src/HOL/Analysis/Convex.thy
author wenzelm
Mon, 08 Jun 2020 21:55:14 +0200
changeset 71926 bee83c9d3306
parent 71244 38457af660bc
child 72385 4a2c0eb482aa
permissions -rw-r--r--
clarified sessions;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
70086
72c52a897de2 First tranche of the Homology development: Simplices
paulson <lp15@cam.ac.uk>
parents: 69802
diff changeset
     1
(* Title:      HOL/Analysis/Convex.thy
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     2
   Author:     L C Paulson, University of Cambridge
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     3
   Author:     Robert Himmelmann, TU Muenchen
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     4
   Author:     Bogdan Grechuk, University of Edinburgh
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     5
   Author:     Armin Heller, TU Muenchen
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     6
   Author:     Johannes Hoelzl, TU Muenchen
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     7
*)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     8
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
     9
section \<open>Convex Sets and Functions\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    10
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    11
theory Convex
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    12
imports
71242
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
    13
  Affine
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    14
  "HOL-Library.Set_Algebras"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    15
begin
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    16
71044
nipkow
parents: 71040
diff changeset
    17
subsection \<open>Convex Sets\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    18
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
    19
definition\<^marker>\<open>tag important\<close> convex :: "'a::real_vector set \<Rightarrow> bool"
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    20
  where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    21
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    22
lemma convexI:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    23
  assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    24
  shows "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    25
  using assms unfolding convex_def by fast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    26
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    27
lemma convexD:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    28
  assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    29
  shows "u *\<^sub>R x + v *\<^sub>R y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    30
  using assms unfolding convex_def by fast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    31
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    32
lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    33
  (is "_ \<longleftrightarrow> ?alt")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    34
proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    35
  show "convex s" if alt: ?alt
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    36
  proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    37
    {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    38
      fix x y and u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    39
      assume mem: "x \<in> s" "y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    40
      assume "0 \<le> u" "0 \<le> v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    41
      moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    42
      assume "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    43
      then have "u = 1 - v" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    44
      ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    45
        using alt [rule_format, OF mem] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    46
    }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    47
    then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    48
      unfolding convex_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    49
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    50
  show ?alt if "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    51
    using that by (auto simp: convex_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    52
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    53
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    54
lemma convexD_alt:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    55
  assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    56
  shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    57
  using assms unfolding convex_alt by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    58
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    59
lemma mem_convex_alt:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    60
  assumes "convex S" "x \<in> S" "y \<in> S" "u \<ge> 0" "v \<ge> 0" "u + v > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    61
  shows "((u/(u+v)) *\<^sub>R x + (v/(u+v)) *\<^sub>R y) \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    62
  apply (rule convexD)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    63
  using assms
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    64
       apply (simp_all add: zero_le_divide_iff add_divide_distrib [symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    65
  done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    66
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    67
lemma convex_empty[intro,simp]: "convex {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    68
  unfolding convex_def by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    69
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    70
lemma convex_singleton[intro,simp]: "convex {a}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    71
  unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    72
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    73
lemma convex_UNIV[intro,simp]: "convex UNIV"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    74
  unfolding convex_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    75
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    76
lemma convex_Inter: "(\<And>s. s\<in>f \<Longrightarrow> convex s) \<Longrightarrow> convex(\<Inter>f)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    77
  unfolding convex_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    78
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    79
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    80
  unfolding convex_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    81
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    82
lemma convex_INT: "(\<And>i. i \<in> A \<Longrightarrow> convex (B i)) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    83
  unfolding convex_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    84
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    85
lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    86
  unfolding convex_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    87
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    88
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    89
  unfolding convex_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    90
  by (auto simp: inner_add intro!: convex_bound_le)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    91
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    92
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    93
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    94
  have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    95
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    96
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    97
    unfolding * using convex_halfspace_le[of "-a" "-b"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    98
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
    99
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   100
lemma convex_halfspace_abs_le: "convex {x. \<bar>inner a x\<bar> \<le> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   101
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   102
  have *: "{x. \<bar>inner a x\<bar> \<le> b} = {x. inner a x \<le> b} \<inter> {x. -b \<le> inner a x}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   103
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   104
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   105
    unfolding * by (simp add: convex_Int convex_halfspace_ge convex_halfspace_le)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   106
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   107
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   108
lemma convex_hyperplane: "convex {x. inner a x = b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   109
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   110
  have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   111
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   112
  show ?thesis using convex_halfspace_le convex_halfspace_ge
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   113
    by (auto intro!: convex_Int simp: *)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   114
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   115
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   116
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   117
  unfolding convex_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   118
  by (auto simp: convex_bound_lt inner_add)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   119
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   120
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   121
  using convex_halfspace_lt[of "-a" "-b"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   122
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   123
lemma convex_halfspace_Re_ge: "convex {x. Re x \<ge> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   124
  using convex_halfspace_ge[of b "1::complex"] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   125
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   126
lemma convex_halfspace_Re_le: "convex {x. Re x \<le> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   127
  using convex_halfspace_le[of "1::complex" b] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   128
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   129
lemma convex_halfspace_Im_ge: "convex {x. Im x \<ge> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   130
  using convex_halfspace_ge[of b \<i>] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   131
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   132
lemma convex_halfspace_Im_le: "convex {x. Im x \<le> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   133
  using convex_halfspace_le[of \<i> b] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   134
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   135
lemma convex_halfspace_Re_gt: "convex {x. Re x > b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   136
  using convex_halfspace_gt[of b "1::complex"] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   137
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   138
lemma convex_halfspace_Re_lt: "convex {x. Re x < b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   139
  using convex_halfspace_lt[of "1::complex" b] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   140
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   141
lemma convex_halfspace_Im_gt: "convex {x. Im x > b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   142
  using convex_halfspace_gt[of b \<i>] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   143
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   144
lemma convex_halfspace_Im_lt: "convex {x. Im x < b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   145
  using convex_halfspace_lt[of \<i> b] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   146
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   147
lemma convex_real_interval [iff]:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   148
  fixes a b :: "real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   149
  shows "convex {a..}" and "convex {..b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   150
    and "convex {a<..}" and "convex {..<b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   151
    and "convex {a..b}" and "convex {a<..b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   152
    and "convex {a..<b}" and "convex {a<..<b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   153
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   154
  have "{a..} = {x. a \<le> inner 1 x}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   155
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   156
  then show 1: "convex {a..}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   157
    by (simp only: convex_halfspace_ge)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   158
  have "{..b} = {x. inner 1 x \<le> b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   159
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   160
  then show 2: "convex {..b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   161
    by (simp only: convex_halfspace_le)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   162
  have "{a<..} = {x. a < inner 1 x}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   163
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   164
  then show 3: "convex {a<..}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   165
    by (simp only: convex_halfspace_gt)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   166
  have "{..<b} = {x. inner 1 x < b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   167
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   168
  then show 4: "convex {..<b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   169
    by (simp only: convex_halfspace_lt)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   170
  have "{a..b} = {a..} \<inter> {..b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   171
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   172
  then show "convex {a..b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   173
    by (simp only: convex_Int 1 2)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   174
  have "{a<..b} = {a<..} \<inter> {..b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   175
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   176
  then show "convex {a<..b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   177
    by (simp only: convex_Int 3 2)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   178
  have "{a..<b} = {a..} \<inter> {..<b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   179
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   180
  then show "convex {a..<b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   181
    by (simp only: convex_Int 1 4)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   182
  have "{a<..<b} = {a<..} \<inter> {..<b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   183
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   184
  then show "convex {a<..<b}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   185
    by (simp only: convex_Int 3 4)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   186
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   187
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   188
lemma convex_Reals: "convex \<real>"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   189
  by (simp add: convex_def scaleR_conv_of_real)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   190
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   191
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
   192
subsection\<^marker>\<open>tag unimportant\<close> \<open>Explicit expressions for convexity in terms of arbitrary sums\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   193
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   194
lemma convex_sum:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   195
  fixes C :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   196
  assumes "finite s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   197
    and "convex C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   198
    and "(\<Sum> i \<in> s. a i) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   199
  assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   200
    and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   201
  shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   202
  using assms(1,3,4,5)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   203
proof (induct arbitrary: a set: finite)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   204
  case empty
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   205
  then show ?case by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   206
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   207
  case (insert i s) note IH = this(3)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   208
  have "a i + sum a s = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   209
    and "0 \<le> a i"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   210
    and "\<forall>j\<in>s. 0 \<le> a j"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   211
    and "y i \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   212
    and "\<forall>j\<in>s. y j \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   213
    using insert.hyps(1,2) insert.prems by simp_all
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   214
  then have "0 \<le> sum a s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   215
    by (simp add: sum_nonneg)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   216
  have "a i *\<^sub>R y i + (\<Sum>j\<in>s. a j *\<^sub>R y j) \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   217
  proof (cases "sum a s = 0")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   218
    case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   219
    with \<open>a i + sum a s = 1\<close> have "a i = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   220
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   221
    from sum_nonneg_0 [OF \<open>finite s\<close> _ True] \<open>\<forall>j\<in>s. 0 \<le> a j\<close> have "\<forall>j\<in>s. a j = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   222
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   223
    show ?thesis using \<open>a i = 1\<close> and \<open>\<forall>j\<in>s. a j = 0\<close> and \<open>y i \<in> C\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   224
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   225
  next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   226
    case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   227
    with \<open>0 \<le> sum a s\<close> have "0 < sum a s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   228
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   229
    then have "(\<Sum>j\<in>s. (a j / sum a s) *\<^sub>R y j) \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   230
      using \<open>\<forall>j\<in>s. 0 \<le> a j\<close> and \<open>\<forall>j\<in>s. y j \<in> C\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   231
      by (simp add: IH sum_divide_distrib [symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   232
    from \<open>convex C\<close> and \<open>y i \<in> C\<close> and this and \<open>0 \<le> a i\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   233
      and \<open>0 \<le> sum a s\<close> and \<open>a i + sum a s = 1\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   234
    have "a i *\<^sub>R y i + sum a s *\<^sub>R (\<Sum>j\<in>s. (a j / sum a s) *\<^sub>R y j) \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   235
      by (rule convexD)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   236
    then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   237
      by (simp add: scaleR_sum_right False)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   238
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   239
  then show ?case using \<open>finite s\<close> and \<open>i \<notin> s\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   240
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   241
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   242
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   243
lemma convex:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   244
  "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (sum u {1..k} = 1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   245
      \<longrightarrow> sum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   246
proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   247
  fix k :: nat
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   248
  fix u :: "nat \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   249
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   250
  assume "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   251
    "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   252
    "sum u {1..k} = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   253
  with convex_sum[of "{1 .. k}" s] show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   254
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   255
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   256
  assume *: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> sum u {1..k} = 1
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   257
    \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   258
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   259
    fix \<mu> :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   260
    fix x y :: 'a
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   261
    assume xy: "x \<in> s" "y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   262
    assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   263
    let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   264
    let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   265
    have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   266
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   267
    then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   268
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   269
    then have "sum ?u {1 .. 2} = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   270
      using sum.If_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   271
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   272
    with *[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   273
      using mu xy by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   274
    have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
70097
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 70086
diff changeset
   275
      using sum.atLeast_Suc_atMost[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 70086
diff changeset
   276
    from sum.atLeast_Suc_atMost[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this]
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   277
    have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   278
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   279
    then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   280
      using s by (auto simp: add.commute)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   281
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   282
  then show "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   283
    unfolding convex_alt by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   284
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   285
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   286
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   287
lemma convex_explicit:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   288
  fixes s :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   289
  shows "convex s \<longleftrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   290
    (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> sum u t = 1 \<longrightarrow> sum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   291
proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   292
  fix t
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   293
  fix u :: "'a \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   294
  assume "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   295
    and "finite t"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   296
    and "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "sum u t = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   297
  then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   298
    using convex_sum[of t s u "\<lambda> x. x"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   299
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   300
  assume *: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   301
    sum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   302
  show "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   303
    unfolding convex_alt
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   304
  proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   305
    fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   306
    fix \<mu> :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   307
    assume **: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   308
    show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   309
    proof (cases "x = y")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   310
      case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   311
      then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   312
        using *[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"] **
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   313
        by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   314
    next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   315
      case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   316
      then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   317
        using *[rule_format, of "{x, y}" "\<lambda> z. 1"] **
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   318
        by (auto simp: field_simps real_vector.scale_left_diff_distrib)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   319
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   320
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   321
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   322
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   323
lemma convex_finite:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   324
  assumes "finite s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   325
  shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> sum u s = 1 \<longrightarrow> sum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   326
  unfolding convex_explicit
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   327
  apply safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   328
  subgoal for u by (erule allE [where x=s], erule allE [where x=u]) auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   329
  subgoal for t u
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   330
  proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   331
    have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   332
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   333
    assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> sum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   334
