src/HOL/HOL.thy
author blanchet
Tue, 09 Aug 2011 09:33:50 +0200
changeset 44092 bf489e54d7f8
parent 44021 7c39c83002b9
child 44121 44adaa6db327
permissions -rw-r--r--
renamed E wrappers for consistency with CASC conventions
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     1
(*  Title:      HOL/HOL.thy
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
     2
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
     3
*)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     4
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
     5
header {* The basis of Higher-Order Logic *}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     6
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15103
diff changeset
     7
theory HOL
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
     8
imports Pure "~~/src/Tools/Code_Generator"
23163
eef345eff987 proper loading of ML files;
wenzelm
parents: 23037
diff changeset
     9
uses
28952
15a4b2cf8c34 made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents: 28856
diff changeset
    10
  ("Tools/hologic.ML")
23171
861f63a35d31 moved IsaPlanner from Provers to Tools;
wenzelm
parents: 23163
diff changeset
    11
  "~~/src/Tools/IsaPlanner/zipper.ML"
861f63a35d31 moved IsaPlanner from Provers to Tools;
wenzelm
parents: 23163
diff changeset
    12
  "~~/src/Tools/IsaPlanner/isand.ML"
861f63a35d31 moved IsaPlanner from Provers to Tools;
wenzelm
parents: 23163
diff changeset
    13
  "~~/src/Tools/IsaPlanner/rw_tools.ML"
861f63a35d31 moved IsaPlanner from Provers to Tools;
wenzelm
parents: 23163
diff changeset
    14
  "~~/src/Tools/IsaPlanner/rw_inst.ML"
30165
6ee87f67d9cd moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
wenzelm
parents: 30160
diff changeset
    15
  "~~/src/Tools/intuitionistic.ML"
30160
5f7b17941730 moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
wenzelm
parents: 30063
diff changeset
    16
  "~~/src/Tools/project_rule.ML"
32733
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
    17
  "~~/src/Tools/cong_tac.ML"
37781
2fbbf0a48cef moved misc legacy stuff from OldGoals to Misc_Legacy;
wenzelm
parents: 37767
diff changeset
    18
  "~~/src/Tools/misc_legacy.ML"
23263
0c227412b285 tuned boostrap
haftmann
parents: 23247
diff changeset
    19
  "~~/src/Provers/hypsubst.ML"
0c227412b285 tuned boostrap
haftmann
parents: 23247
diff changeset
    20
  "~~/src/Provers/splitter.ML"
23163
eef345eff987 proper loading of ML files;
wenzelm
parents: 23037
diff changeset
    21
  "~~/src/Provers/classical.ML"
eef345eff987 proper loading of ML files;
wenzelm
parents: 23037
diff changeset
    22
  "~~/src/Provers/blast.ML"
eef345eff987 proper loading of ML files;
wenzelm
parents: 23037
diff changeset
    23
  "~~/src/Provers/clasimp.ML"
30160
5f7b17941730 moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
wenzelm
parents: 30063
diff changeset
    24
  "~~/src/Tools/coherent.ML"
5f7b17941730 moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
wenzelm
parents: 30063
diff changeset
    25
  "~~/src/Tools/eqsubst.ML"
23163
eef345eff987 proper loading of ML files;
wenzelm
parents: 23037
diff changeset
    26
  "~~/src/Provers/quantifier1.ML"
28952
15a4b2cf8c34 made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents: 28856
diff changeset
    27
  ("Tools/simpdata.ML")
26580
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
    28
  "~~/src/Tools/atomize_elim.ML"
24901
d3cbf79769b9 added first version of user-space type system for class target
haftmann
parents: 24844
diff changeset
    29
  "~~/src/Tools/induct.ML"
27326
d3beec370964 moved src/HOL/Tools/induct_tacs.ML to src/Tools/induct_tacs.ML;
wenzelm
parents: 27212
diff changeset
    30
  ("~~/src/Tools/induct_tacs.ML")
29505
c6d2d23909d1 added HOL-Base image
haftmann
parents: 29105
diff changeset
    31
  ("Tools/recfun_codegen.ML")
39036
dff91b90d74c use definitional CNFs in Metis rather than plain CNF, following a suggestion by Joe Hurd;
blanchet
parents: 39014
diff changeset
    32
  ("Tools/cnf_funcs.ML")
40939
2c150063cd4d setup subtyping/coercions once in HOL.thy, but enable it only later via configuration option;
wenzelm
parents: 40858
diff changeset
    33
  "~~/src/Tools/subtyping.ML"
41827
98eda7ffde79 setup case_product attribute in HOL and FOL
noschinl
parents: 41792
diff changeset
    34
  "~~/src/Tools/case_product.ML"
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15103
diff changeset
    35
begin
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    36
31299
0c5baf034d0e modernized method setup;
wenzelm
parents: 31173
diff changeset
    37
setup {* Intuitionistic.method_setup @{binding iprover} *}
40939
2c150063cd4d setup subtyping/coercions once in HOL.thy, but enable it only later via configuration option;
wenzelm
parents: 40858
diff changeset
    38
setup Subtyping.setup
41827
98eda7ffde79 setup case_product attribute in HOL and FOL
noschinl
parents: 41792
diff changeset
    39
setup Case_Product.setup
33316
6a72af4e84b8 modernized some structure names;
wenzelm
parents: 33308
diff changeset
    40
30165
6ee87f67d9cd moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
wenzelm
parents: 30160
diff changeset
    41
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    42
subsection {* Primitive logic *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    43
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    44
subsubsection {* Core syntax *}
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    45
14854
61bdf2ae4dc5 removed obsolete sort 'logic';
wenzelm
parents: 14749
diff changeset
    46
classes type
36452
d37c6eed8117 renamed command 'defaultsort' to 'default_sort';
wenzelm
parents: 36365
diff changeset
    47
default_sort type
35625
9c818cab0dd0 modernized structure Object_Logic;
wenzelm
parents: 35417
diff changeset
    48
setup {* Object_Logic.add_base_sort @{sort type} *}
25460
b80087af2274 interpretation of typedecls: instantiation to class type
haftmann
parents: 25388
diff changeset
    49
b80087af2274 interpretation of typedecls: instantiation to class type
haftmann
parents: 25388
diff changeset
    50
arities
b80087af2274 interpretation of typedecls: instantiation to class type
haftmann
parents: 25388
diff changeset
    51
  "fun" :: (type, type) type
b80087af2274 interpretation of typedecls: instantiation to class type
haftmann
parents: 25388
diff changeset
    52
  itself :: (type) type
b80087af2274 interpretation of typedecls: instantiation to class type
haftmann
parents: 25388
diff changeset
    53
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    54
typedecl bool
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    55
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    56
judgment
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    57
  Trueprop      :: "bool => prop"                   ("(_)" 5)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    58
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    59
consts
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    60
  True          :: bool
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    61
  False         :: bool
38547
973506fe2dbd tuned declaration order
haftmann
parents: 38525
diff changeset
    62
  Not           :: "bool => bool"                   ("~ _" [40] 40)
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
    63
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
    64
  conj          :: "[bool, bool] => bool"           (infixr "&" 35)
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
    65
  disj          :: "[bool, bool] => bool"           (infixr "|" 30)
38786
e46e7a9cb622 formerly unnamed infix impliciation now named HOL.implies
haftmann
parents: 38773
diff changeset
    66
  implies       :: "[bool, bool] => bool"           (infixr "-->" 25)
38555
bd6359ed1636 deglobalized named HOL constants
haftmann
parents: 38547
diff changeset
    67
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
    68
  eq            :: "['a, 'a] => bool"               (infixl "=" 50)
38708
8915e3ce8655 discontinued obsolete 'global' and 'local' commands;
wenzelm
parents: 38669
diff changeset
    69
11432
8a203ae6efe3 added "The" (definite description operator) (by Larry);
wenzelm
parents: 10489
diff changeset
    70
  The           :: "('a => bool) => 'a"
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    71
  All           :: "('a => bool) => bool"           (binder "ALL " 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    72
  Ex            :: "('a => bool) => bool"           (binder "EX " 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    73
  Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    74
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    75
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    76
subsubsection {* Additional concrete syntax *}
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    77
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 21179
diff changeset
    78
notation (output)
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
    79
  eq  (infix "=" 50)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    80
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    81
abbreviation
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21250
diff changeset
    82
  not_equal :: "['a, 'a] => bool"  (infixl "~=" 50) where
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    83
  "x ~= y == ~ (x = y)"
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    84
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 21179
diff changeset
    85
notation (output)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    86
  not_equal  (infix "~=" 50)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    87
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 21179
diff changeset
    88
notation (xsymbols)
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21250
diff changeset
    89
  Not  ("\<not> _" [40] 40) and
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
    90
  conj  (infixr "\<and>" 35) and
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
    91
  disj  (infixr "\<or>" 30) and
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
    92
  implies  (infixr "\<longrightarrow>" 25) and
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    93
  not_equal  (infix "\<noteq>" 50)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    94
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 21179
diff changeset
    95
notation (HTML output)
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21250
diff changeset
    96
  Not  ("\<not> _" [40] 40) and
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
    97
  conj  (infixr "\<and>" 35) and
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
    98
  disj  (infixr "\<or>" 30) and
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
    99
  not_equal  (infix "\<noteq>" 50)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
   100
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
   101
abbreviation (iff)
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21250
diff changeset
   102
  iff :: "[bool, bool] => bool"  (infixr "<->" 25) where
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
   103
  "A <-> B == A = B"
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
   104
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 21179
diff changeset
   105
notation (xsymbols)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
   106
  iff  (infixr "\<longleftrightarrow>" 25)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19607
diff changeset
   107
41229
d797baa3d57c replaced command 'nonterminals' by slightly modernized version 'nonterminal';
wenzelm
parents: 41184
diff changeset
   108
nonterminal letbinds and letbind
42057
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   109
nonterminal case_pat and case_syn and cases_syn
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   110
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   111
syntax
11432
8a203ae6efe3 added "The" (definite description operator) (by Larry);
wenzelm
parents: 10489
diff changeset
   112
  "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   113
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   114
  "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   115
  ""            :: "letbind => letbinds"                 ("_")
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   116
  "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
36363
ebaa558fc698 syntax precedence for If and Let
huffman
parents: 36297
diff changeset
   117
  "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" [0, 10] 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   118
42057
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   119
  "_case_syntax"      :: "['a, cases_syn] => 'b"              ("(case _ of/ _)" 10)
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   120
  "_case1"            :: "[case_pat, 'b] => case_syn"         ("(2_ =>/ _)" 10)
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   121
  ""                  :: "case_syn => cases_syn"              ("_")
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   122
  "_case2"            :: "[case_syn, cases_syn] => cases_syn" ("_/ | _")
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   123
  "_strip_positions"  :: "'a => case_pat"                     ("_")
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   124
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   125
syntax (xsymbols)
3eba96ff3d3e more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents: 41865
diff changeset
   126
  "_case1" :: "[case_pat, 'b] => case_syn"  ("(2_ \<Rightarrow>/ _)" 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   127
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   128
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34991
diff changeset
   129
  "THE x. P"              == "CONST The (%x. P)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   130
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
   131
print_translation {*
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34991
diff changeset
   132
  [(@{const_syntax The}, fn [Abs abs] =>
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42178
diff changeset
   133
      let val (x, t) = Syntax_Trans.atomic_abs_tr' abs
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34991
diff changeset
   134
      in Syntax.const @{syntax_const "_The"} $ x $ t end)]
446c5063e4fd modernized translations;
wenzelm
parents: 34991
diff changeset
   135
*}  -- {* To avoid eta-contraction of body *}
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
   136
21524
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   137
notation (xsymbols)
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   138
  All  (binder "\<forall>" 10) and
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   139
  Ex  (binder "\<exists>" 10) and
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   140
  Ex1  (binder "\<exists>!" 10)
2372
a2999e19703b fixed alternative quantifier symbol syntax;
wenzelm
parents: 2368
diff changeset
   141
21524
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   142
notation (HTML output)
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   143
  All  (binder "\<forall>" 10) and
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   144
  Ex  (binder "\<exists>" 10) and
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   145
  Ex1  (binder "\<exists>!" 10)
6340
7d5cbd5819a0 HTML output;
wenzelm
parents: 6289
diff changeset
   146
21524
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   147
notation (HOL)
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   148
  All  (binder "! " 10) and
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   149
  Ex  (binder "? " 10) and
7843e2fd14a9 updated (binder) syntax/notation;
wenzelm
parents: 21504
diff changeset
   150
  Ex1  (binder "?! " 10)
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 7220
diff changeset
   151
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 7220
diff changeset
   152
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   153
subsubsection {* Axioms and basic definitions *}
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
   154
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   155
axioms
15380
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   156
  refl:           "t = (t::'a)"
28513
b0b30fd6c264 re-introduces axiom subst
haftmann
parents: 28400
diff changeset
   157
  subst:          "s = t \<Longrightarrow> P s \<Longrightarrow> P t"
15380
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   158
  ext:            "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   159
    -- {*Extensionality is built into the meta-logic, and this rule expresses
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   160
         a related property.  It is an eta-expanded version of the traditional
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   161
         rule, and similar to the ABS rule of HOL*}
6289
062aa156a300 added a commment on the "ext" rule
paulson
parents: 6027
diff changeset
   162
11432
8a203ae6efe3 added "The" (definite description operator) (by Larry);
wenzelm
parents: 10489
diff changeset
   163
  the_eq_trivial: "(THE x. x = a) = (a::'a)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   164
15380
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   165
  impI:           "(P ==> Q) ==> P-->Q"
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   166
  mp:             "[| P-->Q;  P |] ==> Q"
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   167
455cfa766dad proof of subst by S Merz
paulson
parents: 15363
diff changeset
   168
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   169
defs
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   170
  True_def:     "True      == ((%x::bool. x) = (%x. x))"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   171
  All_def:      "All(P)    == (P = (%x. True))"
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11438
diff changeset
   172
  Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   173
  False_def:    "False     == (!P. P)"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   174
  not_def:      "~ P       == P-->False"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   175
  and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   176
  or_def:       "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   177
  Ex1_def:      "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   178
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   179
axioms
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   180
  iff:          "(P-->Q) --> (Q-->P) --> (P=Q)"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   181
  True_or_False:  "(P=True) | (P=False)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   182
14223
0ee05eef881b Added support for making constants final, that is, ensuring that no
skalberg
parents: 14208
diff changeset
   183
finalconsts
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
   184
  eq
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
   185
  implies
14223
0ee05eef881b Added support for making constants final, that is, ensuring that no
skalberg
parents: 14208
diff changeset
   186
  The
22481
79c2724c36b5 added class "default" and expansion axioms for undefined
haftmann
parents: 22473
diff changeset
   187
38525
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   188
definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10) where
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   189
  "If P x y \<equiv> (THE z::'a. (P=True --> z=x) & (P=False --> z=y))"
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   190
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   191
definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b" where
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   192
  "Let s f \<equiv> f s"
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   193
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   194
translations
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   195
  "_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   196
  "let x = a in e"        == "CONST Let a (%x. e)"
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
   197
22481
79c2724c36b5 added class "default" and expansion axioms for undefined
haftmann
parents: 22473
diff changeset
   198
axiomatization
79c2724c36b5 added class "default" and expansion axioms for undefined
haftmann
parents: 22473
diff changeset
   199
  undefined :: 'a
79c2724c36b5 added class "default" and expansion axioms for undefined
haftmann
parents: 22473
diff changeset
   200
29608
564ea783ace8 no base sort in class import
haftmann
parents: 29505
diff changeset
   201
class default =
24901
d3cbf79769b9 added first version of user-space type system for class target
haftmann
parents: 24844
diff changeset
   202
  fixes default :: 'a
4868
843a9f5b3c3d nonterminals;
wenzelm
parents: 4793
diff changeset
   203
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   204
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   205
subsection {* Fundamental rules *}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   206
20973
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
   207
subsubsection {* Equality *}
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   208
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   209
lemma sym: "s = t ==> t = s"
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   210
  by (erule subst) (rule refl)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   211
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   212
lemma ssubst: "t = s ==> P s ==> P t"
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   213
  by (drule sym) (erule subst)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   214
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   215
lemma trans: "[| r=s; s=t |] ==> r=t"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   216
  by (erule subst)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   217
40715
3ba17f07b23c lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents: 40582
diff changeset
   218
lemma trans_sym [Pure.elim?]: "r = s ==> t = s ==> r = t"
3ba17f07b23c lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents: 40582
diff changeset
   219
  by (rule trans [OF _ sym])
3ba17f07b23c lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents: 40582
diff changeset
   220
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   221
lemma meta_eq_to_obj_eq: 
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   222
  assumes meq: "A == B"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   223
  shows "A = B"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   224
  by (unfold meq) (rule refl)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   225
21502
7f3ea2b3bab6 prefer antiquotations over LaTeX macros;
wenzelm
parents: 21486
diff changeset
   226
text {* Useful with @{text erule} for proving equalities from known equalities. *}
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   227
     (* a = b
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   228
        |   |
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   229
        c = d   *)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   230
lemma box_equals: "[| a=b;  a=c;  b=d |] ==> c=d"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   231
apply (rule trans)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   232
apply (rule trans)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   233
apply (rule sym)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   234
apply assumption+
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   235
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   236
15524
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   237
text {* For calculational reasoning: *}
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   238
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   239
lemma forw_subst: "a = b ==> P b ==> P a"
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   240
  by (rule ssubst)
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   241
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   242
lemma back_subst: "P a ==> a = b ==> P b"
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   243
  by (rule subst)
2ef571f80a55 Moved oderings from HOL into the new Orderings.thy
nipkow
parents: 15481
diff changeset
   244
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   245
32733
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
   246
subsubsection {* Congruence rules for application *}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   247
32733
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
   248
text {* Similar to @{text AP_THM} in Gordon's HOL. *}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   249
lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   250
apply (erule subst)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   251
apply (rule refl)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   252
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   253
32733
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
   254
text {* Similar to @{text AP_TERM} in Gordon's HOL and FOL's @{text subst_context}. *}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   255
lemma arg_cong: "x=y ==> f(x)=f(y)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   256
apply (erule subst)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   257
apply (rule refl)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   258
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   259
15655
157f3988f775 arg_cong2 by Norbert Voelker
paulson
parents: 15570
diff changeset
   260
lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d"
157f3988f775 arg_cong2 by Norbert Voelker
paulson
parents: 15570
diff changeset
   261
apply (erule ssubst)+
157f3988f775 arg_cong2 by Norbert Voelker
paulson
parents: 15570
diff changeset
   262
apply (rule refl)
157f3988f775 arg_cong2 by Norbert Voelker
paulson
parents: 15570
diff changeset
   263
done
157f3988f775 arg_cong2 by Norbert Voelker
paulson
parents: 15570
diff changeset
   264
32733
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
   265
lemma cong: "[| f = g; (x::'a) = y |] ==> f x = g y"
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   266
apply (erule subst)+
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   267
apply (rule refl)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   268
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   269
32733
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
   270
ML {* val cong_tac = Cong_Tac.cong_tac @{thm cong} *}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   271
32733
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
   272
71618deaf777 moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents: 32668
diff changeset
   273
subsubsection {* Equality of booleans -- iff *}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   274
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   275
lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   276
  by (iprover intro: iff [THEN mp, THEN mp] impI assms)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   277
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   278
