"
|
|
163 |
by(simp add: interfree_aux_def)
|
|
164 |
|
|
165 |
lemma Annatom_atomics:
|
|
166 |
"\<parallel>- (q \<inter> r) a q \<Longrightarrow> interfree_aux (None, q, Some (AnnAwait r {x. True} a))"
|
|
167 |
by(simp add: interfree_aux_def oghoare_sound)
|
|
168 |
|
|
169 |
lemma AnnAwait_atomics:
|
|
170 |
"\<parallel>- (q \<inter> (r \<inter> b)) a q \<Longrightarrow> interfree_aux (None, q, Some (AnnAwait r b a))"
|
|
171 |
by(simp add: interfree_aux_def oghoare_sound)
|
|
172 |
|
|
173 |
constdefs
|
|
174 |
interfree_swap :: "('a ann_triple_op * ('a ann_triple_op) list) \<Rightarrow> bool"
|
|
175 |
"interfree_swap == \<lambda>(x, xs). \<forall>y\<in>set xs. interfree_aux (com x, post x, com y)
|
|
176 |
\<and> interfree_aux(com y, post y, com x)"
|
|
177 |
|
|
178 |
lemma interfree_swap_Empty: "interfree_swap (x, [])"
|
|
179 |
by(simp add:interfree_swap_def)
|
|
180 |
|
|
181 |
lemma interfree_swap_List:
|
|
182 |
"\<lbrakk> interfree_aux (com x, post x, com y);
|
|
183 |
interfree_aux (com y, post y ,com x); interfree_swap (x, xs) \<rbrakk>
|
|
184 |
\<Longrightarrow> interfree_swap (x, y#xs)"
|
|
185 |
by(simp add:interfree_swap_def)
|
|
186 |
|
|
187 |
lemma interfree_swap_Map: "\<forall>k. i\<le>k \<and> k<j \<longrightarrow> interfree_aux (com x, post x, c k)
|
|
188 |
\<and> interfree_aux (c k, Q k, com x)
|
15425
|
189 |
\<Longrightarrow> interfree_swap (x, map (\<lambda>k. (c k, Q k)) [i..<j])"
|
13020
|
190 |
by(force simp add: interfree_swap_def less_diff_conv)
|
|
191 |
|
|
192 |
lemma interfree_Empty: "interfree []"
|
|
193 |
by(simp add:interfree_def)
|
|
194 |
|
|
195 |
lemma interfree_List:
|
|
196 |
"\<lbrakk> interfree_swap(x, xs); interfree xs \<rbrakk> \<Longrightarrow> interfree (x#xs)"
|
|
197 |
apply(simp add:interfree_def interfree_swap_def)
|
|
198 |
apply clarify
|
|
199 |
apply(case_tac i)
|
|
200 |
apply(case_tac j)
|
|
201 |
apply simp_all
|
|
202 |
apply(case_tac j,simp+)
|
|
203 |
done
|
|
204 |
|
|
205 |
lemma interfree_Map:
|
|
206 |
"(\<forall>i j. a\<le>i \<and> i<b \<and> a\<le>j \<and> j<b \<and> i\<noteq>j \<longrightarrow> interfree_aux (c i, Q i, c j))
|
15425
|
207 |
\<Longrightarrow> interfree (map (\<lambda>k. (c k, Q k)) [a..<b])"
|
13020
|
208 |
by(force simp add: interfree_def less_diff_conv)
|
|
209 |
|
|
210 |
constdefs map_ann_hoare :: "(('a ann_com_op * 'a assn) list) \<Rightarrow> bool " ("[\<turnstile>] _" [0] 45)
|
|
211 |
"[\<turnstile>] Ts == (\<forall>i<length Ts. \<exists>c q. Ts!i=(Some c, q) \<and> \<turnstile> c q)"
|
|
212 |
|
|
213 |
lemma MapAnnEmpty: "[\<turnstile>] []"
|
|
214 |
by(simp add:map_ann_hoare_def)
|
|
215 |
|
|
216 |
lemma MapAnnList: "\<lbrakk> \<turnstile> c q ; [\<turnstile>] xs \<rbrakk> \<Longrightarrow> [\<turnstile>] (Some c,q)#xs"
|
|
217 |
apply(simp add:map_ann_hoare_def)
|
|
218 |
apply clarify
|
|
219 |
apply(case_tac i,simp+)
|
|
220 |
done
|
|
221 |
|
|
222 |
lemma MapAnnMap:
|
15425
|
223 |
"\<forall>k. i\<le>k \<and> k<j \<longrightarrow> \<turnstile> (c k) (Q k) \<Longrightarrow> [\<turnstile>] map (\<lambda>k. (Some (c k), Q k)) [i..<j]"
|
13020
|
224 |
apply(simp add: map_ann_hoare_def less_diff_conv)
|
|
225 |
done
|
|
226 |
|
|
227 |
lemma ParallelRule:"\<lbrakk> [\<turnstile>] Ts ; interfree Ts \<rbrakk>
|
|
228 |
\<Longrightarrow> \<parallel>- (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts!i))))