    assume *: "\<forall>x\<in>t. 0 \<le> u x" "sum u t = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   335
    assume "t \<subseteq> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   336
    then have "s \<inter> t = t" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   337
    with sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] * show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   338
      by (auto simp: assms sum.If_cases if_distrib if_distrib_arg)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   339
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   340
  done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   341
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   342
71044
nipkow
parents: 71040
diff changeset
   343
subsection \<open>Convex Functions on a Set\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   344
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
   345
definition\<^marker>\<open>tag important\<close> convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   346
  where "convex_on s f \<longleftrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   347
    (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   348
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   349
lemma convex_onI [intro?]:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   350
  assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   351
    f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   352
  shows "convex_on A f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   353
  unfolding convex_on_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   354
proof clarify
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   355
  fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   356
  fix u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   357
  assume A: "x \<in> A" "y \<in> A" "u \<ge> 0" "v \<ge> 0" "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   358
  from A(5) have [simp]: "v = 1 - u"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   359
    by (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   360
  from A(1-4) show "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   361
    using assms[of u y x]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   362
    by (cases "u = 0 \<or> u = 1") (auto simp: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   363
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   364
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   365
lemma convex_on_linorderI [intro?]:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   366
  fixes A :: "('a::{linorder,real_vector}) set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   367
  assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x < y \<Longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   368
    f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   369
  shows "convex_on A f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   370
proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   371
  fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   372
  fix t :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   373
  assume A: "x \<in> A" "y \<in> A" "t > 0" "t < 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   374
  with assms [of t x y] assms [of "1 - t" y x]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   375
  show "f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   376
    by (cases x y rule: linorder_cases) (auto simp: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   377
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   378
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   379
lemma convex_onD:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   380
  assumes "convex_on A f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   381
  shows "\<And>t x y. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   382
    f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   383
  using assms by (auto simp: convex_on_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   384
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   385
lemma convex_onD_Icc:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   386
  assumes "convex_on {x..y} f" "x \<le> (y :: _ :: {real_vector,preorder})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   387
  shows "\<And>t. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   388
    f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   389
  using assms(2) by (intro convex_onD [OF assms(1)]) simp_all
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   390
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   391
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   392
  unfolding convex_on_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   393
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   394
lemma convex_on_add [intro]:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   395
  assumes "convex_on s f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   396
    and "convex_on s g"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   397
  shows "convex_on s (\<lambda>x. f x + g x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   398
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   399
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   400
    fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   401
    assume "x \<in> s" "y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   402
    moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   403
    fix u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   404
    assume "0 \<le> u" "0 \<le> v" "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   405
    ultimately
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   406
    have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   407
      using assms unfolding convex_on_def by (auto simp: add_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   408
    then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   409
      by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   410
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   411
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   412
    unfolding convex_on_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   413
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   414
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   415
lemma convex_on_cmul [intro]:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   416
  fixes c :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   417
  assumes "0 \<le> c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   418
    and "convex_on s f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   419
  shows "convex_on s (\<lambda>x. c * f x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   420
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   421
  have *: "u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   422
    for u c fx v fy :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   423
    by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   424
  show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   425
    unfolding convex_on_def and * by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   426
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   427
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   428
lemma convex_lower:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   429
  assumes "convex_on s f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   430
    and "x \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   431
    and "y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   432
    and "0 \<le> u"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   433
    and "0 \<le> v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   434
    and "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   435
  shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   436
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   437
  let ?m = "max (f x) (f y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   438
  have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   439
    using assms(4,5) by (auto simp: mult_left_mono add_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   440
  also have "\<dots> = max (f x) (f y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   441
    using assms(6) by (simp add: distrib_right [symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   442
  finally show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   443
    using assms unfolding convex_on_def by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   444
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   445
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   446
lemma convex_on_dist [intro]:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   447
  fixes s :: "'a::real_normed_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   448
  shows "convex_on s (\<lambda>x. dist a x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   449
proof (auto simp: convex_on_def dist_norm)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   450
  fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   451
  assume "x \<in> s" "y \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   452
  fix u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   453
  assume "0 \<le> u"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   454
  assume "0 \<le> v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   455
  assume "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   456
  have "a = u *\<^sub>R a + v *\<^sub>R a"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   457
    unfolding scaleR_left_distrib[symmetric] and \<open>u + v = 1\<close> by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   458
  then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   459
    by (auto simp: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   460
  show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   461
    unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   462
    using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   463
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   464
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   465
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
   466
subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetic operations on sets preserve convexity\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   467
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   468
lemma convex_linear_image:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   469
  assumes "linear f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   470
    and "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   471
  shows "convex (f ` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   472
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   473
  interpret f: linear f by fact
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   474
  from \<open>convex s\<close> show "convex (f ` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   475
    by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   476
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   477
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   478
lemma convex_linear_vimage:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   479
  assumes "linear f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   480
    and "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   481
  shows "convex (f -` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   482
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   483
  interpret f: linear f by fact
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   484
  from \<open>convex s\<close> show "convex (f -` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   485
    by (simp add: convex_def f.add f.scaleR)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   486
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   487
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   488
lemma convex_scaling:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   489
  assumes "convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   490
  shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   491
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   492
  have "linear (\<lambda>x. c *\<^sub>R x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   493
    by (simp add: linearI scaleR_add_right)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   494
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   495
    using \<open>convex s\<close> by (rule convex_linear_image)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   496
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   497
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   498
lemma convex_scaled:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   499
  assumes "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   500
  shows "convex ((\<lambda>x. x *\<^sub>R c) ` S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   501
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   502
  have "linear (\<lambda>x. x *\<^sub>R c)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   503
    by (simp add: linearI scaleR_add_left)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   504
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   505
    using \<open>convex S\<close> by (rule convex_linear_image)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   506
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   507
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   508
lemma convex_negations:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   509
  assumes "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   510
  shows "convex ((\<lambda>x. - x) ` S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   511
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   512
  have "linear (\<lambda>x. - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   513
    by (simp add: linearI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   514
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   515
    using \<open>convex S\<close> by (rule convex_linear_image)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   516
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   517
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   518
lemma convex_sums:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   519
  assumes "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   520
    and "convex T"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   521
  shows "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   522
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   523
  have "linear (\<lambda>(x, y). x + y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   524
    by (auto intro: linearI simp: scaleR_add_right)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   525
  with assms have "convex ((\<lambda>(x, y). x + y) ` (S \<times> T))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   526
    by (intro convex_linear_image convex_Times)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   527
  also have "((\<lambda>(x, y). x + y) ` (S \<times> T)) = (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   528
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   529
  finally show ?thesis .
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   530
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   531
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   532
lemma convex_differences:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   533
  assumes "convex S" "convex T"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   534
  shows "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x - y})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   535
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   536
  have "{x - y| x y. x \<in> S \<and> y \<in> T} = {x + y |x y. x \<in> S \<and> y \<in> uminus ` T}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   537
    by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   538
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   539
    using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   540
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   541
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   542
lemma convex_translation:
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
   543
  "convex ((+) a ` S)" if "convex S"
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   544
proof -
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
   545
  have "(\<Union> x\<in> {a}. \<Union>y \<in> S. {x + y}) = (+) a ` S"
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   546
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   547
  then show ?thesis
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
   548
    using convex_sums [OF convex_singleton [of a] that] by auto
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   549
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   550
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
   551
lemma convex_translation_subtract:
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
   552
  "convex ((\<lambda>b. b - a) ` S)" if "convex S"
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
   553
  using convex_translation [of S "- a"] that by (simp cong: image_cong_simp)
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
   554
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   555
lemma convex_affinity:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   556
  assumes "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   557
  shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   558
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   559
  have "(\<lambda>x. a + c *\<^sub>R x) ` S = (+) a ` (*\<^sub>R) c ` S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   560
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   561
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   562
    using convex_translation[OF convex_scaling[OF assms], of a c] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   563
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   564
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   565
lemma convex_on_sum:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   566
  fixes a :: "'a \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   567
    and y :: "'a \<Rightarrow> 'b::real_vector"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   568
    and f :: "'b \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   569
  assumes "finite s" "s \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   570
    and "convex_on C f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   571
    and "convex C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   572
    and "(\<Sum> i \<in> s. a i) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   573
    and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   574
    and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   575
  shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   576
  using assms
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   577
proof (induct s arbitrary: a rule: finite_ne_induct)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   578
  case (singleton i)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   579
  then have ai: "a i = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   580
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   581
  then show ?case
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   582
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   583
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   584
  case (insert i s)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   585
  then have "convex_on C f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   586
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   587
  from this[unfolded convex_on_def, rule_format]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   588
  have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 \<Longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   589
      f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   590
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   591
  show ?case
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   592
  proof (cases "a i = 1")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   593
    case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   594
    then have "(\<Sum> j \<in> s. a j) = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   595
      using insert by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   596
    then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   597
      using insert by (fastforce simp: sum_nonneg_eq_0_iff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   598
    then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   599
      using insert by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   600
  next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   601
    case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   602
    from insert have yai: "y i \<in> C" "a i \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   603
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   604
    have fis: "finite (insert i s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   605
      using insert by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   606
    then have ai1: "a i \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   607
      using sum_nonneg_leq_bound[of "insert i s" a] insert by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   608
    then have "a i < 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   609
      using False by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   610
    then have i0: "1 - a i > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   611
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   612
    let ?a = "\<lambda>j. a j / (1 - a i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   613
    have a_nonneg: "?a j \<ge> 0" if "j \<in> s" for j
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   614
      using i0 insert that by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   615
    have "(\<Sum> j \<in> insert i s. a j) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   616
      using insert by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   617
    then have "(\<Sum> j \<in> s. a j) = 1 - a i"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   618
      using sum.insert insert by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   619
    then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   620
      using i0 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   621
    then have a1: "(\<Sum> j \<in> s. ?a j) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   622
      unfolding sum_divide_distrib by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   623
    have "convex C" using insert by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   624
    then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   625
      using insert convex_sum [OF \<open>finite s\<close> \<open>convex C\<close> a1 a_nonneg] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   626
    have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   627
      using a_nonneg a1 insert by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   628
    have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   629
      using sum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF \<open>finite s\<close> \<open>i \<notin> s\<close>] insert
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   630
      by (auto simp only: add.commute)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   631
    also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   632
      using i0 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   633
    also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   634
      using scaleR_right.sum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   635
      by (auto simp: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   636
    also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   637
      by (auto simp: divide_inverse)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   638
    also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   639
      using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   640
      by (auto simp: add.commute)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   641
    also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   642
      using add_right_mono [OF mult_left_mono [of _ _ "1 - a i",
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   643
            OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   644
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   645
    also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   646
      unfolding sum_distrib_left[of "1 - a i" "\<lambda> j. ?a j * f (y j)"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   647
      using i0 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   648
    also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   649
      using i0 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   650
    also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   651
      using insert by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   652
    finally show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   653
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   654
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   655
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   656
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   657
lemma convex_on_alt:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   658
  fixes C :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   659
  assumes "convex C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   660
  shows "convex_on C f \<longleftrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   661
    (\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   662
      f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   663
proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   664
  fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   665
  fix \<mu> :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   666
  assume *: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   667
  from this[unfolded convex_on_def, rule_format]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   668
  have "0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" for u v
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   669
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   670
  from this [of "\<mu>" "1 - \<mu>", simplified] *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   671
  show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   672
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   673
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   674
  assume *: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   675
    f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   676
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   677
    fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   678
    fix u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   679
    assume **: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   680
    then have[simp]: "1 - u = v" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   681
