| 
15283
 | 
     1  | 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
  | 
| 
 | 
     2  | 
  | 
| 
3123
 | 
     3  | 
<!-- $Id$ -->
  | 
| 
15582
 | 
     4  | 
  | 
| 
 | 
     5  | 
<HTML>
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
<HEAD>
  | 
| 
 | 
     8  | 
  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  | 
| 
 | 
     9  | 
  <TITLE>HOL/ex/README</TITLE>
  | 
| 
 | 
    10  | 
</HEAD>
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
<BODY>
  | 
| 
3123
 | 
    13  | 
  | 
| 
 | 
    14  | 
<H2>ex--Miscellaneous Examples</H2>
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
<P>This directory presents a number of small examples, illustrating various
  | 
| 
 | 
    17  | 
features of Isabelle/HOL.
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
<UL> 
  | 
| 
15167
 | 
    20  | 
<LI><A HREF="Classical.thy"><KBD>Classical</KBD></A> demonstrates the power 
  | 
| 
 | 
    21  | 
of Isabelle's classical reasoner.
  | 
| 
3123
 | 
    22  | 
  | 
| 
11444
 | 
    23  | 
<LI>Files <A HREF="mesontest.ML"><KBD>mesontest.ML</KBD></A> and
  | 
| 
 | 
    24  | 
<A HREF="mesontest2.ML"><KBD>mesontest2.ML</KBD></A> present an
  | 
| 
3123
 | 
    25  | 
implementation of the Model Elimination (ME) proof procedure, which is even
  | 
| 
 | 
    26  | 
more powerful than the classical reasoner but not generic.
  | 
| 
 | 
    27  | 
  | 
| 
11444
 | 
    28  | 
<LI><A HREF="InSort.thy"><KBD>InSort</KBD></A> and <A HREF="Qsort.thy"><KBD>Qsort</KBD></A> are correctness proofs for sorting
  | 
| 
3123
 | 
    29  | 
functions.
  | 
| 
 | 
    30  | 
  | 
| 
11444
 | 
    31  | 
<LI><A HREF="Primrec.thy"><KBD>Primrec</KBD></A> proves that Ackermann's
  | 
| 
 | 
    32  | 
function is not primitive recursive.
  | 
| 
3123
 | 
    33  | 
  | 
| 
11444
 | 
    34  | 
<LI><A HREF="Tarski.thy"><KBD>Tarski</KBD></A> is a proof of Tarski's fixedpoint theorem: the full
  | 
| 
7146
 | 
    35  | 
version, which states that the fixedpoints of a complete lattice themselves
  | 
| 
 | 
    36  | 
form a complete lattice.  The example demonstrates first-class reasoning about theories.
  | 
| 
 | 
    37  | 
  | 
| 
11444
 | 
    38  | 
<LI><A HREF="NatSum.thy"><KBD>NatSum</KBD></A> demonstrates the power of permutative rewriting.
  | 
| 
3123
 | 
    39  | 
Well-known identities about summations are proved using just induction and
  | 
| 
 | 
    40  | 
rewriting.
  | 
| 
 | 
    41  | 
  | 
| 
11444
 | 
    42  | 
<LI><A HREF="MT.thy"><KBD>MT</KBD></A> is a preliminary version of Jacob Frost's coinduction
  | 
| 
3123
 | 
    43  | 
example.  The full version is on the directory <KBD>ZF/Coind</KBD>.
  | 
| 
 | 
    44  | 
</UL>
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
<HR>
  | 
| 
7146
 | 
    47  | 
<P>Last modified on $Date$
  | 
| 
3123
 | 
    48  | 
  | 
| 
 | 
    49  | 
<ADDRESS>
  | 
| 
 | 
    50  | 
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
  | 
| 
 | 
    51  | 
</ADDRESS>
  | 
| 
15582
 | 
    52  | 
</BODY>
  | 
| 
 | 
    53  | 
</HTML>
  |