lemma iffD2: "[| P=Q; Q |] ==> P"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   279
  by (erule ssubst)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   280
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   281
lemma rev_iffD2: "[| Q; P=Q |] ==> P"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   282
  by (erule iffD2)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   283
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   284
lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   285
  by (drule sym) (rule iffD2)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   286
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   287
lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   288
  by (drule sym) (rule rev_iffD2)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   289
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   290
lemma iffE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   291
  assumes major: "P=Q"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   292
    and minor: "[| P --> Q; Q --> P |] ==> R"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   293
  shows R
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   294
  by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1])
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   295
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   296
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   297
subsubsection {*True*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   298
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   299
lemma TrueI: "True"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   300
  unfolding True_def by (rule refl)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   301
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   302
lemma eqTrueI: "P ==> P = True"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
   303
  by (iprover intro: iffI TrueI)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   304
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   305
lemma eqTrueE: "P = True ==> P"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   306
  by (erule iffD2) (rule TrueI)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   307
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   308
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   309
subsubsection {*Universal quantifier*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   310
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   311
lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   312
  unfolding All_def by (iprover intro: ext eqTrueI assms)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   313
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   314
lemma spec: "ALL x::'a. P(x) ==> P(x)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   315
apply (unfold All_def)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   316
apply (rule eqTrueE)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   317
apply (erule fun_cong)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   318
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   319
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   320
lemma allE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   321
  assumes major: "ALL x. P(x)"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   322
    and minor: "P(x) ==> R"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   323
  shows R
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   324
  by (iprover intro: minor major [THEN spec])
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   325
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   326
lemma all_dupE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   327
  assumes major: "ALL x. P(x)"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   328
    and minor: "[| P(x); ALL x. P(x) |] ==> R"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   329
  shows R
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   330
  by (iprover intro: minor major major [THEN spec])
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   331
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   332
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   333
subsubsection {* False *}
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   334
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   335
text {*
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   336
  Depends upon @{text spec}; it is impossible to do propositional
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   337
  logic before quantifiers!
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   338
*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   339
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   340
lemma FalseE: "False ==> P"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   341
  apply (unfold False_def)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   342
  apply (erule spec)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   343
  done
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   344
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   345
lemma False_neq_True: "False = True ==> P"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   346
  by (erule eqTrueE [THEN FalseE])
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   347
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   348
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   349
subsubsection {* Negation *}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   350
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   351
lemma notI:
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   352
  assumes "P ==> False"
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   353
  shows "~P"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   354
  apply (unfold not_def)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   355
  apply (iprover intro: impI assms)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   356
  done
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   357
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   358
lemma False_not_True: "False ~= True"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   359
  apply (rule notI)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   360
  apply (erule False_neq_True)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   361
  done
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   362
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   363
lemma True_not_False: "True ~= False"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   364
  apply (rule notI)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   365
  apply (drule sym)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   366
  apply (erule False_neq_True)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   367
  done
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   368
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   369
lemma notE: "[| ~P;  P |] ==> R"
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   370
  apply (unfold not_def)
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   371
  apply (erule mp [THEN FalseE])
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   372
  apply assumption
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   373
  done
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   374
21504
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   375
lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P"
9c97af4a1567 tuned proofs;
wenzelm
parents: 21502
diff changeset
   376
  by (erule notE [THEN notI]) (erule meta_mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   377
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   378
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   379
subsubsection {*Implication*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   380
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   381
lemma impE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   382
  assumes "P-->Q" "P" "Q ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   383
  shows "R"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   384
by (iprover intro: assms mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   385
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   386
(* Reduces Q to P-->Q, allowing substitution in P. *)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   387
lemma rev_mp: "[| P;  P --> Q |] ==> Q"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   388
by (iprover intro: mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   389
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   390
lemma contrapos_nn:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   391
  assumes major: "~Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   392
      and minor: "P==>Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   393
  shows "~P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   394
by (iprover intro: notI minor major [THEN notE])
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   395
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   396
(*not used at all, but we already have the other 3 combinations *)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   397
lemma contrapos_pn:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   398
  assumes major: "Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   399
      and minor: "P ==> ~Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   400
  shows "~P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   401
by (iprover intro: notI minor major notE)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   402
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   403
lemma not_sym: "t ~= s ==> s ~= t"
21250
a268f6288fb6 moved lemma eq_neq_eq_imp_neq to HOL
haftmann
parents: 21218
diff changeset
   404
  by (erule contrapos_nn) (erule sym)
a268f6288fb6 moved lemma eq_neq_eq_imp_neq to HOL
haftmann
parents: 21218
diff changeset
   405
a268f6288fb6 moved lemma eq_neq_eq_imp_neq to HOL
haftmann
parents: 21218
diff changeset
   406
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
a268f6288fb6 moved lemma eq_neq_eq_imp_neq to HOL
haftmann
parents: 21218
diff changeset
   407
  by (erule subst, erule ssubst, assumption)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   408
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   409
(*still used in HOLCF*)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   410
lemma rev_contrapos:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   411
  assumes pq: "P ==> Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   412
      and nq: "~Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   413
  shows "~P"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   414
apply (rule nq [THEN contrapos_nn])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   415
apply (erule pq)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   416
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   417
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   418
subsubsection {*Existential quantifier*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   419
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   420
lemma exI: "P x ==> EX x::'a. P x"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   421
apply (unfold Ex_def)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   422
apply (iprover intro: allI allE impI mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   423
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   424
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   425
lemma exE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   426
  assumes major: "EX x::'a. P(x)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   427
      and minor: "!!x. P(x) ==> Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   428
  shows "Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   429
apply (rule major [unfolded Ex_def, THEN spec, THEN mp])
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   430
apply (iprover intro: impI [THEN allI] minor)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   431
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   432
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   433
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   434
subsubsection {*Conjunction*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   435
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   436
lemma conjI: "[| P; Q |] ==> P&Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   437
apply (unfold and_def)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   438
apply (iprover intro: impI [THEN allI] mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   439
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   440
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   441
lemma conjunct1: "[| P & Q |] ==> P"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   442
apply (unfold and_def)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   443
apply (iprover intro: impI dest: spec mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   444
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   445
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   446
lemma conjunct2: "[| P & Q |] ==> Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   447
apply (unfold and_def)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   448
apply (iprover intro: impI dest: spec mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   449
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   450
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   451
lemma conjE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   452
  assumes major: "P&Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   453
      and minor: "[| P; Q |] ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   454
  shows "R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   455
apply (rule minor)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   456
apply (rule major [THEN conjunct1])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   457
apply (rule major [THEN conjunct2])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   458
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   459
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   460
lemma context_conjI:
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   461
  assumes "P" "P ==> Q" shows "P & Q"
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   462
by (iprover intro: conjI assms)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   463
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   464
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   465
subsubsection {*Disjunction*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   466
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   467
lemma disjI1: "P ==> P|Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   468
apply (unfold or_def)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   469
apply (iprover intro: allI impI mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   470
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   471
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   472
lemma disjI2: "Q ==> P|Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   473
apply (unfold or_def)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   474
apply (iprover intro: allI impI mp)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   475
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   476
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   477
lemma disjE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   478
  assumes major: "P|Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   479
      and minorP: "P ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   480
      and minorQ: "Q ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   481
  shows "R"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   482
by (iprover intro: minorP minorQ impI
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   483
                 major [unfolded or_def, THEN spec, THEN mp, THEN mp])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   484
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   485
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   486
subsubsection {*Classical logic*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   487
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   488
lemma classical:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   489
  assumes prem: "~P ==> P"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   490
  shows "P"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   491
apply (rule True_or_False [THEN disjE, THEN eqTrueE])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   492
apply assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   493
apply (rule notI [THEN prem, THEN eqTrueI])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   494
apply (erule subst)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   495
apply assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   496
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   497
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   498
lemmas ccontr = FalseE [THEN classical, standard]
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   499
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   500
(*notE with premises exchanged; it discharges ~R so that it can be used to
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   501
  make elimination rules*)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   502
lemma rev_notE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   503
  assumes premp: "P"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   504
      and premnot: "~R ==> ~P"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   505
  shows "R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   506
apply (rule ccontr)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   507
apply (erule notE [OF premnot premp])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   508
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   509
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   510
(*Double negation law*)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   511
lemma notnotD: "~~P ==> P"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   512
apply (rule classical)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   513
apply (erule notE)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   514
apply assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   515
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   516
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   517
lemma contrapos_pp:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   518
  assumes p1: "Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   519
      and p2: "~P ==> ~Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   520
  shows "P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   521
by (iprover intro: classical p1 p2 notE)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   522
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   523
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   524
subsubsection {*Unique existence*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   525
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   526
lemma ex1I:
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   527
  assumes "P a" "!!x. P(x) ==> x=a"
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   528
  shows "EX! x. P(x)"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   529
by (unfold Ex1_def, iprover intro: assms exI conjI allI impI)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   530
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   531
text{*Sometimes easier to use: the premises have no shared variables.  Safe!*}
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   532
lemma ex_ex1I:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   533
  assumes ex_prem: "EX x. P(x)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   534
      and eq: "!!x y. [| P(x); P(y) |] ==> x=y"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   535
  shows "EX! x. P(x)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   536
by (iprover intro: ex_prem [THEN exE] ex1I eq)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   537
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   538
lemma ex1E:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   539
  assumes major: "EX! x. P(x)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   540
      and minor: "!!x. [| P(x);  ALL y. P(y) --> y=x |] ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   541
  shows "R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   542
apply (rule major [unfolded Ex1_def, THEN exE])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   543
apply (erule conjE)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   544
apply (iprover intro: minor)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   545
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   546
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   547
lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   548
apply (erule ex1E)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   549
apply (rule exI)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   550
apply assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   551
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   552
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   553
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   554
subsubsection {*THE: definite description operator*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   555
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   556
lemma the_equality:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   557
  assumes prema: "P a"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   558
      and premx: "!!x. P x ==> x=a"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   559
  shows "(THE x. P x) = a"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   560
apply (rule trans [OF _ the_eq_trivial])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   561
apply (rule_tac f = "The" in arg_cong)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   562
apply (rule ext)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   563
apply (rule iffI)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   564
 apply (erule premx)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   565
apply (erule ssubst, rule prema)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   566
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   567
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   568
lemma theI:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   569
  assumes "P a" and "!!x. P x ==> x=a"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   570
  shows "P (THE x. P x)"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   571
by (iprover intro: assms the_equality [THEN ssubst])
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   572
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   573
lemma theI': "EX! x. P x ==> P (THE x. P x)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   574
apply (erule ex1E)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   575
apply (erule theI)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   576
apply (erule allE)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   577
apply (erule mp)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   578
apply assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   579
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   580
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   581
(*Easier to apply than theI: only one occurrence of P*)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   582
lemma theI2:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   583
  assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   584
  shows "Q (THE x. P x)"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   585
by (iprover intro: assms theI)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   586
24553
9b19da7b2b08 added lemma
nipkow
parents: 24506
diff changeset
   587
lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)"
9b19da7b2b08 added lemma
nipkow
parents: 24506
diff changeset
   588
by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)]
9b19da7b2b08 added lemma
nipkow
parents: 24506
diff changeset
   589
           elim:allE impE)
9b19da7b2b08 added lemma
nipkow
parents: 24506
diff changeset
   590
18697
86b3f73e3fd5 declare the1_equality [elim?];
wenzelm
parents: 18689
diff changeset
   591
lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a"
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   592
apply (rule the_equality)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   593
apply  assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   594
apply (erule ex1E)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   595
apply (erule all_dupE)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   596
apply (drule mp)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   597
apply  assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   598
apply (erule ssubst)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   599
apply (erule allE)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   600
apply (erule mp)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   601
apply assumption
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   602
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   603
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   604
lemma the_sym_eq_trivial: "(THE y. x=y) = x"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   605
apply (rule the_equality)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   606
apply (rule refl)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   607
apply (erule sym)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   608
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   609
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   610
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   611
subsubsection {*Classical intro rules for disjunction and existential quantifiers*}
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   612
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   613
lemma disjCI:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   614
  assumes "~Q ==> P" shows "P|Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   615
apply (rule classical)
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   616
apply (iprover intro: assms disjI1 disjI2 notI elim: notE)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   617
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   618
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   619
lemma excluded_middle: "~P | P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   620
by (iprover intro: disjCI)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   621
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   622
text {*
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   623
  case distinction as a natural deduction rule.