    from *[rule_format, of x y u]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   682
    have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   683
      using ** by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   684
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   685
  then show "convex_on C f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   686
    unfolding convex_on_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   687
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   688
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   689
lemma convex_on_diff:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   690
  fixes f :: "real \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   691
  assumes f: "convex_on I f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   692
    and I: "x \<in> I" "y \<in> I"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   693
    and t: "x < t" "t < y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   694
  shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   695
    and "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   696
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   697
  define a where "a \<equiv> (t - y) / (x - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   698
  with t have "0 \<le> a" "0 \<le> 1 - a"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   699
    by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   700
  with f \<open>x \<in> I\<close> \<open>y \<in> I\<close> have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   701
    by (auto simp: convex_on_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   702
  have "a * x + (1 - a) * y = a * (x - y) + y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   703
    by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   704
  also have "\<dots> = t"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   705
    unfolding a_def using \<open>x < t\<close> \<open>t < y\<close> by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   706
  finally have "f t \<le> a * f x + (1 - a) * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   707
    using cvx by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   708
  also have "\<dots> = a * (f x - f y) + f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   709
    by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   710
  finally have "f t - f y \<le> a * (f x - f y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   711
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   712
  with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   713
    by (simp add: le_divide_eq divide_le_eq field_simps a_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   714
  with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   715
    by (simp add: le_divide_eq divide_le_eq field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   716
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   717
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   718
lemma pos_convex_function:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   719
  fixes f :: "real \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   720
  assumes "convex C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   721
    and leq: "\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> f' x * (y - x) \<le> f y - f x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   722
  shows "convex_on C f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   723
  unfolding convex_on_alt[OF assms(1)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   724
  using assms
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   725
proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   726
  fix x y \<mu> :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   727
  let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   728
  assume *: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   729
  then have "1 - \<mu> \<ge> 0" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   730
  then have xpos: "?x \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   731
    using * unfolding convex_alt by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   732
  have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) \<ge>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   733
      \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   734
    using add_mono [OF mult_left_mono [OF leq [OF xpos *(2)] \<open>\<mu> \<ge> 0\<close>]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   735
        mult_left_mono [OF leq [OF xpos *(3)] \<open>1 - \<mu> \<ge> 0\<close>]]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   736
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   737
  then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   738
    by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   739
  then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   740
    using convex_on_alt by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   741
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   742
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   743
lemma atMostAtLeast_subset_convex:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   744
  fixes C :: "real set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   745
  assumes "convex C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   746
    and "x \<in> C" "y \<in> C" "x < y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   747
  shows "{x .. y} \<subseteq> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   748
proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   749
  fix z assume z: "z \<in> {x .. y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   750
  have less: "z \<in> C" if *: "x < z" "z < y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   751
  proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   752
    let ?\<mu> = "(y - z) / (y - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   753
    have "0 \<le> ?\<mu>" "?\<mu> \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   754
      using assms * by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   755
    then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   756
      using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   757
      by (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   758
    have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   759
      by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   760
    also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   761
      using assms by (simp only: add_divide_distrib) (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   762
    also have "\<dots> = z"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   763
      using assms by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   764
    finally show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   765
      using comb by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   766
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   767
  show "z \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   768
    using z less assms by (auto simp: le_less)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   769
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   770
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   771
lemma f''_imp_f':
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   772
  fixes f :: "real \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   773
  assumes "convex C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   774
    and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   775
    and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   776
    and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   777
    and x: "x \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   778
    and y: "y \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   779
  shows "f' x * (y - x) \<le> f y - f x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   780
  using assms
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   781
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   782
  have less_imp: "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   783
    if *: "x \<in> C" "y \<in> C" "y > x" for x y :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   784
  proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   785
    from * have ge: "y - x > 0" "y - x \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   786
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   787
    from * have le: "x - y < 0" "x - y \<le> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   788
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   789
    then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   790
      using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>],
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   791
          THEN f', THEN MVT2[OF \<open>x < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   792
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   793
    then have "z1 \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   794
      using atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   795
      by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   796
    from z1 have z1': "f x - f y = (x - y) * f' z1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   797
      by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   798
    obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   799
      using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>],
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   800
          THEN f'', THEN MVT2[OF \<open>x < z1\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   801
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   802
    obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   803
      using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>],
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   804
          THEN f'', THEN MVT2[OF \<open>z1 < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   805
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   806
    have "f' y - (f x - f y) / (x - y) = f' y - f' z1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   807
      using * z1' by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   808
    also have "\<dots> = (y - z1) * f'' z3"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   809
      using z3 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   810
    finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   811
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   812
    have A': "y - z1 \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   813
      using z1 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   814
    have "z3 \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   815
      using z3 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   816
      by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   817
    then have B': "f'' z3 \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   818
      using assms by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   819
    from A' B' have "(y - z1) * f'' z3 \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   820
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   821
    from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   822
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   823
    from mult_right_mono_neg[OF this le(2)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   824
    have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   825
      by (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   826
    then have "f' y * (x - y) - (f x - f y) \<le> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   827
      using le by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   828
    then have res: "f' y * (x - y) \<le> f x - f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   829
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   830
    have "(f y - f x) / (y - x) - f' x = f' z1 - f' x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   831
      using * z1 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   832
    also have "\<dots> = (z1 - x) * f'' z2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   833
      using z2 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   834
    finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   835
      by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   836
    have A: "z1 - x \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   837
      using z1 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   838
    have "z2 \<in> C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   839
      using z2 z1 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   840
      by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   841
    then have B: "f'' z2 \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   842
      using assms by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   843
    from A B have "(z1 - x) * f'' z2 \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   844
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   845
    with cool have "(f y - f x) / (y - x) - f' x \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   846
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   847
    from mult_right_mono[OF this ge(2)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   848
    have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   849
      by (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   850
    then have "f y - f x - f' x * (y - x) \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   851
      using ge by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   852
    then show "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   853
      using res by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   854
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   855
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   856
  proof (cases "x = y")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   857
    case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   858
    with x y show ?thesis by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   859
  next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   860
    case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   861
    with less_imp x y show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   862
      by (auto simp: neq_iff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   863
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   864
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   865
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   866
lemma f''_ge0_imp_convex:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   867
  fixes f :: "real \<Rightarrow> real"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   868
  assumes conv: "convex C"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   869
    and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   870
    and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   871
    and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   872
  shows "convex_on C f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   873
  using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   874
  by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   875
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   876
lemma minus_log_convex:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   877
  fixes b :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   878
  assumes "b > 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   879
  shows "convex_on {0 <..} (\<lambda> x. - log b x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   880
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   881
  have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   882
    using DERIV_log by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   883
  then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   884
    by (auto simp: DERIV_minus)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   885
  have "\<And>z::real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   886
    using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   887
  from this[THEN DERIV_cmult, of _ "- 1 / ln b"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   888
  have "\<And>z::real. z > 0 \<Longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   889
    DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   890
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   891
  then have f''0: "\<And>z::real. z > 0 \<Longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   892
    DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   893
    unfolding inverse_eq_divide by (auto simp: mult.assoc)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   894
  have f''_ge0: "\<And>z::real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   895
    using \<open>b > 1\<close> by (auto intro!: less_imp_le)
71244
38457af660bc cleaning
nipkow
parents: 71242
diff changeset
   896
  from f''_ge0_imp_convex[OF convex_real_interval(3), unfolded greaterThan_iff, OF f' f''0 f''_ge0]
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   897
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   898
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   899
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   900
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   901
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
   902
subsection\<^marker>\<open>tag unimportant\<close> \<open>Convexity of real functions\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   903
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   904
lemma convex_on_realI:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   905
  assumes "connected A"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   906
    and "\<And>x. x \<in> A \<Longrightarrow> (f has_real_derivative f' x) (at x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   907
    and "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f' x \<le> f' y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   908
  shows "convex_on A f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   909
proof (rule convex_on_linorderI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   910
  fix t x y :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   911
  assume t: "t > 0" "t < 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   912
  assume xy: "x \<in> A" "y \<in> A" "x < y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   913
  define z where "z = (1 - t) * x + t * y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   914
  with \<open>connected A\<close> and xy have ivl: "{x..y} \<subseteq> A"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   915
    using connected_contains_Icc by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   916
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   917
  from xy t have xz: "z > x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   918
    by (simp add: z_def algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   919
  have "y - z = (1 - t) * (y - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   920
    by (simp add: z_def algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   921
  also from xy t have "\<dots> > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   922
    by (intro mult_pos_pos) simp_all
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   923
  finally have yz: "z < y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   924
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   925
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   926
  from assms xz yz ivl t have "\<exists>\<xi>. \<xi> > x \<and> \<xi> < z \<and> f z - f x = (z - x) * f' \<xi>"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   927
    by (intro MVT2) (auto intro!: assms(2))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   928
  then obtain \<xi> where \<xi>: "\<xi> > x" "\<xi> < z" "f' \<xi> = (f z - f x) / (z - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   929
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   930
  from assms xz yz ivl t have "\<exists>\<eta>. \<eta> > z \<and> \<eta> < y \<and> f y - f z = (y - z) * f' \<eta>"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   931
    by (intro MVT2) (auto intro!: assms(2))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   932
  then obtain \<eta> where \<eta>: "\<eta> > z" "\<eta> < y" "f' \<eta> = (f y - f z) / (y - z)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   933
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   934
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   935
  from \<eta>(3) have "(f y - f z) / (y - z) = f' \<eta>" ..
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   936
  also from \<xi> \<eta> ivl have "\<xi> \<in> A" "\<eta> \<in> A"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   937
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   938
  with \<xi> \<eta> have "f' \<eta> \<ge> f' \<xi>"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   939
    by (intro assms(3)) auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   940
  also from \<xi>(3) have "f' \<xi> = (f z - f x) / (z - x)" .
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   941
  finally have "(f y - f z) * (z - x) \<ge> (f z - f x) * (y - z)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   942
    using xz yz by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   943
  also have "z - x = t * (y - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   944
    by (simp add: z_def algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   945
  also have "y - z = (1 - t) * (y - x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   946
    by (simp add: z_def algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   947
  finally have "(f y - f z) * t \<ge> (f z - f x) * (1 - t)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   948
    using xy by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   949
  then show "(1 - t) * f x + t * f y \<ge> f ((1 - t) *\<^sub>R x + t *\<^sub>R y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   950
    by (simp add: z_def algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   951
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   952
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   953
lemma convex_on_inverse:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   954
  assumes "A \<subseteq> {0<..}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   955
  shows "convex_on A (inverse :: real \<Rightarrow> real)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   956
proof (rule convex_on_subset[OF _ assms], intro convex_on_realI[of _ _ "\<lambda>x. -inverse (x^2)"])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   957
  fix u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   958
  assume "u \<in> {0<..}" "v \<in> {0<..}" "u \<le> v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   959
  with assms show "-inverse (u^2) \<le> -inverse (v^2)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   960
    by (intro le_imp_neg_le le_imp_inverse_le power_mono) (simp_all)
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   961
qed (insert assms, auto intro!: derivative_eq_intros simp: field_split_simps power2_eq_square)
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   962
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   963
lemma convex_onD_Icc':
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   964
  assumes "convex_on {x..y} f" "c \<in> {x..y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   965
  defines "d \<equiv> y - x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   966
  shows "f c \<le> (f y - f x) / d * (c - x) + f x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   967
proof (cases x y rule: linorder_cases)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   968
  case less
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   969
  then have d: "d > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   970
    by (simp add: d_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   971
  from assms(2) less have A: "0 \<le> (c - x) / d" "(c - x) / d \<le> 1"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   972
    by (simp_all add: d_def field_split_simps)
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   973
  have "f c = f (x + (c - x) * 1)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   974
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   975
  also from less have "1 = ((y - x) / d)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   976
    by (simp add: d_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   977
  also from d have "x + (c - x) * \<dots> = (1 - (c - x) / d) *\<^sub>R x + ((c - x) / d) *\<^sub>R y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   978
    by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   979
  also have "f \<dots> \<le> (1 - (c - x) / d) * f x + (c - x) / d * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   980
    using assms less by (intro convex_onD_Icc) simp_all
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   981
  also from d have "\<dots> = (f y - f x) / d * (c - x) + f x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   982
    by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   983
  finally show ?thesis .
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   984
qed (insert assms(2), simp_all)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   985
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   986
lemma convex_onD_Icc'':
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   987
  assumes "convex_on {x..y} f" "c \<in> {x..y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   988
  defines "d \<equiv> y - x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   989
  shows "f c \<le> (f x - f y) / d * (y - c) + f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   990
proof (cases x y rule: linorder_cases)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   991
  case less
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   992
  then have d: "d > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   993
    by (simp add: d_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   994
  from assms(2) less have A: "0 \<le> (y - c) / d" "(y - c) / d \<le> 1"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   995
    by (simp_all add: d_def field_split_simps)
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   996
  have "f c = f (y - (y - c) * 1)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   997
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   998
  also from less have "1 = ((y - x) / d)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
   999
    by (simp add: d_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1000
  also from d have "y - (y - c) * \<dots> = (1 - (1 - (y - c) / d)) *\<^sub>R x + (1 - (y - c) / d) *\<^sub>R y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1001
    by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1002
  also have "f \<dots> \<le> (1 - (1 - (y - c) / d)) * f x + (1 - (y - c) / d) * f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1003
    using assms less by (intro convex_onD_Icc) (simp_all add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1004
  also from d have "\<dots> = (f x - f y) / d * (y - c) + f y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1005
    by (simp add: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1006
  finally show ?thesis .
