| author | wenzelm | 
| Sun, 26 Mar 2023 15:02:08 +0200 | |
| changeset 77714 | be0b9396604e | 
| parent 76232 | a7ccb744047b | 
| child 77811 | ae9e6218443d | 
| permissions | -rw-r--r-- | 
| 72281 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 1 | (* Author: Stefan Berghofer et al. | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 2 | *) | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 3 | |
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 4 | subsection \<open>Signed division: negative results rounded towards zero rather than minus infinity.\<close> | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 5 | |
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 6 | theory Signed_Division | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 7 | imports Main | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 8 | begin | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 9 | |
| 76232 
a7ccb744047b
syntactic type classes for signed division operators
 haftmann parents: 
76106diff
changeset | 10 | class signed_divide = | 
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 11 | fixes signed_divide :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixl \<open>sdiv\<close> 70) | 
| 76232 
a7ccb744047b
syntactic type classes for signed division operators
 haftmann parents: 
76106diff
changeset | 12 | |
| 
a7ccb744047b
syntactic type classes for signed division operators
 haftmann parents: 
76106diff
changeset | 13 | class signed_modulo = | 
| 
a7ccb744047b
syntactic type classes for signed division operators
 haftmann parents: 
76106diff
changeset | 14 | fixes signed_modulo :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixl \<open>smod\<close> 70) | 
| 
a7ccb744047b
syntactic type classes for signed division operators
 haftmann parents: 
76106diff
changeset | 15 | |
| 
a7ccb744047b
syntactic type classes for signed division operators
 haftmann parents: 
76106diff
changeset | 16 | class signed_division = comm_semiring_1_cancel + signed_divide + signed_modulo + | 
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 17 | assumes sdiv_mult_smod_eq: \<open>a sdiv b * b + a smod b = a\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 18 | begin | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 19 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 20 | lemma mult_sdiv_smod_eq: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 21 | \<open>b * (a sdiv b) + a smod b = a\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 22 | using sdiv_mult_smod_eq [of a b] by (simp add: ac_simps) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 23 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 24 | lemma smod_sdiv_mult_eq: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 25 | \<open>a smod b + a sdiv b * b = a\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 26 | using sdiv_mult_smod_eq [of a b] by (simp add: ac_simps) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 27 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 28 | lemma smod_mult_sdiv_eq: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 29 | \<open>a smod b + b * (a sdiv b) = a\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 30 | using sdiv_mult_smod_eq [of a b] by (simp add: ac_simps) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 31 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 32 | lemma minus_sdiv_mult_eq_smod: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 33 | \<open>a - a sdiv b * b = a smod b\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 34 | by (rule add_implies_diff [symmetric]) (fact smod_sdiv_mult_eq) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 35 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 36 | lemma minus_mult_sdiv_eq_smod: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 37 | \<open>a - b * (a sdiv b) = a smod b\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 38 | by (rule add_implies_diff [symmetric]) (fact smod_mult_sdiv_eq) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 39 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 40 | lemma minus_smod_eq_sdiv_mult: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 41 | \<open>a - a smod b = a sdiv b * b\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 42 | by (rule add_implies_diff [symmetric]) (fact sdiv_mult_smod_eq) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 43 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 44 | lemma minus_smod_eq_mult_sdiv: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 45 | \<open>a - a smod b = b * (a sdiv b)\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 46 | by (rule add_implies_diff [symmetric]) (fact mult_sdiv_smod_eq) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 47 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 48 | end | 
| 72281 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 49 | |
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 50 | instantiation int :: signed_division | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 51 | begin | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 52 | |
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 53 | definition signed_divide_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close> | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 54 | where \<open>k sdiv l = sgn k * sgn l * (\<bar>k\<bar> div \<bar>l\<bar>)\<close> for k l :: int | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 55 | |