|
|
229 |
Parallel Ts
|
|
230 |
(\<Inter>i\<in>{i. i<length Ts}. post(Ts!i))"
|
|
231 |
apply(rule Parallel)
|
|
232 |
apply(simp add:map_ann_hoare_def)
|
|
233 |
apply simp
|
|
234 |
done
|
|
235 |
(*
|
|
236 |
lemma ParamParallelRule:
|
|
237 |
"\<lbrakk> \<forall>k<n. \<turnstile> (c k) (Q k);
|
|
238 |
\<forall>k l. k<n \<and> l<n \<and> k\<noteq>l \<longrightarrow> interfree_aux (Some(c k), Q k, Some(c l)) \<rbrakk>
|
|
239 |
\<Longrightarrow> \<parallel>- (\<Inter>i\<in>{i. i<n} . pre(c i)) COBEGIN SCHEME [0\<le>i<n] (c i) (Q i) COEND (\<Inter>i\<in>{i. i<n} . Q i )"
|
|
240 |
apply(rule ParallelConseqRule)
|
|
241 |
apply simp
|
|
242 |
apply clarify
|
|
243 |
apply force
|
|
244 |
apply(rule ParallelRule)
|
|
245 |
apply(rule MapAnnMap)
|
|
246 |
apply simp
|
|
247 |
apply(rule interfree_Map)
|
|
248 |
apply simp
|
|
249 |
apply simp
|
|
250 |
apply clarify
|
|
251 |
apply force
|
|
252 |
done
|
|
253 |
*)
|
|
254 |
|
|
255 |
text {* The following are some useful lemmas and simplification
|
|
256 |
tactics to control which theorems are used to simplify at each moment,
|
|
257 |
so that the original input does not suffer any unexpected
|
|
258 |
transformation. *}
|
|
259 |
|
|
260 |
lemma Compl_Collect: "-(Collect b) = {x. \<not>(b x)}"
|
|
261 |
by fast
|
|
262 |
lemma list_length: "length []=0 \<and> length (x#xs) = Suc(length xs)"
|
|
263 |
by simp
|
|
264 |
lemma list_lemmas: "length []=0 \<and> length (x#xs) = Suc(length xs)
|
|
265 |
\<and> (x#xs) ! 0=x \<and> (x#xs) ! Suc n = xs ! n"
|
|
266 |
by simp
|
|
267 |
lemma le_Suc_eq_insert: "{i. i <Suc n} = insert n {i. i< n}"
|
13187
|
268 |
by auto
|
13020
|
269 |
lemmas primrecdef_list = "pre.simps" "assertions.simps" "atomics.simps" "atom_com.simps"
|
|
270 |
lemmas my_simp_list = list_lemmas fst_conv snd_conv
|
|
271 |
not_less0 refl le_Suc_eq_insert Suc_not_Zero Zero_not_Suc Suc_Suc_eq
|
|
272 |
Collect_mem_eq ball_simps option.simps primrecdef_list
|
|
273 |
lemmas ParallelConseq_list = INTER_def Collect_conj_eq length_map length_upt length_append list_length
|
|
274 |
|
|
275 |
ML {*
|
|
276 |
val before_interfree_simp_tac = (simp_tac (HOL_basic_ss addsimps [thm "com.simps", thm "post.simps"]))
|
|
277 |
|
|
278 |
val interfree_simp_tac = (asm_simp_tac (HOL_ss addsimps [thm "split", thm "ball_Un", thm "ball_empty"]@(thms "my_simp_list")))
|
|
279 |
|
|
280 |
val ParallelConseq = (simp_tac (HOL_basic_ss addsimps (thms "ParallelConseq_list")@(thms "my_simp_list")))
|
|
281 |
*}
|
|
282 |
|
|
283 |
text {* The following tactic applies @{text tac} to each conjunct in a
|
|
284 |
subgoal of the form @{text "A \<Longrightarrow> a1 \<and> a2 \<and> .. \<and> an"} returning
|
|
285 |
@{text n} subgoals, one for each conjunct: *}
|
|
286 |
|
|
287 |
ML {*
|
|
288 |
fun conjI_Tac tac i st = st |>
|
|
289 |
( (EVERY [rtac conjI i,
|
|
290 |
conjI_Tac tac (i+1),
|
|
291 |
tac i]) ORELSE (tac i) )
|
|
292 |
*}
|
|
293 |
|
|
294 |
|
|
295 |
subsubsection {* Tactic for the generation of the verification conditions *}
|
|
296 |
|
|
297 |
text {* The tactic basically uses two subtactics:
|
|
298 |
|
|
299 |
\begin{description}
|
|
300 |
|
|
301 |
\item[HoareRuleTac] is called at the level of parallel programs, it
|
|
302 |
uses the ParallelTac to solve parallel composition of programs.