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1007
qed (insert assms(2), simp_all)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1008
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
  1009
lemma convex_translation_eq [simp]:
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
  1010
  "convex ((+) a ` s) \<longleftrightarrow> convex s"
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1011
  by (metis convex_translation translation_galois)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1012
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
  1013
lemma convex_translation_subtract_eq [simp]:
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
  1014
  "convex ((\<lambda>b. b - a) ` s) \<longleftrightarrow> convex s"
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
  1015
  using convex_translation_eq [of "- a"] by (simp cong: image_cong_simp)
a03a63b81f44 tuned proofs
haftmann
parents: 69619
diff changeset
  1016
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1017
lemma convex_linear_image_eq [simp]:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1018
    fixes f :: "'a::real_vector \<Rightarrow> 'b::real_vector"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1019
    shows "\<lbrakk>linear f; inj f\<rbrakk> \<Longrightarrow> convex (f ` s) \<longleftrightarrow> convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1020
    by (metis (no_types) convex_linear_image convex_linear_vimage inj_vimage_image_eq)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1021
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1022
lemma fst_snd_linear: "linear (\<lambda>(x,y). x + y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1023
  unfolding linear_iff by (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1024
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1025
lemma vector_choose_size:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1026
  assumes "0 \<le> c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1027
  obtains x :: "'a::{real_normed_vector, perfect_space}" where "norm x = c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1028
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1029
  obtain a::'a where "a \<noteq> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1030
    using UNIV_not_singleton UNIV_eq_I set_zero singletonI by fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1031
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1032
    by (rule_tac x="scaleR (c / norm a) a" in that) (simp add: assms)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1033
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1034
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1035
lemma vector_choose_dist:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1036
  assumes "0 \<le> c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1037
  obtains y :: "'a::{real_normed_vector, perfect_space}" where "dist x y = c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1038
by (metis add_diff_cancel_left' assms dist_commute dist_norm vector_choose_size)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1039
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1040
lemma sum_delta'':
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1041
  fixes s::"'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1042
  assumes "finite s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1043
  shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1044
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1045
  have *: "\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1046
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1047
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1048
    unfolding * using sum.delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1049
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1050
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1051
lemma dist_triangle_eq:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1052
  fixes x y z :: "'a::real_inner"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1053
  shows "dist x z = dist x y + dist y z \<longleftrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1054
    norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1055
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1056
  have *: "x - y + (y - z) = x - z" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1057
  show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1058
    by (auto simp:norm_minus_commute)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1059
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1060
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1061
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1062
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1063
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1064
subsection \<open>Cones\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1065
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1066
definition\<^marker>\<open>tag important\<close> cone :: "'a::real_vector set \<Rightarrow> bool"
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1067
  where "cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. c *\<^sub>R x \<in> s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1068
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1069
lemma cone_empty[intro, simp]: "cone {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1070
  unfolding cone_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1071
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1072
lemma cone_univ[intro, simp]: "cone UNIV"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1073
  unfolding cone_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1074
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1075
lemma cone_Inter[intro]: "\<forall>s\<in>f. cone s \<Longrightarrow> cone (\<Inter>f)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1076
  unfolding cone_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1077
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1078
lemma subspace_imp_cone: "subspace S \<Longrightarrow> cone S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1079
  by (simp add: cone_def subspace_scale)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1080
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1081
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1082
subsubsection \<open>Conic hull\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1083
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1084
lemma cone_cone_hull: "cone (cone hull s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1085
  unfolding hull_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1086
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1087
lemma cone_hull_eq: "cone hull s = s \<longleftrightarrow> cone s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1088
  apply (rule hull_eq)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1089
  using cone_Inter
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1090
  unfolding subset_eq
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1091
  apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1092
  done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1093
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1094
lemma mem_cone:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1095
  assumes "cone S" "x \<in> S" "c \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1096
  shows "c *\<^sub>R x \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1097
  using assms cone_def[of S] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1098
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1099
lemma cone_contains_0:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1100
  assumes "cone S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1101
  shows "S \<noteq> {} \<longleftrightarrow> 0 \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1102
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1103
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1104
    assume "S \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1105
    then obtain a where "a \<in> S" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1106
    then have "0 \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1107
      using assms mem_cone[of S a 0] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1108
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1109
  then show ?thesis by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1110
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1111
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1112
lemma cone_0: "cone {0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1113
  unfolding cone_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1114
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1115
lemma cone_Union[intro]: "(\<forall>s\<in>f. cone s) \<longrightarrow> cone (\<Union>f)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1116
  unfolding cone_def by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1117
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1118
lemma cone_iff:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1119
  assumes "S \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1120
  shows "cone S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> ((*\<^sub>R) c) ` S = S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1121
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1122
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1123
    assume "cone S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1124
    {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1125
      fix c :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1126
      assume "c > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1127
      {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1128
        fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1129
        assume "x \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1130
        then have "x \<in> ((*\<^sub>R) c) ` S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1131
          unfolding image_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1132
          using \<open>cone S\<close> \<open>c>0\<close> mem_cone[of S x "1/c"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1133
            exI[of "(\<lambda>t. t \<in> S \<and> x = c *\<^sub>R t)" "(1 / c) *\<^sub>R x"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1134
          by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1135
      }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1136
      moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1137
      {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1138
        fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1139
        assume "x \<in> ((*\<^sub>R) c) ` S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1140
        then have "x \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1141
          using \<open>cone S\<close> \<open>c > 0\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1142
          unfolding cone_def image_def \<open>c > 0\<close> by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1143
      }
69768
7e4966eaf781 proper congruence rule for image operator
haftmann
parents: 69675
diff changeset
  1144
      ultimately have "((*\<^sub>R) c) ` S = S" by blast
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1145
    }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1146
    then have "0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> ((*\<^sub>R) c) ` S = S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1147
      using \<open>cone S\<close> cone_contains_0[of S] assms by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1148
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1149
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1150
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1151
    assume a: "0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> ((*\<^sub>R) c) ` S = S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1152
    {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1153
      fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1154
      assume "x \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1155
      fix c1 :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1156
      assume "c1 \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1157
      then have "c1 = 0 \<or> c1 > 0" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1158
      then have "c1 *\<^sub>R x \<in> S" using a \<open>x \<in> S\<close> by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1159
    }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1160
    then have "cone S" unfolding cone_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1161
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1162
  ultimately show ?thesis by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1163
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1164
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1165
lemma cone_hull_empty: "cone hull {} = {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1166
  by (metis cone_empty cone_hull_eq)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1167
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1168
lemma cone_hull_empty_iff: "S = {} \<longleftrightarrow> cone hull S = {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1169
  by (metis bot_least cone_hull_empty hull_subset xtrans(5))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1170
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1171
lemma cone_hull_contains_0: "S \<noteq> {} \<longleftrightarrow> 0 \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1172
  using cone_cone_hull[of S] cone_contains_0[of "cone hull S"] cone_hull_empty_iff[of S]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1173
  by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1174
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1175
lemma mem_cone_hull:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1176
  assumes "x \<in> S" "c \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1177
  shows "c *\<^sub>R x \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1178
  by (metis assms cone_cone_hull hull_inc mem_cone)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1179
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1180
proposition cone_hull_expl: "cone hull S = {c *\<^sub>R x | c x. c \<ge> 0 \<and> x \<in> S}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1181
  (is "?lhs = ?rhs")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1182
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1183
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1184
    fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1185
    assume "x \<in> ?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1186
    then obtain cx :: real and xx where x: "x = cx *\<^sub>R xx" "cx \<ge> 0" "xx \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1187
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1188
    fix c :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1189
    assume c: "c \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1190
    then have "c *\<^sub>R x = (c * cx) *\<^sub>R xx"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1191
      using x by (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1192
    moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1193
    have "c * cx \<ge> 0" using c x by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1194
    ultimately
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1195
    have "c *\<^sub>R x \<in> ?rhs" using x by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1196
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1197
  then have "cone ?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1198
    unfolding cone_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1199
  then have "?rhs \<in> Collect cone"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1200
    unfolding mem_Collect_eq by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1201
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1202
    fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1203
    assume "x \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1204
    then have "1 *\<^sub>R x \<in> ?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1205
      apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1206
      apply (rule_tac x = 1 in exI, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1207
      done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1208
    then have "x \<in> ?rhs" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1209
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1210
  then have "S \<subseteq> ?rhs" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1211
  then have "?lhs \<subseteq> ?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1212
    using \<open>?rhs \<in> Collect cone\<close> hull_minimal[of S "?rhs" "cone"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1213
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1214
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1215
    fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1216
    assume "x \<in> ?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1217
    then obtain cx :: real and xx where x: "x = cx *\<^sub>R xx" "cx \<ge> 0" "xx \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1218
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1219
    then have "xx \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1220
      using hull_subset[of S] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1221
    then have "x \<in> ?lhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1222
      using x cone_cone_hull[of S] cone_def[of "cone hull S"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1223
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1224
  ultimately show ?thesis by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1225
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1226
71242
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1227
lemma convex_cone:
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1228
  "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)"
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1229
  (is "?lhs = ?rhs")
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1230
proof -
71242
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1231
  {
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1232
    fix x y
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1233
    assume "x\<in>s" "y\<in>s" and ?lhs
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1234
    then have "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s"
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1235
      unfolding cone_def by auto
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1236
    then have "x + y \<in> s"
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1237
      using \<open>?lhs\<close>[unfolded convex_def, THEN conjunct1]
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1238
      apply (erule_tac x="2*\<^sub>R x" in ballE)
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1239
      apply (erule_tac x="2*\<^sub>R y" in ballE)
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1240
      apply (erule_tac x="1/2" in allE, simp)
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1241
      apply (erule_tac x="1/2" in allE, auto)
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1242
      done
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1243
  }
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1244
  then show ?thesis
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1245
    unfolding convex_def cone_def by blast
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1246
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1247
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1248
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1249
subsection\<^marker>\<open>tag unimportant\<close> \<open>Connectedness of convex sets\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1250
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1251
lemma convex_connected:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1252
  fixes S :: "'a::real_normed_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1253
  assumes "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1254
  shows "connected S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1255
proof (rule connectedI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1256
  fix A B
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1257
  assume "open A" "open B" "A \<inter> B \<inter> S = {}" "S \<subseteq> A \<union> B"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1258
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1259
  assume "A \<inter> S \<noteq> {}" "B \<inter> S \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1260
  then obtain a b where a: "a \<in> A" "a \<in> S" and b: "b \<in> B" "b \<in> S" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1261
  define f where [abs_def]: "f u = u *\<^sub>R a + (1 - u) *\<^sub>R b" for u
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1262
  then have "continuous_on {0 .. 1} f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1263
    by (auto intro!: continuous_intros)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1264
  then have "connected (f ` {0 .. 1})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1265
    by (auto intro!: connected_continuous_image)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1266
  note connectedD[OF this, of A B]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1267
  moreover have "a \<in> A \<inter> f ` {0 .. 1}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1268
    using a by (auto intro!: image_eqI[of _ _ 1] simp: f_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1269
  moreover have "b \<in> B \<inter> f ` {0 .. 1}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1270
    using b by (auto intro!: image_eqI[of _ _ 0] simp: f_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1271
  moreover have "f ` {0 .. 1} \<subseteq> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1272
    using \<open>convex S\<close> a b unfolding convex_def f_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1273
  ultimately show False by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1274
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1275
71136
nipkow
parents: 71044
diff changeset
  1276
corollary%unimportant connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)"
nipkow
parents: 71044
diff changeset
  1277
by (simp add: convex_connected)
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1278
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1279
lemma convex_prod:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1280
  assumes "\<And>i. i \<in> Basis \<Longrightarrow> convex {x. P i x}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1281
  shows "convex {x. \<forall>i\<in>Basis. P i (x\<bullet>i)}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1282
  using assms unfolding convex_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1283
  by (auto simp: inner_add_left)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1284
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1285
lemma convex_positive_orthant: "convex {x::'a::euclidean_space. (\<forall>i\<in>Basis. 0 \<le> x\<bullet>i)}"
71136
nipkow
parents: 71044
diff changeset
  1286
by (rule convex_prod) (simp flip: atLeast_def)
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1287
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1288
subsection \<open>Convex hull\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1289
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1290
lemma convex_convex_hull [iff]: "convex (convex hull s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1291
  unfolding hull_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1292
  using convex_Inter[of "{t. convex t \<and> s \<subseteq> t}"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1293
  by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1294
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1295
lemma convex_hull_subset:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1296
    "s \<subseteq> convex hull t \<Longrightarrow> convex hull s \<subseteq> convex hull t"
71174
nipkow
parents: 71136
diff changeset
  1297
  by (simp add: subset_hull)
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1298
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1299
lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1300
  by (metis convex_convex_hull hull_same)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1301
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1302
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Convex hull is "preserved" by a linear function\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1303
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1304
lemma convex_hull_linear_image:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1305
  assumes f: "linear f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1306
  shows "f ` (convex hull s) = convex hull (f ` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1307
proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1308
  show "convex hull (f ` s) \<subseteq> f ` (convex hull s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1309
    by (intro hull_minimal image_mono hull_subset convex_linear_image assms convex_convex_hull)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1310
  show "f ` (convex hull s) \<subseteq> convex hull (f ` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1311
  proof (unfold image_subset_iff_subset_vimage, rule hull_minimal)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1312
    show "s \<subseteq> f -` (convex hull (f ` s))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1313
      by (fast intro: hull_inc)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1314
    show "convex (f -` (convex hull (f ` s)))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1315
      by (intro convex_linear_vimage [OF f] convex_convex_hull)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1316
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1317
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1318
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1319
lemma in_convex_hull_linear_image:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1320
  assumes "linear f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1321
    and "x \<in> convex hull s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1322
  shows "f x \<in> convex hull (f ` s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1323
  using convex_hull_linear_image[OF assms(1)] assms(2) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1324
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1325
lemma convex_hull_Times:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1326
  "convex hull (s \<times> t) = (convex hull s) \<times> (convex hull t)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1327
proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1328
  show "convex hull (s \<times> t) \<subseteq> (convex hull s) \<times> (convex hull t)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1329
    by (intro hull_minimal Sigma_mono hull_subset convex_Times convex_convex_hull)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1330
  have "(x, y) \<in> convex hull (s \<times> t)" if x: "x \<in> convex hull s" and y: "y \<in> convex hull t" for x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1331
  proof (rule hull_induct [OF x], rule hull_induct [OF y])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1332
    fix x y assume "x \<in> s" and "y \<in> t"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1333
    then show "(x, y) \<in> convex hull (s \<times> t)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1334
      by (simp add: hull_inc)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1335
  next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1336
    fix x let ?S = "((\<lambda>y. (0, y)) -` (\<lambda>p. (- x, 0) + p) ` (convex hull s \<times> t))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1337
    have "convex ?S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1338
      by (intro convex_linear_vimage convex_translation convex_convex_hull,
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1339
        simp add: linear_iff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1340
    also have "?S = {y. (x, y) \<in> convex hull (s \<times> t)}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1341
      by (auto simp: image_def Bex_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1342
    finally show "convex {y. (x, y) \<in> convex hull (s \<times> t)}" .
