author | haftmann |
Tue, 10 Oct 2006 10:34:41 +0200 | |
changeset 20941 | beedcae49096 |
parent 20217 | 25b068a99d2b |
permissions | -rw-r--r-- |
16732 | 1 |
(* Title: HOL/Binomial.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson |
|
4 |
Copyright 1997 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
header{*Binomial Coefficients*} |
|
8 |
||
9 |
theory Binomial |
|
17508 | 10 |
imports GCD |
16732 | 11 |
begin |
12 |
||
13 |
text{*This development is based on the work of Andy Gordon and |
|
14 |
Florian Kammueller*} |
|
15 |
||
16 |
consts |
|
17 |
binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65) |
|
18 |
||
19 |
primrec |
|
20 |
binomial_0: "(0 choose k) = (if k = 0 then 1 else 0)" |
|
21 |
||
22 |
binomial_Suc: "(Suc n choose k) = |
|
23 |
(if k = 0 then 1 else (n choose (k - 1)) + (n choose k))" |
|
24 |
||
25 |
lemma binomial_n_0 [simp]: "(n choose 0) = 1" |
|
17508 | 26 |
by (cases n) simp_all |
16732 | 27 |
|
28 |
lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0" |
|
29 |
by simp |
|
30 |
||
31 |
lemma binomial_Suc_Suc [simp]: |
|
32 |
"(Suc n choose Suc k) = (n choose k) + (n choose Suc k)" |
|
33 |
by simp |
|
34 |
||
35 |
lemma binomial_eq_0 [rule_format]: "\<forall>k. n < k --> (n choose k) = 0" |
|
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19279
diff
changeset
|
36 |
apply (induct "n") |
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19279
diff
changeset
|
37 |
apply auto |
16732 | 38 |
done |
39 |
||
40 |
declare binomial_0 [simp del] binomial_Suc [simp del] |
|
41 |
||
42 |
lemma binomial_n_n [simp]: "(n choose n) = 1" |
|
43 |
apply (induct "n") |
|
44 |
apply (simp_all add: binomial_eq_0) |
|
45 |
done |
|
46 |
||
47 |
lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n" |
|
48 |
by (induct "n", simp_all) |
|
49 |
||
50 |
lemma binomial_1 [simp]: "(n choose Suc 0) = n" |
|
51 |
by (induct "n", simp_all) |
|
52 |
||
53 |
lemma zero_less_binomial [rule_format]: "k \<le> n --> 0 < (n choose k)" |
|
54 |
by (rule_tac m = n and n = k in diff_induct, simp_all) |
|
55 |
||
56 |
lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)" |
|
57 |
apply (safe intro!: binomial_eq_0) |
|
58 |
apply (erule contrapos_pp) |
|
59 |
apply (simp add: zero_less_binomial) |
|
60 |
done |
|
61 |
||
62 |
lemma zero_less_binomial_iff: "(0 < n choose k) = (k\<le>n)" |
|
63 |
by (simp add: linorder_not_less [symmetric] binomial_eq_0_iff [symmetric]) |
|
64 |
||
65 |
(*Might be more useful if re-oriented*) |
|
66 |
lemma Suc_times_binomial_eq [rule_format]: |
|
67 |
"\<forall>k. k \<le> n --> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" |
|
68 |
apply (induct "n") |
|
69 |
apply (simp add: binomial_0, clarify) |
|
70 |
apply (case_tac "k") |
|
71 |
apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq |
|
72 |
binomial_eq_0) |
|
73 |
done |
|
74 |
||
75 |
text{*This is the well-known version, but it's harder to use because of the |
|
76 |
need to reason about division.*} |
|
77 |
lemma binomial_Suc_Suc_eq_times: |
|
78 |
"k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" |
|
79 |
by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc |
|
80 |
del: mult_Suc mult_Suc_right) |
|
81 |
||
82 |
text{*Another version, with -1 instead of Suc.*} |
|
83 |
lemma times_binomial_minus1_eq: |
|
84 |
"[|k \<le> n; 0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))" |
|
85 |
apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq) |
|
86 |
apply (simp split add: nat_diff_split, auto) |
|
87 |
done |
|
88 |
||
89 |
subsubsection {* Theorems about @{text "choose"} *} |
|
90 |
||
91 |
text {* |
|
92 |
\medskip Basic theorem about @{text "choose"}. By Florian |
|
93 |
Kamm\"uller, tidied by LCP. |
|
94 |
*} |
|
95 |
||
96 |
lemma card_s_0_eq_empty: |
|
97 |
"finite A ==> card {B. B \<subseteq> A & card B = 0} = 1" |
|
98 |
apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) |
|
99 |
apply (simp cong add: rev_conj_cong) |
|
100 |
done |
|
101 |
||
102 |
lemma choose_deconstruct: "finite M ==> x \<notin> M |