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   624
  Note that @{term "~P"} is the second case, not the first
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   625
*}
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
   626
lemma case_split [case_names True False]:
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   627
  assumes prem1: "P ==> Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   628
      and prem2: "~P ==> Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   629
  shows "Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   630
apply (rule excluded_middle [THEN disjE])
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   631
apply (erule prem2)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   632
apply (erule prem1)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   633
done
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
   634
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   635
(*Classical implies (-->) elimination. *)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   636
lemma impCE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   637
  assumes major: "P-->Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   638
      and minor: "~P ==> R" "Q ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   639
  shows "R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   640
apply (rule excluded_middle [of P, THEN disjE])
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   641
apply (iprover intro: minor major [THEN mp])+
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   642
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   643
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   644
(*This version of --> elimination works on Q before P.  It works best for
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   645
  those cases in which P holds "almost everywhere".  Can't install as
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   646
  default: would break old proofs.*)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   647
lemma impCE':
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   648
  assumes major: "P-->Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   649
      and minor: "Q ==> R" "~P ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   650
  shows "R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   651
apply (rule excluded_middle [of P, THEN disjE])
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   652
apply (iprover intro: minor major [THEN mp])+
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   653
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   654
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   655
(*Classical <-> elimination. *)
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   656
lemma iffCE:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   657
  assumes major: "P=Q"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   658
      and minor: "[| P; Q |] ==> R"  "[| ~P; ~Q |] ==> R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   659
  shows "R"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   660
apply (rule major [THEN iffE])
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   661
apply (iprover intro: minor elim: impCE notE)
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   662
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   663
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   664
lemma exCI:
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   665
  assumes "ALL x. ~P(x) ==> P(a)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   666
  shows "EX x. P(x)"
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   667
apply (rule ccontr)
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   668
apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"])
15411
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   669
done
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   670
1d195de59497 removal of HOL_Lemmas
paulson
parents: 15380
diff changeset
   671
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   672
subsubsection {* Intuitionistic Reasoning *}
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   673
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   674
lemma impE':
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   675
  assumes 1: "P --> Q"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   676
    and 2: "Q ==> R"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   677
    and 3: "P --> Q ==> P"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   678
  shows R
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   679
proof -
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   680
  from 3 and 1 have P .
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   681
  with 1 have Q by (rule impE)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   682
  with 2 show R .
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   683
qed
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   684
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   685
lemma allE':
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   686
  assumes 1: "ALL x. P x"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   687
    and 2: "P x ==> ALL x. P x ==> Q"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   688
  shows Q
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   689
proof -
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   690
  from 1 have "P x" by (rule spec)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   691
  from this and 1 show Q by (rule 2)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   692
qed
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   693
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   694
lemma notE':
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   695
  assumes 1: "~ P"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   696
    and 2: "~ P ==> P"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   697
  shows R
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   698
proof -
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   699
  from 2 and 1 have P .
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   700
  with 1 show R by (rule notE)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   701
qed
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   702
22444
fb80fedd192d added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents: 22377
diff changeset
   703
lemma TrueE: "True ==> P ==> P" .
fb80fedd192d added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents: 22377
diff changeset
   704
lemma notFalseE: "~ False ==> P ==> P" .
fb80fedd192d added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents: 22377
diff changeset
   705
22467
c9357ef01168 TrueElim and notTrueElim tested and added as safe elim rules.
dixon
parents: 22445
diff changeset
   706
lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE
15801
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15676
diff changeset
   707
  and [Pure.intro!] = iffI conjI impI TrueI notI allI refl
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15676
diff changeset
   708
  and [Pure.elim 2] = allE notE' impE'
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15676
diff changeset
   709
  and [Pure.intro] = exI disjI2 disjI1
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   710
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   711
lemmas [trans] = trans
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   712
  and [sym] = sym not_sym
15801
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15676
diff changeset
   713
  and [Pure.elim?] = iffD1 iffD2 impE
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   714
28952
15a4b2cf8c34 made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents: 28856
diff changeset
   715
use "Tools/hologic.ML"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   716
11438
3d9222b80989 declare trans [trans] (*overridden in theory Calculation*);
wenzelm
parents: 11432
diff changeset
   717
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   718
subsubsection {* Atomizing meta-level connectives *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   719
28513
b0b30fd6c264 re-introduces axiom subst
haftmann
parents: 28400
diff changeset
   720
axiomatization where
b0b30fd6c264 re-introduces axiom subst
haftmann
parents: 28400
diff changeset
   721
  eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*)
b0b30fd6c264 re-introduces axiom subst
haftmann
parents: 28400
diff changeset
   722
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   723
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   724
proof
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   725
  assume "!!x. P x"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23263
diff changeset
   726
  then show "ALL x. P x" ..
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   727
next
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   728
  assume "ALL x. P x"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   729
  then show "!!x. P x" by (rule allE)
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   730
qed
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   731
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   732
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   733
proof
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   734
  assume r: "A ==> B"
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   735
  show "A --> B" by (rule impI) (rule r)
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   736
next
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   737
  assume "A --> B" and A
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   738
  then show B by (rule mp)
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   739
qed
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   740
14749
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   741
lemma atomize_not: "(A ==> False) == Trueprop (~A)"
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   742
proof
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   743
  assume r: "A ==> False"
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   744
  show "~A" by (rule notI) (rule r)
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   745
next
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   746
  assume "~A" and A
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   747
  then show False by (rule notE)
14749
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   748
qed
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   749
39566
87a5704673f0 Pure equality is a regular cpde operation
haftmann
parents: 39471
diff changeset
   750
lemma atomize_eq [atomize, code]: "(x == y) == Trueprop (x = y)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   751
proof
10432
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   752
  assume "x == y"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   753
  show "x = y" by (unfold `x == y`) (rule refl)
10432
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   754
next
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   755
  assume "x = y"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
   756
  then show "x == y" by (rule eq_reflection)
10432
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   757
qed
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   758
28856
5e009a80fe6d Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents: 28741
diff changeset
   759
lemma atomize_conj [atomize]: "(A &&& B) == Trueprop (A & B)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   760
proof
28856
5e009a80fe6d Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents: 28741
diff changeset
   761
  assume conj: "A &&& B"
19121
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   762
  show "A & B"
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   763
  proof (rule conjI)
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   764
    from conj show A by (rule conjunctionD1)
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   765
    from conj show B by (rule conjunctionD2)
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   766
  qed
11953
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   767
next
19121
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   768
  assume conj: "A & B"
28856
5e009a80fe6d Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents: 28741
diff changeset
   769
  show "A &&& B"
19121
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   770
  proof -
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   771
    from conj show A ..
d7fd5415a781 simplified Pure conjunction;
wenzelm
parents: 19039
diff changeset
   772
    from conj show B ..
11953
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   773
  qed
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   774
qed
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   775
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   776
lemmas [symmetric, rulify] = atomize_all atomize_imp
18832
6ab4de872a70 declare 'defn' rules;
wenzelm
parents: 18757
diff changeset
   777
  and [symmetric, defn] = atomize_all atomize_imp atomize_eq
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   778
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   779
26580
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   780
subsubsection {* Atomizing elimination rules *}
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   781
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   782
setup AtomizeElim.setup
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   783
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   784
lemma atomize_exL[atomize_elim]: "(!!x. P x ==> Q) == ((EX x. P x) ==> Q)"
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   785
  by rule iprover+
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   786
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   787
lemma atomize_conjL[atomize_elim]: "(A ==> B ==> C) == (A & B ==> C)"
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   788
  by rule iprover+
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   789
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   790
lemma atomize_disjL[atomize_elim]: "((A ==> C) ==> (B ==> C) ==> C) == ((A | B ==> C) ==> C)"
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   791
  by rule iprover+
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   792
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   793
lemma atomize_elimL[atomize_elim]: "(!!B. (A ==> B) ==> B) == Trueprop A" ..
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   794
c3e597a476fd Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents: 26555
diff changeset
   795
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   796
subsection {* Package setup *}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   797
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   798
subsubsection {* Sledgehammer setup *}
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   799
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   800
text {*
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   801
Theorems blacklisted to Sledgehammer. These theorems typically produce clauses
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   802
that are prolific (match too many equality or membership literals) and relate to
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   803
seldom-used facts. Some duplicate other rules.
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   804
*}
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   805
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   806
ML {*
36297
6b2b9516a3cd removed obsolete Named_Thm_Set -- Named_Thms provides efficient member operation;
wenzelm
parents: 36246
diff changeset
   807
structure No_ATPs = Named_Thms
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   808
(
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   809
  val name = "no_atp"
36060
4d27652ffb40 reintroduce efficient set structure to collect "no_atp" theorems
blanchet
parents: 35828
diff changeset
   810
  val description = "theorems that should be filtered out by Sledgehammer"
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   811
)
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   812
*}
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   813
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   814
setup {* No_ATPs.setup *}
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   815
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
   816
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   817
subsubsection {* Classical Reasoner setup *}
9529
d9434a9277a4 lemmas atomize = all_eq imp_eq;
wenzelm
parents: 9488
diff changeset
   818
26411
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   819
lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R"
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   820
  by (rule classical) iprover
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   821
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   822
lemma swap: "~ P ==> (~ R ==> P) ==> R"
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   823
  by (rule classical) iprover
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   824
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   825
lemma thin_refl:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   826
  "\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" .