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1343
  next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1344
    show "convex {x. (x, y) \<in> convex hull s \<times> t}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1345
    proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1346
      fix y let ?S = "((\<lambda>x. (x, 0)) -` (\<lambda>p. (0, - y) + p) ` (convex hull s \<times> t))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1347
      have "convex ?S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1348
      by (intro convex_linear_vimage convex_translation convex_convex_hull,
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1349
        simp add: linear_iff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1350
      also have "?S = {x. (x, y) \<in> convex hull (s \<times> t)}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1351
        by (auto simp: image_def Bex_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1352
      finally show "convex {x. (x, y) \<in> convex hull (s \<times> t)}" .
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1353
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1354
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1355
  then show "(convex hull s) \<times> (convex hull t) \<subseteq> convex hull (s \<times> t)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1356
    unfolding subset_eq split_paired_Ball_Sigma by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1357
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1358
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1359
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1360
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Stepping theorems for convex hulls of finite sets\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1361
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1362
lemma convex_hull_empty[simp]: "convex hull {} = {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1363
  by (rule hull_unique) auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1364
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1365
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1366
  by (rule hull_unique) auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1367
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1368
lemma convex_hull_insert:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1369
  fixes S :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1370
  assumes "S \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1371
  shows "convex hull (insert a S) =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1372
         {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and> b \<in> (convex hull S) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1373
  (is "_ = ?hull")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1374
proof (intro equalityI hull_minimal subsetI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1375
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1376
  assume "x \<in> insert a S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1377
  then have "\<exists>u\<ge>0. \<exists>v\<ge>0. u + v = 1 \<and> (\<exists>b. b \<in> convex hull S \<and> x = u *\<^sub>R a + v *\<^sub>R b)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1378
  unfolding insert_iff
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1379
  proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1380
    assume "x = a"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1381
    then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1382
      by (rule_tac x=1 in exI) (use assms hull_subset in fastforce)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1383
  next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1384
    assume "x \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1385
    with hull_subset[of S convex] show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1386
      by force
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1387
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1388
  then show "x \<in> ?hull"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1389
    by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1390
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1391
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1392
  assume "x \<in> ?hull"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1393
  then obtain u v b where obt: "u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull S" "x = u *\<^sub>R a + v *\<^sub>R b"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1394
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1395
  have "a \<in> convex hull insert a S" "b \<in> convex hull insert a S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1396
    using hull_mono[of S "insert a S" convex] hull_mono[of "{a}" "insert a S" convex] and obt(4)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1397
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1398
  then show "x \<in> convex hull insert a S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1399
    unfolding obt(5) using obt(1-3)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1400
    by (rule convexD [OF convex_convex_hull])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1401
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1402
  show "convex ?hull"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1403
  proof (rule convexI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1404
    fix x y u v
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1405
    assume as: "(0::real) \<le> u" "0 \<le> v" "u + v = 1" and x: "x \<in> ?hull" and y: "y \<in> ?hull"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1406
    from x obtain u1 v1 b1 where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1407
      obt1: "u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull S" and xeq: "x = u1 *\<^sub>R a + v1 *\<^sub>R b1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1408
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1409
    from y obtain u2 v2 b2 where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1410
      obt2: "u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull S" and yeq: "y = u2 *\<^sub>R a + v2 *\<^sub>R b2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1411
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1412
    have *: "\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1413
      by (auto simp: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1414
    have "\<exists>b \<in> convex hull S. u *\<^sub>R x + v *\<^sub>R y =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1415
      (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1416
    proof (cases "u * v1 + v * v2 = 0")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1417
      case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1418
      have *: "\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1419
        by (auto simp: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1420
      have eq0: "u * v1 = 0" "v * v2 = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1421
        using True mult_nonneg_nonneg[OF \<open>u\<ge>0\<close> \<open>v1\<ge>0\<close>] mult_nonneg_nonneg[OF \<open>v\<ge>0\<close> \<open>v2\<ge>0\<close>]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1422
        by arith+
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1423
      then have "u * u1 + v * u2 = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1424
        using as(3) obt1(3) obt2(3) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1425
      then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1426
        using "*" eq0 as obt1(4) xeq yeq by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1427
    next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1428
      case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1429
      have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1430
        using as(3) obt1(3) obt2(3) by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1431
      also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1432
        using as(3) obt1(3) obt2(3) by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1433
      also have "\<dots> = u * v1 + v * v2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1434
        by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1435
      finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1436
      let ?b = "((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1437
      have zeroes: "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1438
        using as(1,2) obt1(1,2) obt2(1,2) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1439
      show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1440
      proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1441
        show "u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (?b - (u * u1) *\<^sub>R ?b - (v * u2) *\<^sub>R ?b)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1442
          unfolding xeq yeq * **
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1443
          using False by (auto simp: scaleR_left_distrib scaleR_right_distrib)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1444
        show "?b \<in> convex hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1445
          using False zeroes obt1(4) obt2(4)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1446
          by (auto simp: convexD [OF convex_convex_hull] scaleR_left_distrib scaleR_right_distrib  add_divide_distrib[symmetric]  zero_le_divide_iff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1447
      qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1448
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1449
    then obtain b where b: "b \<in> convex hull S" 
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1450
       "u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)" ..
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1451
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1452
    have u1: "u1 \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1453
      unfolding obt1(3)[symmetric] and not_le using obt1(2) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1454
    have u2: "u2 \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1455
      unfolding obt2(3)[symmetric] and not_le using obt2(2) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1456
    have "u1 * u + u2 * v \<le> max u1 u2 * u + max u1 u2 * v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1457
    proof (rule add_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1458
      show "u1 * u \<le> max u1 u2 * u" "u2 * v \<le> max u1 u2 * v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1459
        by (simp_all add: as mult_right_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1460
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1461
    also have "\<dots> \<le> 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1462
      unfolding distrib_left[symmetric] and as(3) using u1 u2 by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1463
    finally have le1: "u1 * u + u2 * v \<le> 1" .    
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1464
    show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1465
    proof (intro CollectI exI conjI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1466
      show "0 \<le> u * u1 + v * u2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1467
        by (simp add: as(1) as(2) obt1(1) obt2(1))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1468
      show "0 \<le> 1 - u * u1 - v * u2"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1469
        by (simp add: le1 diff_diff_add mult.commute)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1470
    qed (use b in \<open>auto simp: algebra_simps\<close>)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1471
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1472
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1473
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1474
lemma convex_hull_insert_alt:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1475
   "convex hull (insert a S) =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1476
     (if S = {} then {a}
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1477
      else {(1 - u) *\<^sub>R a + u *\<^sub>R x |x u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> convex hull S})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1478
  apply (auto simp: convex_hull_insert)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1479
  using diff_eq_eq apply fastforce
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1480
  by (metis add.group_left_neutral add_le_imp_le_diff diff_add_cancel)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1481
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1482
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Explicit expression for convex hull\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1483
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1484
proposition convex_hull_indexed:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1485
  fixes S :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1486
  shows "convex hull S =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1487
    {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> S) \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1488
                (sum u {1..k} = 1) \<and> (\<Sum>i = 1..k. u i *\<^sub>R x i) = y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1489
    (is "?xyz = ?hull")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1490
proof (rule hull_unique [OF _ convexI])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1491
  show "S \<subseteq> ?hull" 
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1492
    by (clarsimp, rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1493
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1494
  fix T
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1495
  assume "S \<subseteq> T" "convex T"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1496
  then show "?hull \<subseteq> T"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1497
    by (blast intro: convex_sum)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1498
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1499
  fix x y u v
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1500
  assume uv: "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1501
  assume xy: "x \<in> ?hull" "y \<in> ?hull"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1502
  from xy obtain k1 u1 x1 where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1503
    x [rule_format]: "\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> S" 
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1504
                      "sum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1505
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1506
  from xy obtain k2 u2 x2 where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1507
    y [rule_format]: "\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> S" 
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1508
                     "sum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1509
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1510
  have *: "\<And>P (x::'a) y s t i. (if P i then s else t) *\<^sub>R (if P i then x else y) = (if P i then s *\<^sub>R x else t *\<^sub>R y)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1511
          "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1512
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1513
  have inj: "inj_on (\<lambda>i. i + k1) {1..k2}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1514
    unfolding inj_on_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1515
  let ?uu = "\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1516
  let ?xx = "\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1517
  show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1518
  proof (intro CollectI exI conjI ballI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1519
    show "0 \<le> ?uu i" "?xx i \<in> S" if "i \<in> {1..k1+k2}" for i
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1520
      using that by (auto simp add: le_diff_conv uv(1) x(1) uv(2) y(1))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1521
    show "(\<Sum>i = 1..k1 + k2. ?uu i) = 1"  "(\<Sum>i = 1..k1 + k2. ?uu i *\<^sub>R ?xx i) = u *\<^sub>R x + v *\<^sub>R y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1522
      unfolding * sum.If_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1523
        sum.reindex[OF inj] Collect_mem_eq o_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1524
      unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_distrib_left[symmetric]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1525
      by (simp_all add: sum_distrib_left[symmetric]  x(2,3) y(2,3) uv(3))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1526
  qed 
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1527
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1528
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1529
lemma convex_hull_finite:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1530
  fixes S :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1531
  assumes "finite S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1532
  shows "convex hull S = {y. \<exists>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> sum (\<lambda>x. u x *\<^sub>R x) S = y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1533
  (is "?HULL = _")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1534
proof (rule hull_unique [OF _ convexI]; clarify)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1535
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1536
  assume "x \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1537
  then show "\<exists>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> (\<Sum>x\<in>S. u x *\<^sub>R x) = x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1538
    by (rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) (auto simp: sum.delta'[OF assms] sum_delta''[OF assms])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1539
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1540
  fix u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1541
  assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1542
  fix ux assume ux [rule_format]: "\<forall>x\<in>S. 0 \<le> ux x" "sum ux S = (1::real)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1543
  fix uy assume uy [rule_format]: "\<forall>x\<in>S. 0 \<le> uy x" "sum uy S = (1::real)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1544
  have "0 \<le> u * ux x + v * uy x" if "x\<in>S" for x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1545
    by (simp add: that uv ux(1) uy(1))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1546
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1547
  have "(\<Sum>x\<in>S. u * ux x + v * uy x) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1548
    unfolding sum.distrib and sum_distrib_left[symmetric] ux(2) uy(2)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1549
    using uv(3) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1550
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1551
  have "(\<Sum>x\<in>S. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>S. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>S. uy x *\<^sub>R x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1552
    unfolding scaleR_left_distrib sum.distrib scaleR_scaleR[symmetric] scaleR_right.sum [symmetric]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1553
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1554
  ultimately
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1555
  show "\<exists>uc. (\<forall>x\<in>S. 0 \<le> uc x) \<and> sum uc S = 1 \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1556
             (\<Sum>x\<in>S. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>S. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>S. uy x *\<^sub>R x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1557
    by (rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1558
qed (use assms in \<open>auto simp: convex_explicit\<close>)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1559
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1560
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1561
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Another formulation\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1562
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1563
text "Formalized by Lars Schewe."