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 56 | definition signed_modulo_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close> | 
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 57 | where \<open>k smod l = sgn k * (\<bar>k\<bar> mod \<bar>l\<bar>)\<close> for k l :: int | 
| 72281 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 58 | |
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 59 | instance by standard | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 60 | (simp add: signed_divide_int_def signed_modulo_int_def div_abs_eq mod_abs_eq algebra_simps) | 
| 72281 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 61 | |
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 62 | end | 
| 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 63 | |
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 64 | lemma divide_int_eq_signed_divide_int: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 65 | \<open>k div l = k sdiv l - of_bool (l \<noteq> 0 \<and> sgn k \<noteq> sgn l \<and> \<not> l dvd k)\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 66 | for k l :: int | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 67 | by (simp add: div_eq_div_abs [of k l] signed_divide_int_def) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 68 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 69 | lemma signed_divide_int_eq_divide_int: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 70 | \<open>k sdiv l = k div l + of_bool (l \<noteq> 0 \<and> sgn k \<noteq> sgn l \<and> \<not> l dvd k)\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 71 | for k l :: int | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 72 | by (simp add: divide_int_eq_signed_divide_int) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 73 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 74 | lemma modulo_int_eq_signed_modulo_int: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 75 | \<open>k mod l = k smod l + l * of_bool (sgn k \<noteq> sgn l \<and> \<not> l dvd k)\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 76 | for k l :: int | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 77 | by (simp add: mod_eq_mod_abs [of k l] signed_modulo_int_def) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 78 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 79 | lemma signed_modulo_int_eq_modulo_int: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 80 | \<open>k smod l = k mod l - l * of_bool (sgn k \<noteq> sgn l \<and> \<not> l dvd k)\<close> | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 81 | for k l :: int | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 82 | by (simp add: modulo_int_eq_signed_modulo_int) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 83 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 84 | lemma sdiv_int_div_0: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 85 | "(x :: int) sdiv 0 = 0" | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 86 | by (clarsimp simp: signed_divide_int_def) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 87 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 88 | lemma sdiv_int_0_div [simp]: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 89 | "0 sdiv (x :: int) = 0" | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 90 | by (clarsimp simp: signed_divide_int_def) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 91 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 92 | lemma smod_int_alt_def: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 93 | "(a::int) smod b = sgn (a) * (abs a mod abs b)" | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 94 | by (fact signed_modulo_int_def) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 95 | |
| 72768 | 96 | lemma int_sdiv_simps [simp]: | 
| 97 | "(a :: int) sdiv 1 = a" | |
| 98 | "(a :: int) sdiv 0 = 0" | |
| 99 | "(a :: int) sdiv -1 = -a" | |
| 100 | apply (auto simp: signed_divide_int_def sgn_if) | |
| 101 | done | |
| 102 | ||
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 103 | lemma smod_int_mod_0 [simp]: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 104 | "x smod (0 :: int) = x" | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 105 | by (clarsimp simp: signed_modulo_int_def abs_mult_sgn ac_simps) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 106 | |
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 107 | lemma smod_int_0_mod [simp]: | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 108 | "0 smod (x :: int) = 0" | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 109 | by (clarsimp simp: smod_int_alt_def) | 
| 72768 | 110 | |
| 111 | lemma sgn_sdiv_eq_sgn_mult: | |
| 112 | "a sdiv b \<noteq> 0 \<Longrightarrow> sgn ((a :: int) sdiv b) = sgn (a * b)" | |
| 113 | by (auto simp: signed_divide_int_def sgn_div_eq_sgn_mult sgn_mult) | |
| 114 | ||
| 115 | lemma int_sdiv_same_is_1 [simp]: | |
| 116 | "a \<noteq> 0 \<Longrightarrow> ((a :: int) sdiv b = a) = (b = 1)" | |
| 117 | apply (rule iffI) | |
| 118 | apply (clarsimp simp: signed_divide_int_def) | |
| 119 | apply (subgoal_tac "b > 0") | |
| 120 | apply (case_tac "a > 0") | |
| 121 | apply (clarsimp simp: sgn_if) | |
| 122 | apply (simp_all add: not_less algebra_split_simps sgn_if split: if_splits) | |
| 123 | using int_div_less_self [of a b] apply linarith | |