|
|
303 |
This verification has two parts, namely, (1) all component programs are
|
|
304 |
correct and (2) they are interference free. @{text HoareRuleTac} is
|
|
305 |
also called at the level of atomic regions, i.e. @{text "\<langle> \<rangle>"} and
|
|
306 |
@{text "AWAIT b THEN _ END"}, and at each interference freedom test.
|
|
307 |
|
|
308 |
\item[AnnHoareRuleTac] is for component programs which
|
|
309 |
are annotated programs and so, there are not unknown assertions
|
|
310 |
(no need to use the parameter precond, see NOTE).
|
|
311 |
|
|
312 |
NOTE: precond(::bool) informs if the subgoal has the form @{text "\<parallel>- ?p c q"},
|
|
313 |
in this case we have precond=False and the generated verification
|
|
314 |
condition would have the form @{text "?p \<subseteq> \<dots>"} which can be solved by
|
|
315 |
@{text "rtac subset_refl"}, if True we proceed to simplify it using
|
|
316 |
the simplification tactics above.
|
|
317 |
|
|
318 |
\end{description}
|
|
319 |
*}
|
|
320 |
|
|
321 |
ML {*
|
|
322 |
|
|
323 |
fun WlpTac i = (rtac (thm "SeqRule") i) THEN (HoareRuleTac false (i+1))
|
|
324 |
and HoareRuleTac precond i st = st |>
|
|
325 |
( (WlpTac i THEN HoareRuleTac precond i)
|
|
326 |
ORELSE
|
|
327 |
(FIRST[rtac (thm "SkipRule") i,
|
|
328 |
rtac (thm "BasicRule") i,
|
|
329 |
EVERY[rtac (thm "ParallelConseqRule") i,
|
|
330 |
ParallelConseq (i+2),
|
|
331 |
ParallelTac (i+1),
|
|
332 |
ParallelConseq i],
|
|
333 |
EVERY[rtac (thm "CondRule") i,
|
|
334 |
HoareRuleTac false (i+2),
|
|
335 |
HoareRuleTac false (i+1)],
|
|
336 |
EVERY[rtac (thm "WhileRule") i,
|
|
337 |
HoareRuleTac true (i+1)],
|
|
338 |
K all_tac i ]
|
|
339 |
THEN (if precond then (K all_tac i) else (rtac (thm "subset_refl") i))))
|
|
340 |
|
|
341 |
and AnnWlpTac i = (rtac (thm "AnnSeq") i) THEN (AnnHoareRuleTac (i+1))
|
|
342 |
and AnnHoareRuleTac i st = st |>
|
|
343 |
( (AnnWlpTac i THEN AnnHoareRuleTac i )
|
|
344 |
ORELSE
|
|
345 |
(FIRST[(rtac (thm "AnnskipRule") i),
|
|
346 |
EVERY[rtac (thm "AnnatomRule") i,
|
|
347 |
HoareRuleTac true (i+1)],
|
|
348 |
(rtac (thm "AnnwaitRule") i),
|
|
349 |
rtac (thm "AnnBasic") i,
|
|
350 |
EVERY[rtac (thm "AnnCond1") i,
|
|
351 |
AnnHoareRuleTac (i+3),
|
|
352 |
AnnHoareRuleTac (i+1)],
|
|
353 |
EVERY[rtac (thm "AnnCond2") i,
|
|
354 |
AnnHoareRuleTac (i+1)],
|
|
355 |
EVERY[rtac (thm "AnnWhile") i,
|
|
356 |
AnnHoareRuleTac (i+2)],
|
|
357 |
EVERY[rtac (thm "AnnAwait") i,
|
|
358 |
HoareRuleTac true (i+1)],
|
|
359 |
K all_tac i]))
|
|
360 |
|
|
361 |
and ParallelTac i = EVERY[rtac (thm "ParallelRule") i,
|
|
362 |
interfree_Tac (i+1),
|
|