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   827
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   828
ML {*
42799
4e33894aec6d modernized functor names;
wenzelm
parents: 42795
diff changeset
   829
structure Hypsubst = Hypsubst
4e33894aec6d modernized functor names;
wenzelm
parents: 42795
diff changeset
   830
(
21218
38013c3a77a2 tuned hypsubst setup;
wenzelm
parents: 21210
diff changeset
   831
  val dest_eq = HOLogic.dest_eq
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   832
  val dest_Trueprop = HOLogic.dest_Trueprop
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   833
  val dest_imp = HOLogic.dest_imp
26411
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   834
  val eq_reflection = @{thm eq_reflection}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   835
  val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   836
  val imp_intr = @{thm impI}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   837
  val rev_mp = @{thm rev_mp}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   838
  val subst = @{thm subst}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   839
  val sym = @{thm sym}
22129
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
   840
  val thin_refl = @{thm thin_refl};
42799
4e33894aec6d modernized functor names;
wenzelm
parents: 42795
diff changeset
   841
);
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
   842
open Hypsubst;
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   843
42799
4e33894aec6d modernized functor names;
wenzelm
parents: 42795
diff changeset
   844
structure Classical = Classical
4e33894aec6d modernized functor names;
wenzelm
parents: 42795
diff changeset
   845
(
26411
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   846
  val imp_elim = @{thm imp_elim}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   847
  val not_elim = @{thm notE}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   848
  val swap = @{thm swap}
cd74690f3bfb pass imp_elim, swap to classical prover;
wenzelm
parents: 25966
diff changeset
   849
  val classical = @{thm classical}
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   850
  val sizef = Drule.size_of_thm
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   851
  val hyp_subst_tacs = [Hypsubst.hyp_subst_tac]
42799
4e33894aec6d modernized functor names;
wenzelm
parents: 42795
diff changeset
   852
);
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   853
33308
cf62d1690d04 separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents: 33185
diff changeset
   854
structure Basic_Classical: BASIC_CLASSICAL = Classical; 
cf62d1690d04 separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents: 33185
diff changeset
   855
open Basic_Classical;
43560
d1650e3720fd ML antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents: 42802
diff changeset
   856
*}
22129
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
   857
43560
d1650e3720fd ML antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents: 42802
diff changeset
   858
setup {*
d1650e3720fd ML antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents: 42802
diff changeset
   859
  ML_Antiquote.value @{binding claset}
d1650e3720fd ML antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents: 42802
diff changeset
   860
    (Scan.succeed "Classical.claset_of (ML_Context.the_local_context ())")
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   861
*}
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   862
33308
cf62d1690d04 separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents: 33185
diff changeset
   863
setup Classical.setup
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24280
diff changeset
   864
21009
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   865
setup {*
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   866
let
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
   867
  fun non_bool_eq (@{const_name HOL.eq}, Type (_, [T, _])) = T <> @{typ bool}
35389
2be5440f7271 tuned hyp_subst_tac';
wenzelm
parents: 35364
diff changeset
   868
    | non_bool_eq _ = false;
2be5440f7271 tuned hyp_subst_tac';
wenzelm
parents: 35364
diff changeset
   869
  val hyp_subst_tac' =
2be5440f7271 tuned hyp_subst_tac';
wenzelm
parents: 35364
diff changeset
   870
    SUBGOAL (fn (goal, i) =>
2be5440f7271 tuned hyp_subst_tac';
wenzelm
parents: 35364
diff changeset
   871
      if Term.exists_Const non_bool_eq goal
2be5440f7271 tuned hyp_subst_tac';
wenzelm
parents: 35364
diff changeset
   872
      then Hypsubst.hyp_subst_tac i
2be5440f7271 tuned hyp_subst_tac';
wenzelm
parents: 35364
diff changeset
   873
      else no_tac);
21009
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   874
in
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   875
  Hypsubst.hypsubst_setup
35389
2be5440f7271 tuned hyp_subst_tac';
wenzelm
parents: 35364
diff changeset
   876
  (*prevent substitution on bool*)
33369
470a7b233ee5 modernized structure Context_Rules;
wenzelm
parents: 33364
diff changeset
   877
  #> Context_Rules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac)
21009
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   878
end
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   879
*}
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   880
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   881
declare iffI [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   882
  and notI [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   883
  and impI [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   884
  and disjCI [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   885
  and conjI [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   886
  and TrueI [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   887
  and refl [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   888
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   889
declare iffCE [elim!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   890
  and FalseE [elim!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   891
  and impCE [elim!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   892
  and disjE [elim!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   893
  and conjE [elim!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   894
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   895
declare ex_ex1I [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   896
  and allI [intro!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   897
  and the_equality [intro]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   898
  and exI [intro]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   899
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   900
declare exE [elim!]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   901
  allE [elim]
0eae3fb48936 lifted claset setup from ML to Isar level
haftmann
parents: 20973
diff changeset
   902
22377
61610b1beedf tuned ML setup;
wenzelm
parents: 22218
diff changeset
   903
ML {* val HOL_cs = @{claset} *}
19162
67436e2a16df Added setup for "atpset" (a rule set for ATPs).
mengj
parents: 19138
diff changeset
   904
20223
89d2758ecddf tuned proofs;
wenzelm
parents: 20172
diff changeset
   905
lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P"
89d2758ecddf tuned proofs;
wenzelm
parents: 20172
diff changeset
   906
  apply (erule swap)
89d2758ecddf tuned proofs;
wenzelm
parents: 20172
diff changeset
   907
  apply (erule (1) meta_mp)
89d2758ecddf tuned proofs;
wenzelm
parents: 20172
diff changeset
   908
  done
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   909
18689
a50587cd8414 prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents: 18595
diff changeset
   910
declare ex_ex1I [rule del, intro! 2]
a50587cd8414 prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents: 18595
diff changeset
   911
  and ex1I [intro]
a50587cd8414 prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents: 18595
diff changeset
   912
41865
4e8483cc2cc5 declare ext [intro]: Extensionality now available by default
paulson
parents: 41827
diff changeset
   913
declare ext [intro]
4e8483cc2cc5 declare ext [intro]: Extensionality now available by default
paulson
parents: 41827
diff changeset
   914
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   915
lemmas [intro?] = ext
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   916
  and [elim?] = ex1_implies_ex
11977
2e7c54b86763 tuned declaration of rules;
wenzelm
parents: 11953
diff changeset
   917
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   918
(*Better then ex1E for classical reasoner: needs no quantifier duplication!*)
20973
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
   919
lemma alt_ex1E [elim!]:
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   920
  assumes major: "\<exists>!x. P x"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   921
      and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   922
  shows R
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   923
apply (rule ex1E [OF major])
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   924
apply (rule prem)
22129
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
   925
apply (tactic {* ares_tac @{thms allI} 1 *})+
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
   926
apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *})
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
   927
apply iprover
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
   928
done
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   929
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   930
ML {*
42477
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   931
  structure Blast = Blast
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   932
  (
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   933
    structure Classical = Classical
42802
51d7e74f6899 simplified BLAST_DATA;
wenzelm
parents: 42799
diff changeset
   934
    val Trueprop_const = dest_Const @{const Trueprop}
42477
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   935
    val equality_name = @{const_name HOL.eq}
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   936
    val not_name = @{const_name Not}
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   937
    val notE = @{thm notE}
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   938
    val ccontr = @{thm ccontr}
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   939
    val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   940
  );
52fa26b6c524 simplified Blast setup;
wenzelm
parents: 42459
diff changeset
   941
  val blast_tac = Blast.blast_tac;
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   942
*}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   943
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   944
setup Blast.setup
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
   945
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   946
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   947
subsubsection {* Simplifier *}
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   948
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   949
lemma eta_contract_eq: "(%s. f s) = f" ..
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   950
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   951
lemma simp_thms:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   952
  shows not_not: "(~ ~ P) = P"
15354
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   953
  and Not_eq_iff: "((~P) = (~Q)) = (P = Q)"
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   954
  and
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   955
    "(P ~= Q) = (P = (~Q))"
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   956
    "(P | ~P) = True"    "(~P | P) = True"
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   957
    "(x = x) = True"
32068
98acc234d683 tuned code annotations
haftmann
parents: 31998
diff changeset
   958
  and not_True_eq_False [code]: "(\<not> True) = False"
98acc234d683 tuned code annotations
haftmann
parents: 31998
diff changeset
   959
  and not_False_eq_True [code]: "(\<not> False) = True"
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   960
  and
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   961
    "(~P) ~= P"  "P ~= (~P)"
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   962
    "(True=P) = P"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   963
  and eq_True: "(P = True) = P"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   964
  and "(False=P) = (~P)"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   965
  and eq_False: "(P = False) = (\<not> P)"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
   966
  and
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   967
    "(True --> P) = P"  "(False --> P) = True"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   968
    "(P --> True) = True"  "(P --> P) = True"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   969
    "(P --> False) = (~P)"  "(P --> ~P) = (~P)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   970
    "(P & True) = P"  "(True & P) = P"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   971
    "(P & False) = False"  "(False & P) = False"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   972
    "(P & P) = P"  "(P & (P & Q)) = (P & Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   973
    "(P & ~P) = False"    "(~P & P) = False"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   974
    "(P | True) = True"  "(True | P) = True"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   975
    "(P | False) = P"  "(False | P) = P"
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   976
    "(P | P) = P"  "(P | (P | Q)) = (P | Q)" and
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   977
    "(ALL x. P) = P"  "(EX x. P) = P"  "EX x. x=t"  "EX x. t=x"
31166
a90fe83f58ea "{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
nipkow
parents: 31156
diff changeset
   978
  and
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   979
    "!!P. (EX x. x=t & P(x)) = P(t)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   980
    "!!P. (EX x. t=x & P(x)) = P(t)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   981
    "!!P. (ALL x. x=t --> P(x)) = P(t)"
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   982
    "!!P. (ALL x. t=x --> P(x)) = P(t)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
   983
  by (blast, blast, blast, blast, blast, iprover+)
13421
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13412
diff changeset
   984
14201
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   985
lemma disj_absorb: "(A | A) = A"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   986
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   987
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   988
lemma disj_left_absorb: "(A | (A | B)) = (A | B)"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   989
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   990
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   991
lemma conj_absorb: "(A & A) = A"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   992
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   993
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   994
lemma conj_left_absorb: "(A & (A & B)) = (A & B)"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   995
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   996
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   997
lemma eq_ac:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   998
  shows eq_commute: "(a=b) = (b=a)"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   999
    and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1000
    and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+)
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1001
lemma neq_commute: "(a~=b) = (b~=a)" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1002
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1003
lemma conj_comms:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
  1004
  shows conj_commute: "(P&Q) = (Q&P)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1005
    and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1006
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1007
19174
df9de25e87b3 moved the "use" directive
paulson
parents: 19162
diff changeset
  1008
lemmas conj_ac = conj_commute conj_left_commute conj_assoc
df9de25e87b3 moved the "use" directive
paulson
parents: 19162
diff changeset
  1009
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1010
lemma disj_comms:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
  1011
  shows disj_commute: "(P|Q) = (Q|P)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1012
    and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1013
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1014
19174
df9de25e87b3 moved the "use" directive
paulson
parents: 19162
diff changeset
  1015
lemmas disj_ac = disj_commute disj_left_commute disj_assoc
df9de25e87b3 moved the "use" directive
paulson
parents: 19162
diff changeset
  1016
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1017
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1018
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1019
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1020
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1021
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1022
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1023
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1024
lemma imp_conjL: "((P&Q) -->R)  = (P --> (Q --> R))" by iprover
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1025
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1026
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1027
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1028
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1029
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1030
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1031
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1032
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1033
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1034
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1035
  by iprover
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1036
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1037
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1038
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1039
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1040
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1041
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1042
lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1043
  by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1044
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1045
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1046
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1047
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1048
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1049
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1050
  -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1051
  -- {* cases boil down to the same thing. *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1052
  by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1053
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1054
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1055
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1056
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1057
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover
23403
9e1edc15ef52 added Theorem all_not_ex
chaieb
parents: 23389
diff changeset
  1058
lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1059
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
  1060
declare All_def [no_atp]
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24280
diff changeset
  1061
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1062
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1063
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1064
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1065
text {*
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1066
  \medskip The @{text "&"} congruence rule: not included by default!
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1067
  May slow rewrite proofs down by as much as 50\% *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1068
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1069
lemma conj_cong:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1070
    "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1071
  by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1072
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1073
lemma rev_conj_cong:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1074
    "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1075
  by iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1076
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1077
text {* The @{text "|"} congruence rule: not included by default! *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1078
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1079
lemma disj_cong:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1080
    "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1081
  by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1082
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1083
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1084
text {* \medskip if-then-else rules *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1085
32068
98acc234d683 tuned code annotations
haftmann
parents: 31998
diff changeset
  1086
lemma if_True [code]: "(if True then x else y) = x"
38525
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
  1087
  by (unfold If_def) blast
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1088
32068
98acc234d683 tuned code annotations
haftmann
parents: 31998
diff changeset
  1089
lemma if_False [code]: "(if False then x else y) = y"
38525
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
  1090
  by (unfold If_def) blast
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1091
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1092
lemma if_P: "P ==> (if P then x else y) = x"
38525
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
  1093
  by (unfold If_def) blast
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1094
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1095
lemma if_not_P: "~P ==> (if P then x else y) = y"
38525
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
  1096
  by (unfold If_def) blast
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1097
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1098
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1099
  apply (rule case_split [of Q])
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15423
diff changeset
  1100
   apply (simplesubst if_P)
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15423
diff changeset
  1101
    prefer 3 apply (simplesubst if_not_P, blast+)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1102
  done
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1103
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1104
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15423
diff changeset
  1105
by (simplesubst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1106
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35808
diff changeset
  1107
lemmas if_splits [no_atp] = split_if split_if_asm
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1108
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1109
lemma if_cancel: "(if c then x else x) = x"
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15423
diff changeset
  1110
by (simplesubst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1111
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1112
lemma if_eq_cancel: "(if x = y then y else x) = x"
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15423
diff changeset
  1113
by (simplesubst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1114
41792
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  1115
lemma if_bool_eq_conj:
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  1116
"(if P then Q else R) = ((P-->Q) & (~P-->R))"
19796
d86e7b1fc472 quoted "if";
wenzelm
parents: 19656
diff changeset
  1117
  -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *}
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1118
  by (rule split_if)
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1119
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1120
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
19796
d86e7b1fc472 quoted "if";
wenzelm
parents: 19656
diff changeset
  1121
  -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *}
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15423
diff changeset
  1122
  apply (simplesubst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1123
  done
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1124
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1125
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1126
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
  1127
15423
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1128
text {* \medskip let rules for simproc *}
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1129
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1130
lemma Let_folded: "f x \<equiv> g x \<Longrightarrow>  Let x f \<equiv> Let x g"
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1131
  by (unfold Let_def)
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1132
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1133
lemma Let_unfold: "f x \<equiv> g \<Longrightarrow>  Let x f \<equiv> g"
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1134
  by (unfold Let_def)
761a4f8e6ad6 added simproc for Let
schirmer
parents: 15411
diff changeset
  1135
16633
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1136
text {*
16999
307b2ec590ff Turned simp_implies into binary operator.
ballarin
parents: 16775
diff changeset
  1137
  The following copy of the implication operator is useful for
307b2ec590ff Turned simp_implies into binary operator.
ballarin
parents: 16775
diff changeset
  1138
  fine-tuning congruence rules.  It instructs the simplifier to simplify
307b2ec590ff Turned simp_implies into binary operator.
ballarin
parents: 16775
diff changeset
  1139
  its premise.