| 124 | apply (metis add.commute add.inverse_inverse group_cancel.rule0 int_div_less_self linorder_neqE_linordered_idom neg_0_le_iff_le not_less verit_comp_simplify1(1) zless_imp_add1_zle) | |
| 125 | apply (metis div_minus_right neg_imp_zdiv_neg_iff neg_le_0_iff_le not_less order.not_eq_order_implies_strict) | |
| 126 | apply (metis abs_le_zero_iff abs_of_nonneg neg_imp_zdiv_nonneg_iff order.not_eq_order_implies_strict) | |
| 127 | done | |
| 128 | ||
| 129 | lemma int_sdiv_negated_is_minus1 [simp]: | |
| 130 | "a \<noteq> 0 \<Longrightarrow> ((a :: int) sdiv b = - a) = (b = -1)" | |
| 131 | apply (clarsimp simp: signed_divide_int_def) | |
| 132 | apply (rule iffI) | |
| 133 | apply (subgoal_tac "b < 0") | |
| 134 | apply (case_tac "a > 0") | |
| 135 | apply (clarsimp simp: sgn_if algebra_split_simps not_less) | |
| 136 | apply (case_tac "sgn (a * b) = -1") | |
| 137 | apply (simp_all add: not_less algebra_split_simps sgn_if split: if_splits) | |
| 138 | apply (metis add.inverse_inverse int_div_less_self int_one_le_iff_zero_less less_le neg_0_less_iff_less) | |
| 139 | apply (metis add.inverse_inverse div_minus_right int_div_less_self int_one_le_iff_zero_less less_le neg_0_less_iff_less) | |
| 140 | apply (metis less_le neg_less_0_iff_less not_less pos_imp_zdiv_neg_iff) | |
| 141 | apply (metis div_minus_right dual_order.eq_iff neg_imp_zdiv_nonneg_iff neg_less_0_iff_less) | |
| 142 | done | |
| 143 | ||
| 144 | lemma sdiv_int_range: | |
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 145 |   \<open>a sdiv b \<in> {- \<bar>a\<bar>..\<bar>a\<bar>}\<close> for a b :: int
 | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 146 | using zdiv_mono2 [of \<open>\<bar>a\<bar>\<close> 1 \<open>\<bar>b\<bar>\<close>] | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 147 | by (cases \<open>b = 0\<close>; cases \<open>sgn b = sgn a\<close>) | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 148 | (auto simp add: signed_divide_int_def pos_imp_zdiv_nonneg_iff | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 149 | dest!: sgn_not_eq_imp intro: order_trans [of _ 0]) | 
| 72768 | 150 | |
| 151 | lemma smod_int_range: | |
| 75875 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 152 |   \<open>a smod b \<in> {- \<bar>b\<bar> + 1..\<bar>b\<bar> - 1}\<close>
 | 
| 
48d032035744
streamlined primitive definitions for integer division
 haftmann parents: 
74592diff
changeset | 153 | if \<open>b \<noteq> 0\<close> for a b :: int | 
| 76106 | 154 | proof - | 
| 155 | define m n where \<open>m = nat \<bar>a\<bar>\<close> \<open>n = nat \<bar>b\<bar>\<close> | |
| 156 | then have \<open>\<bar>a\<bar> = int m\<close> \<open>\<bar>b\<bar> = int n\<close> | |
| 157 | by simp_all | |
| 158 | with that have \<open>n > 0\<close> | |
| 159 | by simp | |
| 160 | with signed_modulo_int_def [of a b] \<open>\<bar>a\<bar> = int m\<close> \<open>\<bar>b\<bar> = int n\<close> | |
| 161 | show ?thesis | |
| 162 | by (auto simp add: sgn_if diff_le_eq int_one_le_iff_zero_less simp flip: of_nat_mod of_nat_diff) | |
| 163 | qed | |
| 72768 | 164 | |
| 165 | lemma smod_int_compares: | |
| 166 | "\<lbrakk> 0 \<le> a; 0 < b \<rbrakk> \<Longrightarrow> (a :: int) smod b < b" | |
| 167 | "\<lbrakk> 0 \<le> a; 0 < b \<rbrakk> \<Longrightarrow> 0 \<le> (a :: int) smod b" | |
| 168 | "\<lbrakk> a \<le> 0; 0 < b \<rbrakk> \<Longrightarrow> -b < (a :: int) smod b" | |
| 169 | "\<lbrakk> a \<le> 0; 0 < b \<rbrakk> \<Longrightarrow> (a :: int) smod b \<le> 0" | |
| 170 | "\<lbrakk> 0 \<le> a; b < 0 \<rbrakk> \<Longrightarrow> (a :: int) smod b < - b" | |
| 171 | "\<lbrakk> 0 \<le> a; b < 0 \<rbrakk> \<Longrightarrow> 0 \<le> (a :: int) smod b" | |
| 172 | "\<lbrakk> a \<le> 0; b < 0 \<rbrakk> \<Longrightarrow> (a :: int) smod b \<le> 0" | |
| 173 | "\<lbrakk> a \<le> 0; b < 0 \<rbrakk> \<Longrightarrow> b \<le> (a :: int) smod b" | |
| 174 | apply (insert smod_int_range [where a=a and b=b]) | |
| 175 | apply (auto simp: add1_zle_eq smod_int_alt_def sgn_if) | |
| 176 | done | |
| 177 | ||
| 178 | lemma smod_mod_positive: | |
| 179 | "\<lbrakk> 0 \<le> (a :: int); 0 \<le> b \<rbrakk> \<Longrightarrow> a smod b = a mod b" | |
| 180 | by (clarsimp simp: smod_int_alt_def zsgn_def) | |
| 181 | ||
| 74592 | 182 | lemma minus_sdiv_eq [simp]: | 
| 183 | \<open>- k sdiv l = - (k sdiv l)\<close> for k l :: int | |
| 184 | by (simp add: signed_divide_int_def) | |
| 185 | ||
| 186 | lemma sdiv_minus_eq [simp]: | |
| 187 | \<open>k sdiv - l = - (k sdiv l)\<close> for k l :: int | |
| 188 | by (simp add: signed_divide_int_def) | |
| 189 | ||
| 190 | lemma sdiv_int_numeral_numeral [simp]: | |
| 191 | \<open>numeral m sdiv numeral n = numeral m div (numeral n :: int)\<close> | |
| 192 | by (simp add: signed_divide_int_def) | |
| 193 | ||
| 194 | lemma minus_smod_eq [simp]: | |
| 195 | \<open>- k smod l = - (k smod l)\<close> for k l :: int | |
| 196 | by (simp add: smod_int_alt_def) | |
| 197 | ||
| 198 | lemma smod_minus_eq [simp]: | |
| 199 | \<open>k smod - l = k smod l\<close> for k l :: int | |
| 200 | by (simp add: smod_int_alt_def) | |
| 201 | ||
| 202 | lemma smod_int_numeral_numeral [simp]: | |
| 203 | \<open>numeral m smod numeral n = numeral m mod (numeral n :: int)\<close> | |
| 204 | by (simp add: smod_int_alt_def) | |
| 205 | ||
| 72281 
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
 haftmann parents: diff
changeset | 206 | end |