363 |
MapAnn_Tac i]
|
|
364 |
|
|
365 |
and MapAnn_Tac i st = st |>
|
|
366 |
(FIRST[rtac (thm "MapAnnEmpty") i,
|
|
367 |
EVERY[rtac (thm "MapAnnList") i,
|
|
368 |
MapAnn_Tac (i+1),
|
|
369 |
AnnHoareRuleTac i],
|
|
370 |
EVERY[rtac (thm "MapAnnMap") i,
|
|
371 |
rtac (thm "allI") i,rtac (thm "impI") i,
|
|
372 |
AnnHoareRuleTac i]])
|
|
373 |
|
|
374 |
and interfree_swap_Tac i st = st |>
|
|
375 |
(FIRST[rtac (thm "interfree_swap_Empty") i,
|
|
376 |
EVERY[rtac (thm "interfree_swap_List") i,
|
|
377 |
interfree_swap_Tac (i+2),
|
|
378 |
interfree_aux_Tac (i+1),
|
|
379 |
interfree_aux_Tac i ],
|
|
380 |
EVERY[rtac (thm "interfree_swap_Map") i,
|
|
381 |
rtac (thm "allI") i,rtac (thm "impI") i,
|
|
382 |
conjI_Tac (interfree_aux_Tac) i]])
|
|
383 |
|
|
384 |
and interfree_Tac i st = st |>
|
|
385 |
(FIRST[rtac (thm "interfree_Empty") i,
|
|
386 |
EVERY[rtac (thm "interfree_List") i,
|
|
387 |
interfree_Tac (i+1),
|
|
388 |
interfree_swap_Tac i],
|
|
389 |
EVERY[rtac (thm "interfree_Map") i,
|
|
390 |
rtac (thm "allI") i,rtac (thm "allI") i,rtac (thm "impI") i,
|
|
391 |
interfree_aux_Tac i ]])
|
|
392 |
|
|
393 |
and interfree_aux_Tac i = (before_interfree_simp_tac i ) THEN
|
|
394 |
(FIRST[rtac (thm "interfree_aux_rule1") i,
|
|
395 |
dest_assertions_Tac i])
|
|
396 |
|
|
397 |
and dest_assertions_Tac i st = st |>
|
|
398 |
(FIRST[EVERY[rtac (thm "AnnBasic_assertions") i,
|
|
399 |
dest_atomics_Tac (i+1),
|
|
400 |
dest_atomics_Tac i],
|
|
401 |
EVERY[rtac (thm "AnnSeq_assertions") i,
|
|
402 |
dest_assertions_Tac (i+1),
|
|
403 |
dest_assertions_Tac i],
|
|
404 |
EVERY[rtac (thm "AnnCond1_assertions") i,
|
|
405 |
dest_assertions_Tac (i+2),
|
|
406 |
dest_assertions_Tac (i+1),
|
|
407 |
dest_atomics_Tac i],
|
|
408 |
EVERY[rtac (thm "AnnCond2_assertions") i,
|
|
409 |
dest_assertions_Tac (i+1),
|
|
410 |
dest_atomics_Tac i],
|
|
411 |
EVERY[rtac (thm "AnnWhile_assertions") i,
|
|
412 |
dest_assertions_Tac (i+2),
|
|
413 |
dest_atomics_Tac (i+1),
|
|
414 |
dest_atomics_Tac i],
|
|
415 |
EVERY[rtac (thm "AnnAwait_assertions") i,
|
|
416 |
dest_atomics_Tac (i+1),
|
|
417 |
dest_atomics_Tac i],
|
|
418 |
dest_atomics_Tac i])
|
|
419 |
|
|
420 |
and dest_atomics_Tac i st = st |>
|
|
421 |
(FIRST[EVERY[rtac (thm "AnnBasic_atomics") i,
|
|
422 |
HoareRuleTac true i],
|
|
423 |
EVERY[rtac (thm "AnnSeq_atomics") i,
|
|
424 |
dest_atomics_Tac (i+1),
|
|
425 |
dest_atomics_Tac i],
|
|
426 |
EVERY[rtac (thm "AnnCond1_atomics") i,
|
|
427 |
dest_atomics_Tac (i+1),
|
|
428 |
dest_atomics_Tac i],
|
|
429 |
EVERY[rtac (thm "AnnCond2_atomics") i,
|
|
430 |
dest_atomics_Tac i],
|
|
431 |