16633
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1140
*}
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1141
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1142
definition simp_implies :: "[prop, prop] => prop"  (infixr "=simp=>" 1) where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37442
diff changeset
  1143
  "simp_implies \<equiv> op ==>"
16633
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1144
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1145
lemma simp_impliesI:
16633
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1146
  assumes PQ: "(PROP P \<Longrightarrow> PROP Q)"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1147
  shows "PROP P =simp=> PROP Q"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1148
  apply (unfold simp_implies_def)
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1149
  apply (rule PQ)
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1150
  apply assumption
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1151
  done
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1152
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1153
lemma simp_impliesE:
25388
5cd130251825 tuned specifications of 'notation';
wenzelm
parents: 25297
diff changeset
  1154
  assumes PQ: "PROP P =simp=> PROP Q"
16633
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1155
  and P: "PROP P"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1156
  and QR: "PROP Q \<Longrightarrow> PROP R"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1157
  shows "PROP R"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1158
  apply (rule QR)
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1159
  apply (rule PQ [unfolded simp_implies_def])
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1160
  apply (rule P)
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1161
  done
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1162
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1163
lemma simp_implies_cong:
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1164
  assumes PP' :"PROP P == PROP P'"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1165
  and P'QQ': "PROP P' ==> (PROP Q == PROP Q')"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1166
  shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1167
proof (unfold simp_implies_def, rule equal_intr_rule)
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1168
  assume PQ: "PROP P \<Longrightarrow> PROP Q"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1169
  and P': "PROP P'"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1170
  from PP' [symmetric] and P' have "PROP P"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1171
    by (rule equal_elim_rule1)
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1172
  then have "PROP Q" by (rule PQ)
16633
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1173
  with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1)
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1174
next
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1175
  assume P'Q': "PROP P' \<Longrightarrow> PROP Q'"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1176
  and P: "PROP P"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1177
  from PP' and P have P': "PROP P'" by (rule equal_elim_rule1)
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1178
  then have "PROP Q'" by (rule P'Q')
16633
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1179
  with P'QQ' [OF P', symmetric] show "PROP Q"
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1180
    by (rule equal_elim_rule1)
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1181
qed
208ebc9311f2 Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents: 16587
diff changeset
  1182
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1183
lemma uncurry:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1184
  assumes "P \<longrightarrow> Q \<longrightarrow> R"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1185
  shows "P \<and> Q \<longrightarrow> R"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1186
  using assms by blast
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1187
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1188
lemma iff_allI:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1189
  assumes "\<And>x. P x = Q x"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1190
  shows "(\<forall>x. P x) = (\<forall>x. Q x)"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1191
  using assms by blast
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1192
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1193
lemma iff_exI:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1194
  assumes "\<And>x. P x = Q x"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1195
  shows "(\<exists>x. P x) = (\<exists>x. Q x)"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1196
  using assms by blast
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1197
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1198
lemma all_comm:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1199
  "(\<forall>x y. P x y) = (\<forall>y x. P x y)"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1200
  by blast
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1201
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1202
lemma ex_comm:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1203
  "(\<exists>x y. P x y) = (\<exists>y x. P x y)"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1204
  by blast
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1205
28952
15a4b2cf8c34 made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents: 28856
diff changeset
  1206
use "Tools/simpdata.ML"
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1207
ML {* open Simpdata *}
42455
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42453
diff changeset
  1208
42795
66fcc9882784 clarified map_simpset versus Simplifier.map_simpset_global;
wenzelm
parents: 42477
diff changeset
  1209
setup {* Simplifier.map_simpset_global (K HOL_basic_ss) *}
42455
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42453
diff changeset
  1210
42459
38b9f023cc34 misc tuning and simplification;
wenzelm
parents: 42456
diff changeset
  1211
simproc_setup defined_Ex ("EX x. P x") = {* fn _ => Quantifier1.rearrange_ex *}
38b9f023cc34 misc tuning and simplification;
wenzelm
parents: 42456
diff changeset
  1212
simproc_setup defined_All ("ALL x. P x") = {* fn _ => Quantifier1.rearrange_all *}
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1213
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1214
setup {*
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1215
  Simplifier.method_setup Splitter.split_modifiers
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1216
  #> Splitter.setup
26496
49ae9456eba9 purely functional setup of claset/simpset/clasimpset;
wenzelm
parents: 26411
diff changeset
  1217
  #> clasimp_setup
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1218
  #> EqSubst.setup
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1219
*}
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1220
24035
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1221
text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *}
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1222
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1223
simproc_setup neq ("x = y") = {* fn _ =>
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1224
let
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1225
  val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1226
  fun is_neq eq lhs rhs thm =
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1227
    (case Thm.prop_of thm of
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1228
      _ $ (Not $ (eq' $ l' $ r')) =>
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1229
        Not = HOLogic.Not andalso eq' = eq andalso
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1230
        r' aconv lhs andalso l' aconv rhs
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1231
    | _ => false);
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1232
  fun proc ss ct =
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1233
    (case Thm.term_of ct of
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1234
      eq $ lhs $ rhs =>
43597
b4a093e755db tuned signature;
wenzelm
parents: 43560
diff changeset
  1235
        (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of ss) of
24035
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1236
          SOME thm => SOME (thm RS neq_to_EQ_False)
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1237
        | NONE => NONE)
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1238
     | _ => NONE);
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1239
in proc end;
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1240
*}
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1241
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1242
simproc_setup let_simp ("Let x f") = {*
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1243
let
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1244
  val (f_Let_unfold, x_Let_unfold) =
28741
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1245
    let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_unfold}
24035
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1246
    in (cterm_of @{theory} f, cterm_of @{theory} x) end
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1247
  val (f_Let_folded, x_Let_folded) =
28741
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1248
    let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_folded}
24035
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1249
    in (cterm_of @{theory} f, cterm_of @{theory} x) end;
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1250
  val g_Let_folded =
28741
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1251
    let val [(_ $ _ $ (g $ _))] = prems_of @{thm Let_folded}
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1252
    in cterm_of @{theory} g end;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1253
  fun count_loose (Bound i) k = if i >= k then 1 else 0
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1254
    | count_loose (s $ t) k = count_loose s k + count_loose t k
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1255
    | count_loose (Abs (_, _, t)) k = count_loose  t (k + 1)
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1256
    | count_loose _ _ = 0;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1257
  fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) =
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1258
   case t
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1259
    of Abs (_, _, t') => count_loose t' 0 <= 1
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1260
     | _ => true;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1261
in fn _ => fn ss => fn ct => if is_trivial_let (Thm.term_of ct)
31151
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1262
  then SOME @{thm Let_def} (*no or one ocurrence of bound variable*)
28741
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1263
  else let (*Norbert Schirmer's case*)
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1264
    val ctxt = Simplifier.the_context ss;
42361
23f352990944 modernized structure Proof_Context;
wenzelm
parents: 42284
diff changeset
  1265
    val thy = Proof_Context.theory_of ctxt;
28741
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1266
    val t = Thm.term_of ct;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1267
    val ([t'], ctxt') = Variable.import_terms false [t] ctxt;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1268
  in Option.map (hd o Variable.export ctxt' ctxt o single)
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1269
    (case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *)
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1270
      if is_Free x orelse is_Bound x orelse is_Const x
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1271
      then SOME @{thm Let_def}
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1272
      else
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1273
        let
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1274
          val n = case f of (Abs (x, _, _)) => x | _ => "x";
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1275
          val cx = cterm_of thy x;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1276
          val {T = xT, ...} = rep_cterm cx;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1277
          val cf = cterm_of thy f;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1278
          val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1279
          val (_ $ _ $ g) = prop_of fx_g;
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1280
          val g' = abstract_over (x,g);
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1281
        in (if (g aconv g')
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1282
             then
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1283
                let
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1284
                  val rl =
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1285
                    cterm_instantiate [(f_Let_unfold, cf), (x_Let_unfold, cx)] @{thm Let_unfold};
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1286
                in SOME (rl OF [fx_g]) end
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1287
             else if Term.betapply (f, x) aconv g then NONE (*avoid identity conversion*)
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1288
             else let
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1289
                   val abs_g'= Abs (n,xT,g');
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1290
                   val g'x = abs_g'$x;
36945
9bec62c10714 less pervasive names from structure Thm;
wenzelm
parents: 36936
diff changeset
  1291
                   val g_g'x = Thm.symmetric (Thm.beta_conversion false (cterm_of thy g'x));
28741
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1292
                   val rl = cterm_instantiate
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1293
                             [(f_Let_folded, cterm_of thy f), (x_Let_folded, cx),
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1294
                              (g_Let_folded, cterm_of thy abs_g')]
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1295
                             @{thm Let_folded};
36945
9bec62c10714 less pervasive names from structure Thm;
wenzelm
parents: 36936
diff changeset
  1296
                 in SOME (rl OF [Thm.transitive fx_g g_g'x])
28741
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1297
                 end)
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1298
        end
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1299
    | _ => NONE)
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1300
  end
1b257449f804 simproc for let
haftmann
parents: 28699
diff changeset
  1301
end *}
24035
74c032aea9ed simplified ResAtpset via NamedThmsFun;
wenzelm
parents: 23948
diff changeset
  1302
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1303
lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1304
proof
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23263
diff changeset
  1305
  assume "True \<Longrightarrow> PROP P"
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23263
diff changeset
  1306
  from this [OF TrueI] show "PROP P" .
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1307
next
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1308
  assume "PROP P"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23263
diff changeset
  1309
  then show "PROP P" .
21151
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1310
qed
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1311
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1312
lemma ex_simps:
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1313
  "!!P Q. (EX x. P x & Q)   = ((EX x. P x) & Q)"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1314
  "!!P Q. (EX x. P & Q x)   = (P & (EX x. Q x))"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1315
  "!!P Q. (EX x. P x | Q)   = ((EX x. P x) | Q)"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1316
  "!!P Q. (EX x. P | Q x)   = (P | (EX x. Q x))"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1317
  "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1318
  "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1319
  -- {* Miniscoping: pushing in existential quantifiers. *}
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1320
  by (iprover | blast)+
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1321
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1322
lemma all_simps:
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1323
  "!!P Q. (ALL x. P x & Q)   = ((ALL x. P x) & Q)"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1324
  "!!P Q. (ALL x. P & Q x)   = (P & (ALL x. Q x))"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1325
  "!!P Q. (ALL x. P x | Q)   = ((ALL x. P x) | Q)"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1326
  "!!P Q. (ALL x. P | Q x)   = (P | (ALL x. Q x))"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1327
  "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1328
  "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1329
  -- {* Miniscoping: pushing in universal quantifiers. *}
25bd46916c12 simplified reasoning tools setup
haftmann
parents: 21112
diff changeset
  1330
  by (iprover | blast)+
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15423
diff changeset
  1331
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1332
lemmas [simp] =
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1333
  triv_forall_equality (*prunes params*)
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1334
  True_implies_equals  (*prune asms `True'*)
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1335
  if_True
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1336
  if_False
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1337
  if_cancel
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1338
  if_eq_cancel
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1339
  imp_disjL
20973
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
  1340
  (*In general it seems wrong to add distributive laws by default: they
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
  1341
    might cause exponential blow-up.  But imp_disjL has been in for a while
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
  1342
    and cannot be removed without affecting existing proofs.  Moreover,
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
  1343
    rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
  1344
    grounds that it allows simplification of R in the two cases.*)
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1345
  conj_assoc
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1346
  disj_assoc
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1347
  de_Morgan_conj
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1348
  de_Morgan_disj
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1349
  imp_disj1
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1350
  imp_disj2
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1351
  not_imp
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1352
  disj_not1
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1353
  not_all
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1354
  not_ex
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1355
  cases_simp
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1356
  the_eq_trivial
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1357
  the_sym_eq_trivial
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1358
  ex_simps
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1359
  all_simps
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1360
  simp_thms
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1361
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1362
lemmas [cong] = imp_cong simp_implies_cong
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1363
lemmas [split] = split_if
20973
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
  1364
22377
61610b1beedf tuned ML setup;
wenzelm
parents: 22218
diff changeset
  1365
ML {* val HOL_ss = @{simpset} *}
20973
0b8e436ed071 cleaned up HOL bootstrap
haftmann
parents: 20944
diff changeset
  1366
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1367
text {* Simplifies x assuming c and y assuming ~c *}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1368
lemma if_cong:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1369
  assumes "b = c"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1370
      and "c \<Longrightarrow> x = u"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1371
      and "\<not> c \<Longrightarrow> y = v"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1372
  shows "(if b then x else y) = (if c then u else v)"
38525
324219de6ee3 qualified constants Let and If
haftmann
parents: 37877
diff changeset
  1373
  using assms by simp
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1374
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1375
text {* Prevents simplification of x and y:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1376
  faster and allows the execution of functional programs. *}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1377
lemma if_weak_cong [cong]:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1378
  assumes "b = c"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1379
  shows "(if b then x else y) = (if c then x else y)"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1380
  using assms by (rule arg_cong)
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1381
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1382
text {* Prevents simplification of t: much faster *}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1383
lemma let_weak_cong:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1384
  assumes "a = b"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1385
  shows "(let x = a in t x) = (let x = b in t x)"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1386
  using assms by (rule arg_cong)
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1387
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1388
text {* To tidy up the result of a simproc.  Only the RHS will be simplified. *}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1389
lemma eq_cong2:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1390
  assumes "u = u'"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1391
  shows "(t \<equiv> u) \<equiv> (t \<equiv> u')"
23553
af8ae54238f5 use hologic.ML in basic HOL context;
wenzelm
parents: 23530
diff changeset
  1392
  using assms by simp
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1393
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1394
lemma if_distrib:
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1395
  "f (if c then x else y) = (if c then f x else f y)"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1396
  by simp
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1397
17459
9a3925c07392 added code generator setup (from Main.thy);
wenzelm
parents: 17404
diff changeset
  1398
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1399
subsubsection {* Generic cases and induction *}
17459
9a3925c07392 added code generator setup (from Main.thy);
wenzelm
parents: 17404
diff changeset
  1400
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1401
text {* Rule projections: *}
18887
6ad81e3fa478 Added "evaluation" method and oracle.