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1564
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1565
lemma convex_hull_explicit:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1566
  fixes p :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1567
  shows "convex hull p =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1568
    {y. \<exists>S u. finite S \<and> S \<subseteq> p \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1569
  (is "?lhs = ?rhs")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1570
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1571
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1572
    fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1573
    assume "x\<in>?lhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1574
    then obtain k u y where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1575
        obt: "\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "sum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1576
      unfolding convex_hull_indexed by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1577
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1578
    have fin: "finite {1..k}" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1579
    have fin': "\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1580
    {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1581
      fix j
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1582
      assume "j\<in>{1..k}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1583
      then have "y j \<in> p" "0 \<le> sum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1584
        using obt(1)[THEN bspec[where x=j]] and obt(2)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1585
        apply simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1586
        apply (rule sum_nonneg)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1587
        using obt(1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1588
        apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1589
        done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1590
    }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1591
    moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1592
    have "(\<Sum>v\<in>y ` {1..k}. sum u {i \<in> {1..k}. y i = v}) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1593
      unfolding sum.image_gen[OF fin, symmetric] using obt(2) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1594
    moreover have "(\<Sum>v\<in>y ` {1..k}. sum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1595
      using sum.image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, symmetric]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1596
      unfolding scaleR_left.sum using obt(3) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1597
    ultimately
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1598
    have "\<exists>S u. finite S \<and> S \<subseteq> p \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1599
      apply (rule_tac x="y ` {1..k}" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1600
      apply (rule_tac x="\<lambda>v. sum u {i\<in>{1..k}. y i = v}" in exI, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1601
      done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1602
    then have "x\<in>?rhs" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1603
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1604
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1605
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1606
    fix y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1607
    assume "y\<in>?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1608
    then obtain S u where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1609
      obt: "finite S" "S \<subseteq> p" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = 1" "(\<Sum>v\<in>S. u v *\<^sub>R v) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1610
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1611
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1612
    obtain f where f: "inj_on f {1..card S}" "f ` {1..card S} = S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1613
      using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1614
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1615
    {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1616
      fix i :: nat
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1617
      assume "i\<in>{1..card S}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1618
      then have "f i \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1619
        using f(2) by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1620
      then have "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1621
    }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1622
    moreover have *: "finite {1..card S}" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1623
    {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1624
      fix y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1625
      assume "y\<in>S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1626
      then obtain i where "i\<in>{1..card S}" "f i = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1627
        using f using image_iff[of y f "{1..card S}"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1628
        by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1629
      then have "{x. Suc 0 \<le> x \<and> x \<le> card S \<and> f x = y} = {i}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1630
        apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1631
        using f(1)[unfolded inj_on_def]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1632
        by (metis One_nat_def atLeastAtMost_iff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1633
      then have "card {x. Suc 0 \<le> x \<and> x \<le> card S \<and> f x = y} = 1" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1634
      then have "(\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x)) = u y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1635
          "(\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1636
        by (auto simp: sum_constant_scaleR)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1637
    }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1638
    then have "(\<Sum>x = 1..card S. u (f x)) = 1" "(\<Sum>i = 1..card S. u (f i) *\<^sub>R f i) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1639
      unfolding sum.image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1640
        and sum.image_gen[OF *(1), of "\<lambda>x. u (f x)" f]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1641
      unfolding f
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1642
      using sum.cong [of S S "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1643
      using sum.cong [of S S "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x))" u]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1644
      unfolding obt(4,5)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1645
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1646
    ultimately
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1647
    have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> sum u {1..k} = 1 \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1648
        (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1649
      apply (rule_tac x="card S" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1650
      apply (rule_tac x="u \<circ> f" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1651
      apply (rule_tac x=f in exI, fastforce)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1652
      done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1653
    then have "y \<in> ?lhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1654
      unfolding convex_hull_indexed by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1655
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1656
  ultimately show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1657
    unfolding set_eq_iff by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1658
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1659
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1660
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1661
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>A stepping theorem for that expansion\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1662
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1663
lemma convex_hull_finite_step:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1664
  fixes S :: "'a::real_vector set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1665
  assumes "finite S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1666
  shows
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1667
    "(\<exists>u. (\<forall>x\<in>insert a S. 0 \<le> u x) \<and> sum u (insert a S) = w \<and> sum (\<lambda>x. u x *\<^sub>R x) (insert a S) = y)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1668
      \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = w - v \<and> sum (\<lambda>x. u x *\<^sub>R x) S = y - v *\<^sub>R a)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1669
  (is "?lhs = ?rhs")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1670
proof (rule, case_tac[!] "a\<in>S")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1671
  assume "a \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1672
  then have *: "insert a S = S" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1673
  assume ?lhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1674
  then show ?rhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1675
    unfolding *  by (rule_tac x=0 in exI, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1676
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1677
  assume ?lhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1678
  then obtain u where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1679
      u: "\<forall>x\<in>insert a S. 0 \<le> u x" "sum u (insert a S) = w" "(\<Sum>x\<in>insert a S. u x *\<^sub>R x) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1680
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1681
  assume "a \<notin> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1682
  then show ?rhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1683
    apply (rule_tac x="u a" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1684
    using u(1)[THEN bspec[where x=a]]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1685
    apply simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1686
    apply (rule_tac x=u in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1687
    using u[unfolded sum_clauses(2)[OF assms]] and \<open>a\<notin>S\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1688
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1689
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1690
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1691
  assume "a \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1692
  then have *: "insert a S = S" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1693
  have fin: "finite (insert a S)" using assms by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1694
  assume ?rhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1695
  then obtain v u where uv: "v\<ge>0" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = w - v" "(\<Sum>x\<in>S. u x *\<^sub>R x) = y - v *\<^sub>R a"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1696
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1697
  show ?lhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1698
    apply (rule_tac x = "\<lambda>x. (if a = x then v else 0) + u x" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1699
    unfolding scaleR_left_distrib and sum.distrib and sum_delta''[OF fin] and sum.delta'[OF fin]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1700
    unfolding sum_clauses(2)[OF assms]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1701
    using uv and uv(2)[THEN bspec[where x=a]] and \<open>a\<in>S\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1702
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1703
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1704
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1705
  assume ?rhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1706
  then obtain v u where uv: "v\<ge>0" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = w - v" "(\<Sum>x\<in>S. u x *\<^sub>R x) = y - v *\<^sub>R a"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1707
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1708
  moreover assume "a \<notin> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1709
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1710
  have "(\<Sum>x\<in>S. if a = x then v else u x) = sum u S"  "(\<Sum>x\<in>S. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>S. u x *\<^sub>R x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1711
    using \<open>a \<notin> S\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1712
    by (auto simp: intro!: sum.cong)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1713
  ultimately show ?lhs
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1714
    by (rule_tac x="\<lambda>x. if a = x then v else u x" in exI) (auto simp: sum_clauses(2)[OF assms])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1715
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1716
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1717
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1718
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Hence some special cases\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1719
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1720
lemma convex_hull_2:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1721
  "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1722
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1723
  have *: "\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1724
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1725
  have **: "finite {b}" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1726
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1727
    apply (simp add: convex_hull_finite)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1728
    unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1729
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1730
    apply (rule_tac x=v in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1731
    apply (rule_tac x="1 - v" in exI, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1732
    apply (rule_tac x=u in exI, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1733
    apply (rule_tac x="\<lambda>x. v" in exI, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1734
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1735
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1736
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1737
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1738
  unfolding convex_hull_2
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1739
proof (rule Collect_cong)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1740
  have *: "\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1741
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1742
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1743
  show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) \<longleftrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1744
    (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1745
    unfolding *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1746
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1747
    apply (rule_tac[!] x=u in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1748
    apply (auto simp: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1749
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1750
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1751
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1752
lemma convex_hull_3:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1753
  "convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1754
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1755
  have fin: "finite {a,b,c}" "finite {b,c}" "finite {c}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1756
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1757
  have *: "\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1758
    by (auto simp: field_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1759
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1760
    unfolding convex_hull_finite[OF fin(1)] and convex_hull_finite_step[OF fin(2)] and *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1761
    unfolding convex_hull_finite_step[OF fin(3)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1762
    apply (rule Collect_cong, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1763
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1764
    apply (rule_tac x=va in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1765
    apply (rule_tac x="u c" in exI, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1766
    apply (rule_tac x="1 - v - w" in exI, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1767
    apply (rule_tac x=v in exI, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1768
    apply (rule_tac x="\<lambda>x. w" in exI, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1769
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1770
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1771
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1772
lemma convex_hull_3_alt:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1773
  "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1774
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1775
  have *: "\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1776
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1777
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1778
    unfolding convex_hull_3
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1779
    apply (auto simp: *)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1780
    apply (rule_tac x=v in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1781
    apply (rule_tac x=w in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1782
    apply (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1783
    apply (rule_tac x=u in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1784
    apply (rule_tac x=v in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1785
    apply (simp add: algebra_simps)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1786
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1787
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1788
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1789
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1790
subsection\<^marker>\<open>tag unimportant\<close> \<open>Relations among closure notions and corresponding hulls\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1791
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1792
lemma affine_imp_convex: "affine s \<Longrightarrow> convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1793
  unfolding affine_def convex_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1794
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1795
lemma convex_affine_hull [simp]: "convex (affine hull S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1796
  by (simp add: affine_imp_convex)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1797
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1798
lemma subspace_imp_convex: "subspace s \<Longrightarrow> convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1799
  using subspace_imp_affine affine_imp_convex by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1800
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1801
lemma convex_hull_subset_span: "(convex hull s) \<subseteq> (span s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1802
  by (metis hull_minimal span_superset subspace_imp_convex subspace_span)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1803
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1804
lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1805
  by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1806
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1807
lemma aff_dim_convex_hull:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1808
  fixes S :: "'n::euclidean_space set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1809
  shows "aff_dim (convex hull S) = aff_dim S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1810
  using aff_dim_affine_hull[of S] convex_hull_subset_affine_hull[of S]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1811
    hull_subset[of S "convex"] aff_dim_subset[of S "convex hull S"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1812
    aff_dim_subset[of "convex hull S" "affine hull S"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1813
  by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1814
71242
ec5090faf541 separated Affine theory from Convex
nipkow
parents: 71240
diff changeset
  1815
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1816
subsection \<open>Caratheodory's theorem\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1817
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1818
lemma convex_hull_caratheodory_aff_dim:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1819
  fixes p :: "('a::euclidean_space) set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1820
  shows "convex hull p =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1821
    {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> aff_dim p + 1 \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1822
      (\<forall>x\<in>s. 0 \<le> u x) \<and> sum u s = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) s = y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1823
  unfolding convex_hull_explicit set_eq_iff mem_Collect_eq
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1824
proof (intro allI iffI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1825
  fix y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1826
  let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1827
    sum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1828
  assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> sum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1829
  then obtain N where "?P N" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1830
  then have "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1831
    apply (rule_tac ex_least_nat_le, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1832
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1833
  then obtain n where "?P n" and smallest: "\<forall>k<n. \<not> ?P k"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1834
    by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1835
  then obtain s u where obt: "finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1836
    "sum u s = 1"  "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1837
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1838
  have "card s \<le> aff_dim p + 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1839
  proof (rule ccontr, simp only: not_le)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1840
    assume "aff_dim p + 1 < card s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1841
    then have "affine_dependent s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1842
      using affine_dependent_biggerset[OF obt(1)] independent_card_le_aff_dim not_less obt(3)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1843
      by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1844
    then obtain w v where wv: "sum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1845
      using affine_dependent_explicit_finite[OF obt(1)] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1846
    define i where "i = (\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1847
    define t where "t = Min i"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1848
    have "\<exists>x\<in>s. w x < 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1849
    proof (rule ccontr, simp add: not_less)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1850
      assume as:"\<forall>x\<in>s. 0 \<le> w x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1851
      then have "sum w (s - {v}) \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1852
        apply (rule_tac sum_nonneg, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1853
        done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1854
      then have "sum w s > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1855
        unfolding sum.remove[OF obt(1) \<open>v\<in>s\<close>]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1856
        using as[THEN bspec[where x=v]]  \<open>v\<in>s\<close>  \<open>w v \<noteq> 0\<close> by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1857
      then show False using wv(1) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1858
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1859
    then have "i \<noteq> {}" unfolding i_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1860
    then have "t \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1861
      using Min_ge_iff[of i 0 ] and obt(1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1862
      unfolding t_def i_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1863
      using obt(4)[unfolded le_less]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1864
      by (auto simp: divide_le_0_iff)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1865
    have t: "\<forall>v\<in>s. u v + t * w v \<ge> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1866
    proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1867
      fix v
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1868
      assume "v \<in> s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1869
      then have v: "0 \<le> u v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1870
        using obt(4)[THEN bspec[where x=v]] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1871
      show "0 \<le> u v + t * w v"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1872
      proof (cases "w v < 0")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1873
        case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1874
        thus ?thesis using v \<open>t\<ge>0\<close> by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1875
      next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1876
        case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1877
        then have "t \<le> u v / (- w v)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1878
          using \<open>v\<in>s\<close> unfolding t_def i_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1879
          apply (rule_tac Min_le)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1880
          using obt(1) apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1881
          done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1882
        then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1883
          unfolding real_0_le_add_iff
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1884
          using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[symmetric]]]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1885
          by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1886
      qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1887
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1888
    obtain a where "a \<in> s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1889
      using Min_in[OF _ \<open>i\<noteq>{}\<close>] and obt(1) unfolding i_def t_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1890
    then have a: "a \<in> s" "u a + t * w a = 0" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1891
    have *: "\<And>f. sum f (s - {a}) = sum f s - ((f a)::'b::ab_group_add)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1892
      unfolding sum.remove[OF obt(1) \<open>a\<in>s\<close>] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1893
    have "(\<Sum>v\<in>s. u v + t * w v) = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1894
      unfolding sum.distrib wv(1) sum_distrib_left[symmetric] obt(5) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1895
    moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1896
      unfolding sum.distrib obt(6) scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] wv(4)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1897
      using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] by simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1898
    ultimately have "?P (n - 1)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1899
      apply (rule_tac x="(s - {a})" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1900
      apply (rule_tac x="\<lambda>v. u v + t * w v" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1901
      using obt(1-3) and t and a
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1902
      apply (auto simp: * scaleR_left_distrib)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1903
      done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1904
    then show False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1905
      using smallest[THEN spec[where x="n - 1"]] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1906
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1907
  then show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> aff_dim p + 1 \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1908
      (\<forall>x\<in>s. 0 \<le> u x) \<and> sum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1909
    using obt by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1910
qed auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1911
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1912
lemma caratheodory_aff_dim:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1913
  fixes p :: "('a::euclidean_space) set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1914
  shows "convex hull p = {x. \<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> aff_dim p + 1 \<and> x \<in> convex hull s}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1915
        (is "?lhs = ?rhs")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1916
proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1917
  show "?lhs \<subseteq> ?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1918
    apply (subst convex_hull_caratheodory_aff_dim, clarify)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1919
    apply (rule_tac x=s in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1920
    apply (simp add: hull_subset convex_explicit [THEN iffD1, OF convex_convex_hull])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1921
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1922
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1923
  show "?rhs \<subseteq> ?lhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1924
    using hull_mono by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1925
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1926
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1927
lemma convex_hull_caratheodory:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1928
  fixes p :: "('a::euclidean_space) set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1929
  shows "convex hull p =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1930
            {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1931
              (\<forall>x\<in>s. 0 \<le> u x) \<and> sum u s = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) s = y}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1932
        (is "?lhs = ?rhs")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1933
proof (intro set_eqI iffI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1934
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1935
  assume "x \<in> ?lhs" then show "x \<in> ?rhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1936
    apply (simp only: convex_hull_caratheodory_aff_dim Set.mem_Collect_eq)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1937
    apply (erule ex_forward)+
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1938
    using aff_dim_le_DIM [of p]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1939
    apply simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1940
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1941
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1942
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1943
  assume "x \<in> ?rhs" then show "x \<in> ?lhs"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1944
    by (auto simp: convex_hull_explicit)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1945
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1946
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1947
theorem caratheodory:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1948
  "convex hull p =
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1949
    {x::'a::euclidean_space. \<exists>s. finite s \<and> s \<subseteq> p \<and>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1950
      card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1951
proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1952
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1953
  assume "x \<in> convex hull p"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1954
  then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1955
    "\<forall>x\<in>s. 0 \<le> u x" "sum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1956
    unfolding convex_hull_caratheodory by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1957
  then show "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1958
    apply (rule_tac x=s in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1959
    using hull_subset[of s convex]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1960
    using convex_convex_hull[simplified convex_explicit, of s,
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1961
      THEN spec[where x=s], THEN spec[where x=u]]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1962
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1963
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1964
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1965
  fix x s
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1966
  assume  "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1" "x \<in> convex hull s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1967
  then show "x \<in> convex hull p"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1968
    using hull_mono[OF \<open>s\<subseteq>p\<close>] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1969
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1970
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1971
subsection\<^marker>\<open>tag unimportant\<close>\<open>Some Properties of subset of standard basis\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1972
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1973
lemma affine_hull_substd_basis:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1974
  assumes "d \<subseteq> Basis"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1975
  shows "affine hull (insert 0 d) = {x::'a::euclidean_space. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1976
  (is "affine hull (insert 0 ?A) = ?B")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1977
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1978
  have *: "\<And>A. (+) (0::'a) ` A = A" "\<And>A. (+) (- (0::'a)) ` A = A"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1979
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1980
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1981
    unfolding affine_hull_insert_span_gen span_substd_basis[OF assms,symmetric] * ..