EVERY[rtac (thm "AnnWhile_atomics") i,
|
|
432 |
dest_atomics_Tac i],
|
|
433 |
EVERY[rtac (thm "Annatom_atomics") i,
|
|
434 |
HoareRuleTac true i],
|
|
435 |
EVERY[rtac (thm "AnnAwait_atomics") i,
|
|
436 |
HoareRuleTac true i],
|
|
437 |
K all_tac i])
|
|
438 |
*}
|
|
439 |
|
|
440 |
|
|
441 |
text {* The final tactic is given the name @{text oghoare}: *}
|
|
442 |
|
|
443 |
ML {*
|
|
444 |
fun oghoare_tac i thm = SUBGOAL (fn (term, _) =>
|
|
445 |
(HoareRuleTac true i)) i thm
|
|
446 |
*}
|
|
447 |
|
|
448 |
text {* Notice that the tactic for parallel programs @{text
|
|
449 |
"oghoare_tac"} is initially invoked with the value @{text true} for
|
|
450 |
the parameter @{text precond}.
|
|
451 |
|
|
452 |
Parts of the tactic can be also individually used to generate the
|
|
453 |
verification conditions for annotated sequential programs and to
|
|
454 |
generate verification conditions out of interference freedom tests: *}
|
|
455 |
|
|
456 |
ML {* fun annhoare_tac i thm = SUBGOAL (fn (term, _) =>
|
|
457 |
(AnnHoareRuleTac i)) i thm
|
|
458 |
|
|
459 |
fun interfree_aux_tac i thm = SUBGOAL (fn (term, _) =>
|
|
460 |
(interfree_aux_Tac i)) i thm
|
|
461 |
*}
|
|
462 |
|
|
463 |
text {* The so defined ML tactics are then ``exported'' to be used in
|
|
464 |
Isabelle proofs. *}
|
|
465 |
|
|
466 |
method_setup oghoare = {*
|
21588
|
467 |
Method.no_args (Method.SIMPLE_METHOD' oghoare_tac) *}
|
13020
|
468 |
"verification condition generator for the oghoare logic"
|
|
469 |
|
|
470 |
method_setup annhoare = {*
|
21588
|
471 |
Method.no_args (Method.SIMPLE_METHOD' annhoare_tac) *}
|
13020
|
472 |
"verification condition generator for the ann_hoare logic"
|
|
473 |
|
|
474 |
method_setup interfree_aux = {*
|
21588
|
475 |
Method.no_args (Method.SIMPLE_METHOD' interfree_aux_tac) *}
|
13020
|
476 |
"verification condition generator for interference freedom tests"
|
|
477 |
|
|
478 |
text {* Tactics useful for dealing with the generated verification conditions: *}
|
|
479 |
|
|
480 |
method_setup conjI_tac = {*
|
21588
|
481 |
Method.no_args (Method.SIMPLE_METHOD' (conjI_Tac (K all_tac))) *}
|
13020
|
482 |
"verification condition generator for interference freedom tests"
|
|
483 |
|
|
484 |
ML {*
|
|
485 |
fun disjE_Tac tac i st = st |>
|
|
486 |
( (EVERY [etac disjE i,
|
|
487 |
disjE_Tac tac (i+1),
|
|
488 |
tac i]) ORELSE (tac i) )
|
|
489 |
*}
|
|
490 |
|
|
491 |
method_setup disjE_tac = {*
|
21588
|
492 |
Method.no_args (Method.SIMPLE_METHOD' (disjE_Tac (K all_tac))) *}
|
13020
|
493 |
"verification condition generator for interference freedom tests"
|
|
494 |
|
13187
|
495 |
end
|