berghofe
parents: 18867
diff changeset
  1402
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1403
ML {*
32172
c4e55f30d527 renamed functor ProjectRuleFun to Project_Rule;
wenzelm
parents: 32171
diff changeset
  1404
structure Project_Rule = Project_Rule
25388
5cd130251825 tuned specifications of 'notation';
wenzelm
parents: 25297
diff changeset
  1405
(
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1406
  val conjunct1 = @{thm conjunct1}
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1407
  val conjunct2 = @{thm conjunct2}
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1408
  val mp = @{thm mp}
25388
5cd130251825 tuned specifications of 'notation';
wenzelm
parents: 25297
diff changeset
  1409
)
17459
9a3925c07392 added code generator setup (from Main.thy);
wenzelm
parents: 17404
diff changeset
  1410
*}
9a3925c07392 added code generator setup (from Main.thy);
wenzelm
parents: 17404
diff changeset
  1411
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1412
definition induct_forall where
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1413
  "induct_forall P == \<forall>x. P x"
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1414
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1415
definition induct_implies where
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1416
  "induct_implies A B == A \<longrightarrow> B"
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1417
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1418
definition induct_equal where
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1419
  "induct_equal x y == x = y"
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1420
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1421
definition induct_conj where
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1422
  "induct_conj A B == A \<and> B"
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1423
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1424
definition induct_true where
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1425
  "induct_true == True"
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1426
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1427
definition induct_false where
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1428
  "induct_false == False"
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1429
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1430
lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1431
  by (unfold atomize_all induct_forall_def)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1432
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1433
lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1434
  by (unfold atomize_imp induct_implies_def)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1435
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1436
lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1437
  by (unfold atomize_eq induct_equal_def)
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1438
28856
5e009a80fe6d Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents: 28741
diff changeset
  1439
lemma induct_conj_eq: "(A &&& B) == Trueprop (induct_conj A B)"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1440
  by (unfold atomize_conj induct_conj_def)
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1441
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1442
lemmas induct_atomize' = induct_forall_eq induct_implies_eq induct_conj_eq
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1443
lemmas induct_atomize = induct_atomize' induct_equal_eq
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1444
lemmas induct_rulify' [symmetric, standard] = induct_atomize'
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1445
lemmas induct_rulify [symmetric, standard] = induct_atomize
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1446
lemmas induct_rulify_fallback =
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1447
  induct_forall_def induct_implies_def induct_equal_def induct_conj_def
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1448
  induct_true_def induct_false_def
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1449
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1450
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1451
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1452
    induct_conj (induct_forall A) (induct_forall B)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1453
  by (unfold induct_forall_def induct_conj_def) iprover
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1454
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1455
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1456
    induct_conj (induct_implies C A) (induct_implies C B)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17459
diff changeset
  1457
  by (unfold induct_implies_def induct_conj_def) iprover
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1458
13598
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
  1459
lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
  1460
proof
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
  1461
  assume r: "induct_conj A B ==> PROP C" and A B
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1462
  show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`)
13598
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
  1463
next
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
  1464
  assume r: "A ==> B ==> PROP C" and "induct_conj A B"
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1465
  show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def])
13598
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
  1466
qed
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1467
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
  1468
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1469
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1470
lemma induct_trueI: "induct_true"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1471
  by (simp add: induct_true_def)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1472
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1473
text {* Method setup. *}
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1474
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1475
ML {*
32171
220abde9962b renamed functor InductFun to Induct;
wenzelm
parents: 32149
diff changeset
  1476
structure Induct = Induct
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1477
(
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1478
  val cases_default = @{thm case_split}
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1479
  val atomize = @{thms induct_atomize}
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1480
  val rulify = @{thms induct_rulify'}
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1481
  val rulify_fallback = @{thms induct_rulify_fallback}
34988
cca208c8d619 Added setup for simplification of equality constraints in cases rules.
berghofe
parents: 34917
diff changeset
  1482
  val equal_def = @{thm induct_equal_def}
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1483
  fun dest_def (Const (@{const_name induct_equal}, _) $ t $ u) = SOME (t, u)
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1484
    | dest_def _ = NONE
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1485
  val trivial_tac = match_tac @{thms induct_trueI}
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1486
)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1487
*}
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
  1488
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1489
setup {*
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1490
  Induct.setup #>
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1491
  Context.theory_map (Induct.map_simpset (fn ss => ss
36543
0e7fc5bf38de proper context for mksimps etc. -- via simpset of the running Simplifier;
wenzelm
parents: 36532
diff changeset
  1492
    setmksimps (fn ss => Simpdata.mksimps Simpdata.mksimps_pairs ss #>
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1493
      map (Simplifier.rewrite_rule (map Thm.symmetric
36641
83d4e01ebda5 induct_true_def and induct_false_def are already contained in induct_rulify_fallback.
berghofe
parents: 36543
diff changeset
  1494
        @{thms induct_rulify_fallback})))
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1495
    addsimprocs
38715
6513ea67d95d renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
wenzelm
parents: 38708
diff changeset
  1496
      [Simplifier.simproc_global @{theory} "swap_induct_false"
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1497
         ["induct_false ==> PROP P ==> PROP Q"]
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1498
         (fn _ => fn _ =>
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1499
            (fn _ $ (P as _ $ @{const induct_false}) $ (_ $ Q $ _) =>
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1500
                  if P <> Q then SOME Drule.swap_prems_eq else NONE
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1501
              | _ => NONE)),
38715
6513ea67d95d renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
wenzelm
parents: 38708
diff changeset
  1502
       Simplifier.simproc_global @{theory} "induct_equal_conj_curry"
34908
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1503
         ["induct_conj P Q ==> PROP R"]
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1504
         (fn _ => fn _ =>
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1505
            (fn _ $ (_ $ P) $ _ =>
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1506
                let
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1507
                  fun is_conj (@{const induct_conj} $ P $ Q) =
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1508
                        is_conj P andalso is_conj Q
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1509
                    | is_conj (Const (@{const_name induct_equal}, _) $ _ $ _) = true
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1510
                    | is_conj @{const induct_true} = true
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1511
                    | is_conj @{const induct_false} = true
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1512
                    | is_conj _ = false
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1513
                in if is_conj P then SOME @{thm induct_conj_curry} else NONE end
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1514
              | _ => NONE))]))
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1515
*}
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1516
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1517
text {* Pre-simplification of induction and cases rules *}
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1518
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1519
lemma [induct_simp]: "(!!x. induct_equal x t ==> PROP P x) == PROP P t"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1520
  unfolding induct_equal_def
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1521
proof
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1522
  assume R: "!!x. x = t ==> PROP P x"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1523
  show "PROP P t" by (rule R [OF refl])
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1524
next
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1525
  fix x assume "PROP P t" "x = t"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1526
  then show "PROP P x" by simp
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1527
qed
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1528
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1529
lemma [induct_simp]: "(!!x. induct_equal t x ==> PROP P x) == PROP P t"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1530
  unfolding induct_equal_def
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1531
proof
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1532
  assume R: "!!x. t = x ==> PROP P x"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1533
  show "PROP P t" by (rule R [OF refl])
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1534
next
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1535
  fix x assume "PROP P t" "t = x"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1536
  then show "PROP P x" by simp
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1537
qed
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1538
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1539
lemma [induct_simp]: "(induct_false ==> P) == Trueprop induct_true"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1540
  unfolding induct_false_def induct_true_def
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1541
  by (iprover intro: equal_intr_rule)
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1542
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1543
lemma [induct_simp]: "(induct_true ==> PROP P) == PROP P"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1544
  unfolding induct_true_def
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1545
proof
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1546
  assume R: "True \<Longrightarrow> PROP P"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1547
  from TrueI show "PROP P" by (rule R)
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1548
next
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1549
  assume "PROP P"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1550
  then show "PROP P" .
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1551
qed
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1552
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1553
lemma [induct_simp]: "(PROP P ==> induct_true) == Trueprop induct_true"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1554
  unfolding induct_true_def
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1555
  by (iprover intro: equal_intr_rule)
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1556
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1557
lemma [induct_simp]: "(!!x. induct_true) == Trueprop induct_true"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1558
  unfolding induct_true_def
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1559
  by (iprover intro: equal_intr_rule)
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1560
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1561
lemma [induct_simp]: "induct_implies induct_true P == P"
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1562
  by (simp add: induct_implies_def induct_true_def)
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1563
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1564
lemma [induct_simp]: "(x = x) = True" 
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1565
  by (rule simp_thms)
d546e75631bb Added setup for simplification of equality constraints in induction rules.
berghofe
parents: 34294
diff changeset
  1566
36176
3fe7e97ccca8 replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents: 36060
diff changeset
  1567
hide_const induct_forall induct_implies induct_equal induct_conj induct_true induct_false
18457
356a9f711899 structure ProjectRule;
wenzelm
parents: 17992
diff changeset
  1568
27326
d3beec370964 moved src/HOL/Tools/induct_tacs.ML to src/Tools/induct_tacs.ML;
wenzelm
parents: 27212
diff changeset
  1569
use "~~/src/Tools/induct_tacs.ML"
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1570
setup InductTacs.setup
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1571
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1572
28325
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1573
subsubsection {* Coherent logic *}
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1574
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1575
ML {*
32734
06c13b2e562e misc tuning and modernization;
wenzelm
parents: 32733
diff changeset
  1576
structure Coherent = Coherent
28325
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1577
(
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1578
  val atomize_elimL = @{thm atomize_elimL}
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1579
  val atomize_exL = @{thm atomize_exL}
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1580
  val atomize_conjL = @{thm atomize_conjL}
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1581
  val atomize_disjL = @{thm atomize_disjL}
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1582
  val operator_names =
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
  1583
    [@{const_name HOL.disj}, @{const_name HOL.conj}, @{const_name Ex}]
28325
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1584
);
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1585
*}
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1586
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1587
setup Coherent.setup
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1588
0b6b83ec8458 Added setup for coherent logic prover.
berghofe
parents: 28227
diff changeset
  1589
31024
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1590
subsubsection {* Reorienting equalities *}
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1591
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1592
ML {*
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1593
signature REORIENT_PROC =
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1594
sig
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1595
  val add : (term -> bool) -> theory -> theory
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1596
  val proc : morphism -> simpset -> cterm -> thm option
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1597
end;
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1598
33523
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1599
structure Reorient_Proc : REORIENT_PROC =
31024
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1600
struct
33523
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1601
  structure Data = Theory_Data
31024
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1602
  (
33523
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1603
    type T = ((term -> bool) * stamp) list;
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1604
    val empty = [];
31024
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1605
    val extend = I;
33523
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1606
    fun merge data : T = Library.merge (eq_snd op =) data;
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1607
  );
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1608
  fun add m = Data.map (cons (m, stamp ()));
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1609
  fun matches thy t = exists (fn (m, _) => m t) (Data.get thy);
31024
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1610
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1611
  val meta_reorient = @{thm eq_commute [THEN eq_reflection]};
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1612
  fun proc phi ss ct =
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1613
    let
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1614
      val ctxt = Simplifier.the_context ss;
42361
23f352990944 modernized structure Proof_Context;
wenzelm
parents: 42284
diff changeset
  1615
      val thy = Proof_Context.theory_of ctxt;
31024
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1616
    in
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1617
      case Thm.term_of ct of
33523
96730ad673be modernized structure Reorient_Proc;
wenzelm
parents: 33369
diff changeset
  1618
        (_ $ t $ u) => if matches thy u then NONE else SOME meta_reorient
31024
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1619
      | _ => NONE
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1620
    end;
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1621
end;
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1622
*}
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1623
0fdf666e08bf reimplement reorientation simproc using theory data
huffman
parents: 30980
diff changeset
  1624
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1625
subsection {* Other simple lemmas and lemma duplicates *}
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1626
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1627
lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1628
  by blast+
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1629
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1630
lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1631
  apply (rule iffI)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1632
  apply (rule_tac a = "%x. THE y. P x y" in ex1I)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1633
  apply (fast dest!: theI')
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1634
  apply (fast intro: ext the1_equality [symmetric])
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1635
  apply (erule ex1E)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1636
  apply (rule allI)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1637
  apply (rule ex1I)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1638
  apply (erule spec)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1639
  apply (erule_tac x = "%z. if z = x then y else f z" in allE)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1640
  apply (erule impE)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1641
  apply (rule allI)
27126
3ede9103de8e eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents: 27107
diff changeset
  1642
  apply (case_tac "xa = x")
20944
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1643
  apply (drule_tac [3] x = x in fun_cong, simp_all)
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1644
  done
34b2c1bb7178 cleanup basic HOL bootstrap
haftmann
parents: 20833
diff changeset
  1645
22218
30a8890d2967 dropped lemma duplicates in HOL.thy
haftmann
parents: 22129
diff changeset
  1646
lemmas eq_sym_conv = eq_commute
30a8890d2967 dropped lemma duplicates in HOL.thy
haftmann
parents: 22129
diff changeset
  1647
23037
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  1648
lemma nnf_simps:
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  1649
  "(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" 
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  1650
  "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))" 
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  1651
  "(\<not> \<not>(P)) = P"