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1982
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1983
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1984
lemma affine_hull_convex_hull [simp]: "affine hull (convex hull S) = affine hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1985
  by (metis Int_absorb1 Int_absorb2 convex_hull_subset_affine_hull hull_hull hull_mono hull_subset)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1986
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1987
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  1988
subsection\<^marker>\<open>tag unimportant\<close> \<open>Moving and scaling convex hulls\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1989
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1990
lemma convex_hull_set_plus:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1991
  "convex hull (S + T) = convex hull S + convex hull T"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1992
  unfolding set_plus_image
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1993
  apply (subst convex_hull_linear_image [symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1994
  apply (simp add: linear_iff scaleR_right_distrib)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1995
  apply (simp add: convex_hull_Times)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1996
  done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1997
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1998
lemma translation_eq_singleton_plus: "(\<lambda>x. a + x) ` T = {a} + T"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  1999
  unfolding set_plus_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2000
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2001
lemma convex_hull_translation:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2002
  "convex hull ((\<lambda>x. a + x) ` S) = (\<lambda>x. a + x) ` (convex hull S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2003
  unfolding translation_eq_singleton_plus
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2004
  by (simp only: convex_hull_set_plus convex_hull_singleton)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2005
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2006
lemma convex_hull_scaling:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2007
  "convex hull ((\<lambda>x. c *\<^sub>R x) ` S) = (\<lambda>x. c *\<^sub>R x) ` (convex hull S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2008
  using linear_scaleR by (rule convex_hull_linear_image [symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2009
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2010
lemma convex_hull_affinity:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2011
  "convex hull ((\<lambda>x. a + c *\<^sub>R x) ` S) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2012
  by(simp only: image_image[symmetric] convex_hull_scaling convex_hull_translation)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2013
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2014
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  2015
subsection\<^marker>\<open>tag unimportant\<close> \<open>Convexity of cone hulls\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2016
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2017
lemma convex_cone_hull:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2018
  assumes "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2019
  shows "convex (cone hull S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2020
proof (rule convexI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2021
  fix x y
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2022
  assume xy: "x \<in> cone hull S" "y \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2023
  then have "S \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2024
    using cone_hull_empty_iff[of S] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2025
  fix u v :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2026
  assume uv: "u \<ge> 0" "v \<ge> 0" "u + v = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2027
  then have *: "u *\<^sub>R x \<in> cone hull S" "v *\<^sub>R y \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2028
    using cone_cone_hull[of S] xy cone_def[of "cone hull S"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2029
  from * obtain cx :: real and xx where x: "u *\<^sub>R x = cx *\<^sub>R xx" "cx \<ge> 0" "xx \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2030
    using cone_hull_expl[of S] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2031
  from * obtain cy :: real and yy where y: "v *\<^sub>R y = cy *\<^sub>R yy" "cy \<ge> 0" "yy \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2032
    using cone_hull_expl[of S] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2033
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2034
    assume "cx + cy \<le> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2035
    then have "u *\<^sub>R x = 0" and "v *\<^sub>R y = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2036
      using x y by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2037
    then have "u *\<^sub>R x + v *\<^sub>R y = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2038
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2039
    then have "u *\<^sub>R x + v *\<^sub>R y \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2040
      using cone_hull_contains_0[of S] \<open>S \<noteq> {}\<close> by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2041
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2042
  moreover
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2043
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2044
    assume "cx + cy > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2045
    then have "(cx / (cx + cy)) *\<^sub>R xx + (cy / (cx + cy)) *\<^sub>R yy \<in> S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2046
      using assms mem_convex_alt[of S xx yy cx cy] x y by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2047
    then have "cx *\<^sub>R xx + cy *\<^sub>R yy \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2048
      using mem_cone_hull[of "(cx/(cx+cy)) *\<^sub>R xx + (cy/(cx+cy)) *\<^sub>R yy" S "cx+cy"] \<open>cx+cy>0\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2049
      by (auto simp: scaleR_right_distrib)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2050
    then have "u *\<^sub>R x + v *\<^sub>R y \<in> cone hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2051
      using x y by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2052
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2053
  moreover have "cx + cy \<le> 0 \<or> cx + cy > 0" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2054
  ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> cone hull S" by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2055
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2056
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2057
lemma cone_convex_hull:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2058
  assumes "cone S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2059
  shows "cone (convex hull S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2060
proof (cases "S = {}")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2061
  case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2062
  then show ?thesis by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2063
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2064
  case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2065
  then have *: "0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> (*\<^sub>R) c ` S = S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2066
    using cone_iff[of S] assms by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2067
  {
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2068
    fix c :: real
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2069
    assume "c > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2070
    then have "(*\<^sub>R) c ` (convex hull S) = convex hull ((*\<^sub>R) c ` S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2071
      using convex_hull_scaling[of _ S] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2072
    also have "\<dots> = convex hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2073
      using * \<open>c > 0\<close> by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2074
    finally have "(*\<^sub>R) c ` (convex hull S) = convex hull S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2075
      by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2076
  }
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2077
  then have "0 \<in> convex hull S" "\<And>c. c > 0 \<Longrightarrow> ((*\<^sub>R) c ` (convex hull S)) = (convex hull S)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2078
    using * hull_subset[of S convex] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2079
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2080
    using \<open>S \<noteq> {}\<close> cone_iff[of "convex hull S"] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2081
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2082
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2083
subsection \<open>Radon's theorem\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2084
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2085
text "Formalized by Lars Schewe."