|
103 |
==> {s. s <= insert x M & card(s) = Suc k} |
|
104 |
= {s. s <= M & card(s) = Suc k} Un |
|
105 |
{s. EX t. t <= M & card(t) = k & s = insert x t}" |
|
106 |
apply safe |
|
107 |
apply (auto intro: finite_subset [THEN card_insert_disjoint]) |
|
108 |
apply (drule_tac x = "xa - {x}" in spec) |
|
109 |
apply (subgoal_tac "x \<notin> xa", auto) |
|
110 |
apply (erule rev_mp, subst card_Diff_singleton) |
|
111 |
apply (auto intro: finite_subset) |
|
112 |
done |
|
113 |
||
114 |
text{*There are as many subsets of @{term A} having cardinality @{term k} |
|
115 |
as there are sets obtained from the former by inserting a fixed element |
|
116 |
@{term x} into each.*} |
|
117 |
lemma constr_bij: |
|
118 |
"[|finite A; x \<notin> A|] ==> |
|
119 |
card {B. EX C. C <= A & card(C) = k & B = insert x C} = |
|
120 |
card {B. B <= A & card(B) = k}" |
|
121 |
apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq) |
|
122 |
apply (auto elim!: equalityE simp add: inj_on_def) |
|
123 |
apply (subst Diff_insert0, auto) |
|
124 |
txt {* finiteness of the two sets *} |
|
125 |
apply (rule_tac [2] B = "Pow (A)" in finite_subset) |
|
126 |
apply (rule_tac B = "Pow (insert x A)" in finite_subset) |
|
127 |
apply fast+ |
|
128 |
done |
|
129 |
||
130 |
text {* |
|
131 |
Main theorem: combinatorial statement about number of subsets of a set. |
|
132 |
*} |
|
133 |
||
134 |
lemma n_sub_lemma: |
|
135 |
"!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
|
136 |
apply (induct k) |
|
137 |
apply (simp add: card_s_0_eq_empty, atomize) |
|
138 |
apply (rotate_tac -1, erule finite_induct) |
|
139 |
apply (simp_all (no_asm_simp) cong add: conj_cong |
|
140 |
add: card_s_0_eq_empty choose_deconstruct) |
|
141 |
apply (subst card_Un_disjoint) |
|
142 |
prefer 4 apply (force simp add: constr_bij) |
|
143 |
prefer 3 apply force |
|
144 |
prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] |
|
145 |
finite_subset [of _ "Pow (insert x F)", standard]) |
|
146 |
apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) |
|
147 |
done |
|
148 |
||
149 |
theorem n_subsets: |
|
150 |
"finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
|
151 |
by (simp add: n_sub_lemma) |
|
152 |
||
153 |
||
154 |
text{* The binomial theorem (courtesy of Tobias Nipkow): *} |
|
155 |
||
156 |
theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" |
|
157 |
proof (induct n) |
|
158 |
case 0 thus ?case by simp |
|
159 |
next |
|
160 |
case (Suc n) |
|
161 |
have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}" |
|
162 |
by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) |
|
163 |
have decomp2: "{0..n} = {0} \<union> {1..n}" |
|
164 |
by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) |
|
165 |
have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" |
|
166 |
using Suc by simp |
|
167 |
also have "\<dots> = a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) + |
|
168 |
b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" |
|
169 |
by(rule nat_distrib) |
|
170 |
also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) + |
|
171 |
(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))" |
|
19279 | 172 |
by(simp add: setsum_right_distrib mult_ac) |
16732 | 173 |
also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) + |
174 |
(\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))" |
|
175 |
by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le |
|
176 |
del:setsum_cl_ivl_Suc) |
|
177 |
also have "\<dots> = a^(n+1) + b^(n+1) + |
|
178 |
(\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) + |
|
179 |
(\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))" |
|
180 |
by(simp add: decomp2) |
|
181 |
also have |
|
182 |
"\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))" |
|
183 |
by(simp add: nat_distrib setsum_addf binomial.simps) |
|
184 |
also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))" |
|
185 |
using decomp by simp |
|
186 |
finally show ?case by simp |
|
187 |
qed |
|
188 |
||
189 |
end |