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  1652
by blast+
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  1653
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1654
subsection {* Basic ML bindings *}
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1655
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1656
ML {*
22129
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1657
val FalseE = @{thm FalseE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1658
val Let_def = @{thm Let_def}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1659
val TrueI = @{thm TrueI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1660
val allE = @{thm allE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1661
val allI = @{thm allI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1662
val all_dupE = @{thm all_dupE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1663
val arg_cong = @{thm arg_cong}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1664
val box_equals = @{thm box_equals}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1665
val ccontr = @{thm ccontr}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1666
val classical = @{thm classical}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1667
val conjE = @{thm conjE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1668
val conjI = @{thm conjI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1669
val conjunct1 = @{thm conjunct1}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1670
val conjunct2 = @{thm conjunct2}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1671
val disjCI = @{thm disjCI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1672
val disjE = @{thm disjE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1673
val disjI1 = @{thm disjI1}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1674
val disjI2 = @{thm disjI2}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1675
val eq_reflection = @{thm eq_reflection}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1676
val ex1E = @{thm ex1E}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1677
val ex1I = @{thm ex1I}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1678
val ex1_implies_ex = @{thm ex1_implies_ex}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1679
val exE = @{thm exE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1680
val exI = @{thm exI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1681
val excluded_middle = @{thm excluded_middle}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1682
val ext = @{thm ext}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1683
val fun_cong = @{thm fun_cong}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1684
val iffD1 = @{thm iffD1}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1685
val iffD2 = @{thm iffD2}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1686
val iffI = @{thm iffI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1687
val impE = @{thm impE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1688
val impI = @{thm impI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1689
val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1690
val mp = @{thm mp}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1691
val notE = @{thm notE}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1692
val notI = @{thm notI}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1693
val not_all = @{thm not_all}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1694
val not_ex = @{thm not_ex}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1695
val not_iff = @{thm not_iff}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1696
val not_not = @{thm not_not}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1697
val not_sym = @{thm not_sym}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1698
val refl = @{thm refl}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1699
val rev_mp = @{thm rev_mp}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1700
val spec = @{thm spec}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1701
val ssubst = @{thm ssubst}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1702
val subst = @{thm subst}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1703
val sym = @{thm sym}
bb2203c93316 tuned ML setup;
wenzelm
parents: 21671
diff changeset
  1704
val trans = @{thm trans}
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1705
*}
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1706
39036
dff91b90d74c use definitional CNFs in Metis rather than plain CNF, following a suggestion by Joe Hurd;
blanchet
parents: 39014
diff changeset
  1707
use "Tools/cnf_funcs.ML"
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  1708
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1709
subsection {* Code generator setup *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1710
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1711
subsubsection {* SML code generator setup *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1712
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1713
use "Tools/recfun_codegen.ML"
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1714
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1715
setup {*
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1716
  Codegen.setup
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1717
  #> RecfunCodegen.setup
32068
98acc234d683 tuned code annotations
haftmann
parents: 31998
diff changeset
  1718
  #> Codegen.map_unfold (K HOL_basic_ss)
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1719
*}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1720
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1721
types_code
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1722
  "bool"  ("bool")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1723
attach (term_of) {*
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1724
fun term_of_bool b = if b then HOLogic.true_const else HOLogic.false_const;
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1725
*}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1726
attach (test) {*
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1727
fun gen_bool i =
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1728
  let val b = one_of [false, true]
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1729
  in (b, fn () => term_of_bool b) end;
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1730
*}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1731
  "prop"  ("bool")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1732
attach (term_of) {*
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1733
fun term_of_prop b =
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1734
  HOLogic.mk_Trueprop (if b then HOLogic.true_const else HOLogic.false_const);
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1735
*}
28400
89904cfd41c3 polished code generator setup
haftmann
parents: 28346
diff changeset
  1736
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1737
consts_code
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1738
  "Trueprop" ("(_)")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1739
  "True"    ("true")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1740
  "False"   ("false")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1741
  "Not"     ("Bool.not")
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
  1742
  HOL.disj    ("(_ orelse/ _)")
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
  1743
  HOL.conj    ("(_ andalso/ _)")
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1744
  "If"      ("(if _/ then _/ else _)")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1745
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1746
setup {*
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1747
let
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1748
42411
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  1749
fun eq_codegen thy mode defs dep thyname b t gr =
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1750
    (case strip_comb t of
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
  1751
       (Const (@{const_name HOL.eq}, Type (_, [Type ("fun", _), _])), _) => NONE
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
  1752
     | (Const (@{const_name HOL.eq}, _), [t, u]) =>
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1753
          let
42411
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  1754
            val (pt, gr') = Codegen.invoke_codegen thy mode defs dep thyname false t gr;
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  1755
            val (pu, gr'') = Codegen.invoke_codegen thy mode defs dep thyname false u gr';
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  1756
            val (_, gr''') =
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  1757
              Codegen.invoke_tycodegen thy mode defs dep thyname false HOLogic.boolT gr'';
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1758
          in
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1759
            SOME (Codegen.parens
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1760
              (Pretty.block [pt, Codegen.str " =", Pretty.brk 1, pu]), gr''')
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1761
          end
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
  1762
     | (t as Const (@{const_name HOL.eq}, _), ts) => SOME (Codegen.invoke_codegen
42411
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  1763
         thy mode defs dep thyname b (Codegen.eta_expand t ts 2) gr)
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1764
     | _ => NONE);
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1765
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1766
in
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1767
  Codegen.add_codegen "eq_codegen" eq_codegen
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1768
end
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1769
*}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1770
31151
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1771
subsubsection {* Generic code generator preprocessor setup *}
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1772
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1773
setup {*
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1774
  Code_Preproc.map_pre (K HOL_basic_ss)
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1775
  #> Code_Preproc.map_post (K HOL_basic_ss)
37442
037ee7b712b2 added code_simp infrastructure
haftmann
parents: 37421
diff changeset
  1776
  #> Code_Simp.map_ss (K HOL_basic_ss)
31151
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1777
*}
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1778
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1779
subsubsection {* Equality *}
24844
98c006a30218 certificates for code generator case expressions
haftmann
parents: 24842
diff changeset
  1780
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1781
class equal =
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1782
  fixes equal :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1783
  assumes equal_eq: "equal x y \<longleftrightarrow> x = y"
26513
6f306c8c2c54 explicit class "eq" for operational equality
haftmann
parents: 26496
diff changeset
  1784
begin
6f306c8c2c54 explicit class "eq" for operational equality
haftmann
parents: 26496
diff changeset
  1785
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1786
lemma equal [code_unfold, code_inline del]: "equal = (op =)"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1787
  by (rule ext equal_eq)+
28346
b8390cd56b8f discontinued special treatment of op = vs. eq_class.eq
haftmann
parents: 28325
diff changeset
  1788
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1789
lemma equal_refl: "equal x x \<longleftrightarrow> True"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1790
  unfolding equal by rule+
28346
b8390cd56b8f discontinued special treatment of op = vs. eq_class.eq
haftmann
parents: 28325
diff changeset
  1791
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1792
lemma eq_equal: "(op =) \<equiv> equal"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1793
  by (rule eq_reflection) (rule ext, rule ext, rule sym, rule equal_eq)
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1794
26513
6f306c8c2c54 explicit class "eq" for operational equality
haftmann
parents: 26496
diff changeset
  1795
end
6f306c8c2c54 explicit class "eq" for operational equality
haftmann
parents: 26496
diff changeset
  1796
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1797
declare eq_equal [symmetric, code_post]
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1798
declare eq_equal [code]
30966
55104c664185 avoid local [code]
haftmann
parents: 30947
diff changeset
  1799
31151
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1800
setup {*
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1801
  Code_Preproc.map_pre (fn simpset =>
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
  1802
    simpset addsimprocs [Simplifier.simproc_global_i @{theory} "equal" [@{term HOL.eq}]
40842
6c7d2a8761ed simplified HOL.eq simproc matching;
wenzelm
parents: 40715
diff changeset
  1803
      (fn thy => fn _ =>
6c7d2a8761ed simplified HOL.eq simproc matching;
wenzelm
parents: 40715
diff changeset
  1804
        fn Const (_, Type ("fun", [Type _, _])) => SOME @{thm eq_equal} | _ => NONE)])
31151
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1805
*}
1c64b0827ee8 rewrite op = == eq handled by simproc
haftmann
parents: 31132
diff changeset
  1806
30966
55104c664185 avoid local [code]
haftmann
parents: 30947
diff changeset
  1807
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1808
subsubsection {* Generic code generator foundation *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1809
39421
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1810
text {* Datatype @{typ bool} *}
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1811
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1812
code_datatype True False
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1813
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1814
lemma [code]:
33185
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1815
  shows "False \<and> P \<longleftrightarrow> False"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1816
    and "True \<and> P \<longleftrightarrow> P"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1817
    and "P \<and> False \<longleftrightarrow> False"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1818
    and "P \<and> True \<longleftrightarrow> P" by simp_all
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1819
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1820
lemma [code]:
33185
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1821
  shows "False \<or> P \<longleftrightarrow> P"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1822
    and "True \<or> P \<longleftrightarrow> True"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1823
    and "P \<or> False \<longleftrightarrow> P"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1824
    and "P \<or> True \<longleftrightarrow> True" by simp_all
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1825
33185
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1826
lemma [code]:
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1827
  shows "(False \<longrightarrow> P) \<longleftrightarrow> True"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1828
    and "(True \<longrightarrow> P) \<longleftrightarrow> P"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1829
    and "(P \<longrightarrow> False) \<longleftrightarrow> \<not> P"
247f6c6969d9 tuned code setup for primitive boolean connectors
haftmann
parents: 33084
diff changeset
  1830
    and "(P \<longrightarrow> True) \<longleftrightarrow> True" by simp_all
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1831
39421
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1832
text {* More about @{typ prop} *}
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1833
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1834
lemma [code nbe]:
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1835
  shows "(True \<Longrightarrow> PROP Q) \<equiv> PROP Q" 
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1836
    and "(PROP Q \<Longrightarrow> True) \<equiv> Trueprop True"
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1837
    and "(P \<Longrightarrow> R) \<equiv> Trueprop (P \<longrightarrow> R)" by (auto intro!: equal_intr_rule)
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1838
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1839
lemma Trueprop_code [code]:
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1840
  "Trueprop True \<equiv> Code_Generator.holds"
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1841
  by (auto intro!: equal_intr_rule holds)
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1842
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1843
declare Trueprop_code [symmetric, code_post]
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1844
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1845
text {* Equality *}
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1846
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1847
declare simp_thms(6) [code nbe]
b6a77cffc231 introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents: 39403
diff changeset
  1848
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1849
instantiation itself :: (type) equal
31132
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1850
begin
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1851
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1852
definition equal_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool" where
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1853
  "equal_itself x y \<longleftrightarrow> x = y"
31132
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1854
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1855
instance proof
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1856
qed (fact equal_itself_def)
31132
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1857
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1858
end
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1859
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1860
lemma equal_itself_code [code]:
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1861
  "equal TYPE('a) TYPE('a) \<longleftrightarrow> True"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1862
  by (simp add: equal)
31132
bfafc204042a itself is instance of eq
haftmann
parents: 31125
diff changeset
  1863
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1864
setup {*
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1865
  Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a\<Colon>type \<Rightarrow> 'a \<Rightarrow> bool"})
31956
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1866
*}
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1867
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1868
lemma equal_alias_cert: "OFCLASS('a, equal_class) \<equiv> ((op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool) \<equiv> equal)" (is "?ofclass \<equiv> ?equal")
31956
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1869
proof
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1870
  assume "PROP ?ofclass"
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1871
  show "PROP ?equal"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1872
    by (tactic {* ALLGOALS (rtac (Thm.unconstrainT @{thm eq_equal})) *})
31956
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1873
      (fact `PROP ?ofclass`)
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1874
next
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1875
  assume "PROP ?equal"
31956
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1876
  show "PROP ?ofclass" proof
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1877
  qed (simp add: `PROP ?equal`)
31956
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1878
qed
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1879
  
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1880
setup {*
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1881
  Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a\<Colon>equal \<Rightarrow> 'a \<Rightarrow> bool"})
31956
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1882
*}
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1883
c3844c4d0c2c more accurate certificates for constant aliasses
haftmann
parents: 31902
diff changeset
  1884
setup {*
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1885
  Nbe.add_const_alias @{thm equal_alias_cert}
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1886
*}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1887
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1888
text {* Cases *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1889
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1890
lemma Let_case_cert:
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1891
  assumes "CASE \<equiv> (\<lambda>x. Let x f)"
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1892
  shows "CASE x \<equiv> f x"
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1893
  using assms by simp_all
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1894
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1895
setup {*
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1896
  Code.add_case @{thm Let_case_cert}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1897
  #> Code.add_undefined @{const_name undefined}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1898
*}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1899
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1900
code_abort undefined
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1901
38972
cd747b068311 tuned text segment
haftmann
parents: 38944
diff changeset
  1902
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1903
subsubsection {* Generic code generator target languages *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1904
38972
cd747b068311 tuned text segment
haftmann
parents: 38944
diff changeset
  1905
text {* type @{typ bool} *}
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1906
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1907
code_type bool
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1908
  (SML "bool")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1909