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2086
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2087
lemma Radon_ex_lemma:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2088
  assumes "finite c" "affine_dependent c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2089
  shows "\<exists>u. sum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> sum (\<lambda>v. u v *\<^sub>R v) c = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2090
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2091
  from assms(2)[unfolded affine_dependent_explicit]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2092
  obtain s u where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2093
      "finite s" "s \<subseteq> c" "sum u s = 0" "\<exists>v\<in>s. u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2094
    by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2095
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2096
    apply (rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2097
    unfolding if_smult scaleR_zero_left and sum.inter_restrict[OF assms(1), symmetric]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2098
    apply (auto simp: Int_absorb1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2099
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2100
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2101
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2102
lemma Radon_s_lemma:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2103
  assumes "finite s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2104
    and "sum f s = (0::real)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2105
  shows "sum f {x\<in>s. 0 < f x} = - sum f {x\<in>s. f x < 0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2106
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2107
  have *: "\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2108
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2109
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2110
    unfolding add_eq_0_iff[symmetric] and sum.inter_filter[OF assms(1)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2111
      and sum.distrib[symmetric] and *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2112
    using assms(2)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2113
    by assumption
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2114
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2115
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2116
lemma Radon_v_lemma:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2117
  assumes "finite s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2118
    and "sum f s = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2119
    and "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::'a::euclidean_space)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2120
  shows "(sum f {x\<in>s. 0 < g x}) = - sum f {x\<in>s. g x < 0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2121
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2122
  have *: "\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2123
    using assms(3) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2124
  show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2125
    unfolding eq_neg_iff_add_eq_0 and sum.inter_filter[OF assms(1)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2126
      and sum.distrib[symmetric] and *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2127
    using assms(2)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2128
    apply assumption
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2129
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2130
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2131
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2132
lemma Radon_partition:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2133
  assumes "finite c" "affine_dependent c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2134
  shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2135
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2136
  obtain u v where uv: "sum u c = 0" "v\<in>c" "u v \<noteq> 0"  "(\<Sum>v\<in>c. u v *\<^sub>R v) = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2137
    using Radon_ex_lemma[OF assms] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2138
  have fin: "finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2139
    using assms(1) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2140
  define z  where "z = inverse (sum u {x\<in>c. u x > 0}) *\<^sub>R sum (\<lambda>x. u x *\<^sub>R x) {x\<in>c. u x > 0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2141
  have "sum u {x \<in> c. 0 < u x} \<noteq> 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2142
  proof (cases "u v \<ge> 0")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2143
    case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2144
    then have "u v < 0" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2145
    then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2146
    proof (cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2147
      case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2148
      then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2149
        using sum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2150
    next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2151
      case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2152
      then have "sum u c \<le> sum (\<lambda>x. if x=v then u v else 0) c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2153
        apply (rule_tac sum_mono, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2154
        done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2155
      then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2156
        unfolding sum.delta[OF assms(1)] using uv(2) and \<open>u v < 0\<close> and uv(1) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2157
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2158
  qed (insert sum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2159
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2160
  then have *: "sum u {x\<in>c. u x > 0} > 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2161
    unfolding less_le
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2162
    apply (rule_tac conjI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2163
    apply (rule_tac sum_nonneg, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2164
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2165
  moreover have "sum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = sum u c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2166
    "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>c. u x *\<^sub>R x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2167
    using assms(1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2168
    apply (rule_tac[!] sum.mono_neutral_left, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2169
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2170
  then have "sum u {x \<in> c. 0 < u x} = - sum u {x \<in> c. 0 > u x}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2171
    "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *\<^sub>R x)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2172
    unfolding eq_neg_iff_add_eq_0
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2173
    using uv(1,4)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2174
    by (auto simp: sum.union_inter_neutral[OF fin, symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2175
  moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (sum u {x \<in> c. 0 < u x}) * - u x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2176
    apply rule
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2177
    apply (rule mult_nonneg_nonneg)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2178
    using *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2179
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2180
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2181
  ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2182
    unfolding convex_hull_explicit mem_Collect_eq
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2183
    apply (rule_tac x="{v \<in> c. u v < 0}" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2184
    apply (rule_tac x="\<lambda>y. inverse (sum u {x\<in>c. u x > 0}) * - u y" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2185
    using assms(1) unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] and z_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2186
    apply (auto simp: sum_negf sum_distrib_left[symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2187
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2188
  moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (sum u {x \<in> c. 0 < u x}) * u x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2189
    apply rule
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2190
    apply (rule mult_nonneg_nonneg)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2191
    using *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2192
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2193
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2194
  then have "z \<in> convex hull {v \<in> c. u v > 0}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2195
    unfolding convex_hull_explicit mem_Collect_eq
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2196
    apply (rule_tac x="{v \<in> c. 0 < u v}" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2197
    apply (rule_tac x="\<lambda>y. inverse (sum u {x\<in>c. u x > 0}) * u y" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2198
    using assms(1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2199
    unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] and z_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2200
    using *
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2201
    apply (auto simp: sum_negf sum_distrib_left[symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2202
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2203
  ultimately show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2204
    apply (rule_tac x="{v\<in>c. u v \<le> 0}" in exI)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2205
    apply (rule_tac x="{v\<in>c. u v > 0}" in exI, auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2206
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2207
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2208
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2209
theorem Radon:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2210
  assumes "affine_dependent c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2211
  obtains m p where "m \<subseteq> c" "p \<subseteq> c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2212
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2213
  from assms[unfolded affine_dependent_explicit]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2214
  obtain s u where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2215
      "finite s" "s \<subseteq> c" "sum u s = 0" "\<exists>v\<in>s. u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2216
    by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2217
  then have *: "finite s" "affine_dependent s" and s: "s \<subseteq> c"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2218
    unfolding affine_dependent_explicit by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2219
  from Radon_partition[OF *]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2220
  obtain m p where "m \<inter> p = {}" "m \<union> p = s" "convex hull m \<inter> convex hull p \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2221
    by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2222
  then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2223
    apply (rule_tac that[of p m])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2224
    using s
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2225
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2226
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2227
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2228
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2229
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2230
subsection \<open>Helly's theorem\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2231
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2232
lemma Helly_induct:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2233
  fixes f :: "'a::euclidean_space set set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2234
  assumes "card f = n"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2235
    and "n \<ge> DIM('a) + 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2236
    and "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = DIM('a) + 1 \<longrightarrow> \<Inter>t \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2237
  shows "\<Inter>f \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2238
  using assms
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2239
proof (induction n arbitrary: f)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2240
  case 0
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2241
  then show ?case by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2242
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2243
  case (Suc n)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2244
  have "finite f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2245
    using \<open>card f = Suc n\<close> by (auto intro: card_ge_0_finite)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2246
  show "\<Inter>f \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2247
  proof (cases "n = DIM('a)")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2248
    case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2249
    then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2250
      by (simp add: Suc.prems(1) Suc.prems(4))
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2251
  next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2252
    case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2253
    have "\<Inter>(f - {s}) \<noteq> {}" if "s \<in> f" for s
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2254
    proof (rule Suc.IH[rule_format])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2255
      show "card (f - {s}) = n"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2256
        by (simp add: Suc.prems(1) \<open>finite f\<close> that)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2257
      show "DIM('a) + 1 \<le> n"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2258
        using False Suc.prems(2) by linarith
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2259
      show "\<And>t. \<lbrakk>t \<subseteq> f - {s}; card t = DIM('a) + 1\<rbrakk> \<Longrightarrow> \<Inter>t \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2260
        by (simp add: Suc.prems(4) subset_Diff_insert)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2261
    qed (use Suc in auto)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2262
    then have "\<forall>s\<in>f. \<exists>x. x \<in> \<Inter>(f - {s})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2263
      by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2264
    then obtain X where X: "\<And>s. s\<in>f \<Longrightarrow> X s \<in> \<Inter>(f - {s})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2265
      by metis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2266
    show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2267
    proof (cases "inj_on X f")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2268
      case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2269
      then obtain s t where "s\<noteq>t" and st: "s\<in>f" "t\<in>f" "X s = X t"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2270
        unfolding inj_on_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2271
      then have *: "\<Inter>f = \<Inter>(f - {s}) \<inter> \<Inter>(f - {t})" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2272
      show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2273
        by (metis "*" X disjoint_iff_not_equal st)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2274
    next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2275
      case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2276
      then obtain m p where mp: "m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2277
        using Radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2278
        unfolding card_image[OF True] and \<open>card f = Suc n\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2279
        using Suc(3) \<open>finite f\<close> and False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2280
        by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2281
      have "m \<subseteq> X ` f" "p \<subseteq> X ` f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2282
        using mp(2) by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2283
      then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2284
        unfolding subset_image_iff by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2285
      then have "f \<union> (g \<union> h) = f" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2286
      then have f: "f = g \<union> h"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2287
        using inj_on_Un_image_eq_iff[of X f "g \<union> h"] and True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2288
        unfolding mp(2)[unfolded image_Un[symmetric] gh]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2289
        by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2290
      have *: "g \<inter> h = {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2291
        using mp(1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2292
        unfolding gh
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2293
        using inj_on_image_Int[OF True gh(3,4)]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2294
        by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2295
      have "convex hull (X ` h) \<subseteq> \<Inter>g" "convex hull (X ` g) \<subseteq> \<Inter>h"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2296
        by (rule hull_minimal; use X * f in \<open>auto simp: Suc.prems(3) convex_Inter\<close>)+
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2297
      then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2298
        unfolding f using mp(3)[unfolded gh] by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2299
    qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2300
  qed 
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2301
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2302
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2303
theorem Helly:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2304
  fixes f :: "'a::euclidean_space set set"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2305
  assumes "card f \<ge> DIM('a) + 1" "\<forall>s\<in>f. convex s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2306
    and "\<And>t. \<lbrakk>t\<subseteq>f; card t = DIM('a) + 1\<rbrakk> \<Longrightarrow> \<Inter>t \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2307
  shows "\<Inter>f \<noteq> {}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2308
  apply (rule Helly_induct)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2309
  using assms
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2310
  apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2311
  done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2312
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2313
subsection \<open>Epigraphs of convex functions\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2314
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  2315
definition\<^marker>\<open>tag important\<close> "epigraph S (f :: _ \<Rightarrow> real) = {xy. fst xy \<in> S \<and> f (fst xy) \<le> snd xy}"
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2316
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2317
lemma mem_epigraph: "(x, y) \<in> epigraph S f \<longleftrightarrow> x \<in> S \<and> f x \<le> y"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2318
  unfolding epigraph_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2319
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2320
lemma convex_epigraph: "convex (epigraph S f) \<longleftrightarrow> convex_on S f \<and> convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2321
proof safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2322
  assume L: "convex (epigraph S f)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2323
  then show "convex_on S f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2324
    by (auto simp: convex_def convex_on_def epigraph_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2325
  show "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2326
    using L
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2327
    apply (clarsimp simp: convex_def convex_on_def epigraph_def)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2328
    apply (erule_tac x=x in allE)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2329
    apply (erule_tac x="f x" in allE, safe)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2330
    apply (erule_tac x=y in allE)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2331
    apply (erule_tac x="f y" in allE)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2332
    apply (auto simp: )
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2333
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2334
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2335
  assume "convex_on S f" "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2336
  then show "convex (epigraph S f)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2337
    unfolding convex_def convex_on_def epigraph_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2338
    apply safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2339
     apply (rule_tac [2] y="u * f a + v * f aa" in order_trans)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2340
      apply (auto intro!:mult_left_mono add_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2341
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2342
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2343
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2344
lemma convex_epigraphI: "convex_on S f \<Longrightarrow> convex S \<Longrightarrow> convex (epigraph S f)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2345
  unfolding convex_epigraph by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2346
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2347
lemma convex_epigraph_convex: "convex S \<Longrightarrow> convex_on S f \<longleftrightarrow> convex(epigraph S f)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2348
  by (simp add: convex_epigraph)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2349
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2350
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  2351
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Use this to derive general bound property of convex function\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2352
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2353
lemma convex_on:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2354
  assumes "convex S"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2355
  shows "convex_on S f \<longleftrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2356
    (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> S) \<and> sum u {1..k} = 1 \<longrightarrow>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2357
      f (sum (\<lambda>i. u i *\<^sub>R x i) {1..k}) \<le> sum (\<lambda>i. u i * f(x i)) {1..k})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2358
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2359
  unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2360
  unfolding fst_sum snd_sum fst_scaleR snd_scaleR
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2361
  apply safe
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2362
    apply (drule_tac x=k in spec)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2363
    apply (drule_tac x=u in spec)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2364
    apply (drule_tac x="\<lambda>i. (x i, f (x i))" in spec)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2365
    apply simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2366
  using assms[unfolded convex] apply simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2367
  apply (rule_tac y="\<Sum>i = 1..k. u i * f (fst (x i))" in order_trans, force)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2368
   apply (rule sum_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2369
   apply (erule_tac x=i in allE)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2370
  unfolding real_scaleR_def
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2371
   apply (rule mult_left_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2372
  using assms[unfolded convex] apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2373
  done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2374
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 70097
diff changeset
  2375
subsection\<^marker>\<open>tag unimportant\<close> \<open>A bound within a convex hull\<close>
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2376
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2377
lemma convex_on_convex_hull_bound:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2378
  assumes "convex_on (convex hull s) f"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2379
    and "\<forall>x\<in>s. f x \<le> b"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2380
  shows "\<forall>x\<in> convex hull s. f x \<le> b"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2381
proof
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2382
  fix x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2383
  assume "x \<in> convex hull s"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2384
  then obtain k u v where
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2385
    obt: "\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "sum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2386
    unfolding convex_hull_indexed mem_Collect_eq by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2387
  have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2388
    using sum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2389
    unfolding sum_distrib_right[symmetric] obt(2) mult_1
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2390
    apply (drule_tac meta_mp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2391
    apply (rule mult_left_mono)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2392
    using assms(2) obt(1)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2393
    apply auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2394
    done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2395
  then show "f x \<le> b"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2396
    using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2397
    unfolding obt(2-3)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2398
    using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s]
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2399
    by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2400
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2401
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2402
lemma inner_sum_Basis[simp]: "i \<in> Basis \<Longrightarrow> (\<Sum>Basis) \<bullet> i = 1"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2403
  by (simp add: inner_sum_left sum.If_cases inner_Basis)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2404
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2405
lemma convex_set_plus:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2406
  assumes "convex S" and "convex T" shows "convex (S + T)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2407
proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2408
  have "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2409
    using assms by (rule convex_sums)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2410
  moreover have "(\<Union>x\<in> S. \<Union>y \<in> T. {x + y}) = S + T"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2411
    unfolding set_plus_def by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2412
  finally show "convex (S + T)" .
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2413
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2414
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2415
lemma convex_set_sum:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2416
  assumes "\<And>i. i \<in> A \<Longrightarrow> convex (B i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2417
  shows "convex (\<Sum>i\<in>A. B i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2418
proof (cases "finite A")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2419
  case True then show ?thesis using assms
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2420
    by induct (auto simp: convex_set_plus)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2421
qed auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2422
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2423
lemma finite_set_sum:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2424
  assumes "finite A" and "\<forall>i\<in>A. finite (B i)" shows "finite (\<Sum>i\<in>A. B i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2425
  using assms by (induct set: finite, simp, simp add: finite_set_plus)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2426
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2427
lemma box_eq_set_sum_Basis:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2428
  shows "{x. \<forall>i\<in>Basis. x\<bullet>i \<in> B i} = (\<Sum>i\<in>Basis. image (\<lambda>x. x *\<^sub>R i) (B i))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2429
  apply (subst set_sum_alt [OF finite_Basis], safe)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2430
  apply (fast intro: euclidean_representation [symmetric])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2431
  apply (subst inner_sum_left)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2432
apply (rename_tac f)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2433
  apply (subgoal_tac "(\<Sum>x\<in>Basis. f x \<bullet> i) = f i \<bullet> i")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2434
  apply (drule (1) bspec)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2435
  apply clarsimp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2436
  apply (frule sum.remove [OF finite_Basis])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2437
  apply (erule trans, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2438
  apply (rule sum.neutral, clarsimp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2439
  apply (frule_tac x=i in bspec, assumption)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2440
  apply (drule_tac x=x in bspec, assumption, clarsimp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2441
  apply (cut_tac u=x and v=i in inner_Basis, assumption+)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2442
  apply (rule ccontr, simp)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2443
  done
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2444
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2445
lemma convex_hull_set_sum:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2446
  "convex hull (\<Sum>i\<in>A. B i) = (\<Sum>i\<in>A. convex hull (B i))"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2447
proof (cases "finite A")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2448
  assume "finite A" then show ?thesis
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2449
    by (induct set: finite, simp, simp add: convex_hull_set_plus)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2450
qed simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2451
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2452
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents:
diff changeset
  2453
end