  (OCaml "bool")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1910
  (Haskell "Bool")
34294
19c1fd52d6c9 a primitive scala serializer
haftmann
parents: 34209
diff changeset
  1911
  (Scala "Boolean")
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1912
42420
8a09dfeb2cec making the evaluation of HOL.implies lazy even in strict languages by mapping it to an if statement
bulwahn
parents: 42361
diff changeset
  1913
code_const True and False and Not and HOL.conj and HOL.disj and HOL.implies and If 
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1914
  (SML "true" and "false" and "not"
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1915
    and infixl 1 "andalso" and infixl 0 "orelse"
42420
8a09dfeb2cec making the evaluation of HOL.implies lazy even in strict languages by mapping it to an if statement
bulwahn
parents: 42361
diff changeset
  1916
    and "!(if (_)/ then (_)/ else true)"
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1917
    and "!(if (_)/ then (_)/ else (_))")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1918
  (OCaml "true" and "false" and "not"
39715
9094200d7988 corrected OCaml operator precedence
haftmann
parents: 39566
diff changeset
  1919
    and infixl 3 "&&" and infixl 2 "||"
42420
8a09dfeb2cec making the evaluation of HOL.implies lazy even in strict languages by mapping it to an if statement
bulwahn
parents: 42361
diff changeset
  1920
    and "!(if (_)/ then (_)/ else true)"
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1921
    and "!(if (_)/ then (_)/ else (_))")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1922
  (Haskell "True" and "False" and "not"
42178
b992c8e6394b corrected infix precedence for boolean operators in Haskell
haftmann
parents: 42057
diff changeset
  1923
    and infixr 3 "&&" and infixr 2 "||"
42420
8a09dfeb2cec making the evaluation of HOL.implies lazy even in strict languages by mapping it to an if statement
bulwahn
parents: 42361
diff changeset
  1924
    and "!(if (_)/ then (_)/ else True)"
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1925
    and "!(if (_)/ then (_)/ else (_))")
38773
f9837065b5e8 prevent line breaks after Scala symbolic operators
haftmann
parents: 38715
diff changeset
  1926
  (Scala "true" and "false" and "'! _"
34305
25ff5e139a1d boolean operators for scala
haftmann
parents: 34294
diff changeset
  1927
    and infixl 3 "&&" and infixl 1 "||"
42420
8a09dfeb2cec making the evaluation of HOL.implies lazy even in strict languages by mapping it to an if statement
bulwahn
parents: 42361
diff changeset
  1928
    and "!(if ((_))/ (_)/ else true)"
34305
25ff5e139a1d boolean operators for scala
haftmann
parents: 34294
diff changeset
  1929
    and "!(if ((_))/ (_)/ else (_))")
34294
19c1fd52d6c9 a primitive scala serializer
haftmann
parents: 34209
diff changeset
  1930
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1931
code_reserved SML
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1932
  bool true false not
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1933
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1934
code_reserved OCaml
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1935
  bool not
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1936
34294
19c1fd52d6c9 a primitive scala serializer
haftmann
parents: 34209
diff changeset
  1937
code_reserved Scala
19c1fd52d6c9 a primitive scala serializer
haftmann
parents: 34209
diff changeset
  1938
  Boolean
19c1fd52d6c9 a primitive scala serializer
haftmann
parents: 34209
diff changeset
  1939
39026
962d12bc546c avoid cyclic modules
haftmann
parents: 38972
diff changeset
  1940
code_modulename SML Pure HOL
962d12bc546c avoid cyclic modules
haftmann
parents: 38972
diff changeset
  1941
code_modulename OCaml Pure HOL
962d12bc546c avoid cyclic modules
haftmann
parents: 38972
diff changeset
  1942
code_modulename Haskell Pure HOL
962d12bc546c avoid cyclic modules
haftmann
parents: 38972
diff changeset
  1943
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1944
text {* using built-in Haskell equality *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1945
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1946
code_class equal
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1947
  (Haskell "Eq")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1948
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38795
diff changeset
  1949
code_const "HOL.equal"
39272
0b61951d2682 Haskell == is infix, not infixl
haftmann
parents: 39159
diff changeset
  1950
  (Haskell infix 4 "==")
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1951
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38857
diff changeset
  1952
code_const HOL.eq
39272
0b61951d2682 Haskell == is infix, not infixl
haftmann
parents: 39159
diff changeset
  1953
  (Haskell infix 4 "==")
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1954
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1955
text {* undefined *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1956
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1957
code_const undefined
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1958
  (SML "!(raise/ Fail/ \"undefined\")")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1959
  (OCaml "failwith/ \"undefined\"")
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1960
  (Haskell "error/ \"undefined\"")
34886
873c31d9f10d some syntax setup for Scala
haftmann
parents: 34873
diff changeset
  1961
  (Scala "!error(\"undefined\")")
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1962
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1963
subsubsection {* Evaluation and normalization by evaluation *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1964
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1965
ML {*
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1966
fun gen_eval_method conv ctxt = SIMPLE_METHOD'
42426
7ec150fcf3dc explicit context for Codegen.eval_term etc.;
wenzelm
parents: 42422
diff changeset
  1967
  (CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 (conv ctxt))) ctxt)
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1968
    THEN' rtac TrueI)
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1969
*}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1970
42426
7ec150fcf3dc explicit context for Codegen.eval_term etc.;
wenzelm
parents: 42422
diff changeset
  1971
method_setup eval = {*
7ec150fcf3dc explicit context for Codegen.eval_term etc.;
wenzelm
parents: 42422
diff changeset
  1972
  Scan.succeed (gen_eval_method (Code_Runtime.dynamic_holds_conv o Proof_Context.theory_of))
7ec150fcf3dc explicit context for Codegen.eval_term etc.;
wenzelm
parents: 42422
diff changeset
  1973
*} "solve goal by evaluation"
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1974
42426
7ec150fcf3dc explicit context for Codegen.eval_term etc.;
wenzelm
parents: 42422
diff changeset
  1975
method_setup evaluation = {*
7ec150fcf3dc explicit context for Codegen.eval_term etc.;
wenzelm
parents: 42422
diff changeset
  1976
  Scan.succeed (gen_eval_method Codegen.evaluation_conv)
7ec150fcf3dc explicit context for Codegen.eval_term etc.;
wenzelm
parents: 42422
diff changeset
  1977
*} "solve goal by evaluation"
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1978
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1979
method_setup normalization = {*
41247
c5cb19ecbd41 avoid slightly odd Conv.tap_thy
haftmann
parents: 41184
diff changeset
  1980
  Scan.succeed (fn ctxt => SIMPLE_METHOD'
42361
23f352990944 modernized structure Proof_Context;
wenzelm
parents: 42284
diff changeset
  1981
    (CHANGED_PROP o (CONVERSION (Nbe.dynamic_conv (Proof_Context.theory_of ctxt))
41247
c5cb19ecbd41 avoid slightly odd Conv.tap_thy
haftmann
parents: 41184
diff changeset
  1982
      THEN' (fn k => TRY (rtac TrueI k)))))
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1983
*} "solve goal by normalization"
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1984
31902
862ae16a799d renamed NamedThmsFun to Named_Thms;
wenzelm
parents: 31804
diff changeset
  1985
33084
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  1986
subsection {* Counterexample Search Units *}
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  1987
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1988
subsubsection {* Quickcheck *}
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1989
33084
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  1990
quickcheck_params [size = 5, iterations = 50]
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  1991
30929
d9343c0aac11 code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents: 30927
diff changeset
  1992
33084
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  1993
subsubsection {* Nitpick setup *}
30309
188f0658af9f Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
blanchet
parents: 30254
diff changeset
  1994
29863
dadad1831e9d Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents: 29608
diff changeset
  1995
ML {*
41792
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  1996
structure Nitpick_Unfolds = Named_Thms
30254
7b8afdfa2f83 Second try at adding "nitpick_const_def" attribute.
blanchet
parents: 30242
diff changeset
  1997
(
41792
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  1998
  val name = "nitpick_unfold"
30254
7b8afdfa2f83 Second try at adding "nitpick_const_def" attribute.
blanchet
parents: 30242
diff changeset
  1999
  val description = "alternative definitions of constants as needed by Nitpick"
7b8afdfa2f83 Second try at adding "nitpick_const_def" attribute.
blanchet
parents: 30242
diff changeset
  2000
)
33056
791a4655cae3 renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
blanchet
parents: 33022
diff changeset
  2001
structure Nitpick_Simps = Named_Thms
29863
dadad1831e9d Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents: 29608
diff changeset
  2002
(
33056
791a4655cae3 renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
blanchet
parents: 33022
diff changeset
  2003
  val name = "nitpick_simp"
29869
a7a8b90cd882 Renamed descriptions of Nitpick (and ATP) attributes, so that they fit well with the rest of the sentence in ProofGeneral.
blanchet
parents: 29868
diff changeset
  2004
  val description = "equational specification of constants as needed by Nitpick"
29863
dadad1831e9d Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents: 29608
diff changeset
  2005
)
33056
791a4655cae3 renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
blanchet
parents: 33022
diff changeset
  2006
structure Nitpick_Psimps = Named_Thms
29863
dadad1831e9d Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents: 29608
diff changeset
  2007
(
33056
791a4655cae3 renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
blanchet
parents: 33022
diff changeset
  2008
  val name = "nitpick_psimp"
29869
a7a8b90cd882 Renamed descriptions of Nitpick (and ATP) attributes, so that they fit well with the rest of the sentence in ProofGeneral.
blanchet
parents: 29868
diff changeset
  2009
  val description = "partial equational specification of constants as needed by Nitpick"
29863
dadad1831e9d Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents: 29608
diff changeset
  2010
)
35807
e4d1b5cbd429 added support for "specification" and "ax_specification" constructs to Nitpick
blanchet
parents: 35625
diff changeset
  2011
structure Nitpick_Choice_Specs = Named_Thms
e4d1b5cbd429 added support for "specification" and "ax_specification" constructs to Nitpick
blanchet
parents: 35625
diff changeset
  2012
(
35808
df56c1b1680f fix typo in "nitpick_choice_spec" attribute name (singular, not plural)
blanchet
parents: 35807
diff changeset
  2013
  val name = "nitpick_choice_spec"
35807
e4d1b5cbd429 added support for "specification" and "ax_specification" constructs to Nitpick
blanchet
parents: 35625
diff changeset
  2014
  val description = "choice specification of constants as needed by Nitpick"
e4d1b5cbd429 added support for "specification" and "ax_specification" constructs to Nitpick
blanchet
parents: 35625
diff changeset
  2015
)
29863
dadad1831e9d Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents: 29608
diff changeset
  2016
*}
30980
fe0855471964 misc cleanup of auto_solve and quickcheck:
wenzelm
parents: 30970
diff changeset
  2017
fe0855471964 misc cleanup of auto_solve and quickcheck:
wenzelm
parents: 30970
diff changeset
  2018
setup {*
41792
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  2019
  Nitpick_Unfolds.setup
33056
791a4655cae3 renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
blanchet
parents: 33022
diff changeset
  2020
  #> Nitpick_Simps.setup
791a4655cae3 renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
blanchet
parents: 33022
diff changeset
  2021
  #> Nitpick_Psimps.setup
35807
e4d1b5cbd429 added support for "specification" and "ax_specification" constructs to Nitpick
blanchet
parents: 35625
diff changeset
  2022
  #> Nitpick_Choice_Specs.setup
30980
fe0855471964 misc cleanup of auto_solve and quickcheck:
wenzelm
parents: 30970
diff changeset
  2023
*}
fe0855471964 misc cleanup of auto_solve and quickcheck:
wenzelm
parents: 30970
diff changeset
  2024
41792
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  2025
declare if_bool_eq_conj [nitpick_unfold, no_atp]
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  2026
        if_bool_eq_disj [no_atp]
ff3cb0c418b7 renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents: 41636
diff changeset
  2027
29863
dadad1831e9d Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents: 29608
diff changeset
  2028
33084
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2029
subsection {* Preprocessing for the predicate compiler *}
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2030
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2031
ML {*
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2032
structure Predicate_Compile_Alternative_Defs = Named_Thms
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2033
(
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2034
  val name = "code_pred_def"
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2035
  val description = "alternative definitions of constants for the Predicate Compiler"
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2036
)
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2037
structure Predicate_Compile_Inline_Defs = Named_Thms
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2038
(
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2039
  val name = "code_pred_inline"
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2040
  val description = "inlining definitions for the Predicate Compiler"
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2041
)
36246
43fecedff8cf added peephole optimisations to the predicate compiler; added structure Predicate_Compile_Simps for peephole optimisations
bulwahn
parents: 36176
diff changeset
  2042
structure Predicate_Compile_Simps = Named_Thms
43fecedff8cf added peephole optimisations to the predicate compiler; added structure Predicate_Compile_Simps for peephole optimisations
bulwahn
parents: 36176
diff changeset
  2043
(
43fecedff8cf added peephole optimisations to the predicate compiler; added structure Predicate_Compile_Simps for peephole optimisations
bulwahn
parents: 36176
diff changeset
  2044
  val name = "code_pred_simp"
43fecedff8cf added peephole optimisations to the predicate compiler; added structure Predicate_Compile_Simps for peephole optimisations
bulwahn
parents: 36176
diff changeset
  2045
  val description = "simplification rules for the optimisations in the Predicate Compiler"
43fecedff8cf added peephole optimisations to the predicate compiler; added structure Predicate_Compile_Simps for peephole optimisations
bulwahn
parents: 36176
diff changeset
  2046
)
33084
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2047
*}
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2048
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2049
setup {*
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2050
  Predicate_Compile_Alternative_Defs.setup
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2051
  #> Predicate_Compile_Inline_Defs.setup
36246
43fecedff8cf added peephole optimisations to the predicate compiler; added structure Predicate_Compile_Simps for peephole optimisations
bulwahn
parents: 36176
diff changeset
  2052
  #> Predicate_Compile_Simps.setup
33084
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2053
*}
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2054
cd1579e0997a turned off old quickcheck
haftmann
parents: 33056
diff changeset
  2055
22839
ede26eb5e549 dropped HOL.ML
haftmann
parents: 22744
diff changeset
  2056
subsection {* Legacy tactics and ML bindings *}
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2057
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2058
ML {*
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2059
fun strip_tac i = REPEAT (resolve_tac [impI, allI] i);
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2060
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2061
(* combination of (spec RS spec RS ...(j times) ... spec RS mp) *)
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2062
local
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
  2063
  fun wrong_prem (Const (@{const_name All}, _) $ Abs (_, _, t)) = wrong_prem t
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2064
    | wrong_prem (Bound _) = true
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2065
    | wrong_prem _ = false;
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2066
  val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of);
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2067
in
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2068
  fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]);
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2069
  fun smp_tac j = EVERY'[dresolve_tac (smp j), atac];
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2070
end;
22839
ede26eb5e549 dropped HOL.ML
haftmann
parents: 22744
diff changeset
  2071
39159
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2072
val all_conj_distrib = @{thm all_conj_distrib};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2073
val all_simps = @{thms all_simps};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2074
val atomize_not = @{thm atomize_not};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2075
val case_split = @{thm case_split};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2076
val cases_simp = @{thm cases_simp};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2077
val choice_eq = @{thm choice_eq};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2078
val cong = @{thm cong};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2079
val conj_comms = @{thms conj_comms};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2080
val conj_cong = @{thm conj_cong};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2081
val de_Morgan_conj = @{thm de_Morgan_conj};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2082
val de_Morgan_disj = @{thm de_Morgan_disj};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2083
val disj_assoc = @{thm disj_assoc};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2084
val disj_comms = @{thms disj_comms};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2085
val disj_cong = @{thm disj_cong};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2086
val eq_ac = @{thms eq_ac};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2087
val eq_cong2 = @{thm eq_cong2}
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2088
val Eq_FalseI = @{thm Eq_FalseI};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2089
val Eq_TrueI = @{thm Eq_TrueI};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2090
val Ex1_def = @{thm Ex1_def};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2091
val ex_disj_distrib = @{thm ex_disj_distrib};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2092
val ex_simps = @{thms ex_simps};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2093
val if_cancel = @{thm if_cancel};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2094
val if_eq_cancel = @{thm if_eq_cancel};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2095
val if_False = @{thm if_False};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2096
val iff_conv_conj_imp = @{thm iff_conv_conj_imp};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2097
val iff = @{thm iff};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2098
val if_splits = @{thms if_splits};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2099
val if_True = @{thm if_True};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2100
val if_weak_cong = @{thm if_weak_cong};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2101
val imp_all = @{thm imp_all};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2102
val imp_cong = @{thm imp_cong};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2103
val imp_conjL = @{thm imp_conjL};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2104
val imp_conjR = @{thm imp_conjR};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2105
val imp_conv_disj = @{thm imp_conv_disj};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2106
val simp_implies_def = @{thm simp_implies_def};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2107
val simp_thms = @{thms simp_thms};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2108
val split_if = @{thm split_if};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2109
val the1_equality = @{thm the1_equality};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2110
val theI = @{thm theI};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2111
val theI' = @{thm theI'};
0dec18004e75 more antiquotations;
wenzelm
parents: 39039
diff changeset
  2112
val True_implies_equals = @{thm True_implies_equals};
23037
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  2113
val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"})
6c72943a71b1 added a set of NNF normalization lemmas and nnf_conv
chaieb
parents: 22993
diff changeset
  2114
21671
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2115
*}
f7d652ffef09 removed legacy ML bindings;
wenzelm
parents: 21547
diff changeset
  2116
38866
8ffb9f541285 hide all-too-popular constant name eq
haftmann
parents: 38864
diff changeset
  2117
hide_const (open) eq equal
8ffb9f541285 hide all-too-popular constant name eq
haftmann
parents: 38864
diff changeset
  2118
14357
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  2119
end