| author | blanchet | 
| Thu, 26 Sep 2013 13:42:14 +0200 | |
| changeset 53917 | bf74357f91f8 | 
| parent 53374 | a14d2a854c02 | 
| child 54147 | 97a8ff4e4ac9 | 
| permissions | -rw-r--r-- | 
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 1 | (* Title: HOL/Set_Interval.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 2 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 3 | Author: Clemens Ballarin | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 4 | Author: Jeremy Avigad | 
| 8924 | 5 | |
| 13735 | 6 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 51334 | 7 | |
| 8 | Modern convention: Ixy stands for an interval where x and y | |
| 9 | describe the lower and upper bound and x,y : {c,o,i}
 | |
| 10 | where c = closed, o = open, i = infinite. | |
| 11 | Examples: Ico = {_ ..< _} and Ici = {_ ..}
 | |
| 8924 | 12 | *) | 
| 13 | ||
| 14577 | 14 | header {* Set intervals *}
 | 
| 15 | ||
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 16 | theory Set_Interval | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 17 | imports Int Nat_Transfer | 
| 15131 | 18 | begin | 
| 8924 | 19 | |
| 24691 | 20 | context ord | 
| 21 | begin | |
| 44008 | 22 | |
| 24691 | 23 | definition | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 24 |   lessThan    :: "'a => 'a set" ("(1{..<_})") where
 | 
| 25062 | 25 |   "{..<u} == {x. x < u}"
 | 
| 24691 | 26 | |
| 27 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 28 |   atMost      :: "'a => 'a set" ("(1{.._})") where
 | 
| 25062 | 29 |   "{..u} == {x. x \<le> u}"
 | 
| 24691 | 30 | |
| 31 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 32 |   greaterThan :: "'a => 'a set" ("(1{_<..})") where
 | 
| 25062 | 33 |   "{l<..} == {x. l<x}"
 | 
| 24691 | 34 | |
| 35 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 36 |   atLeast     :: "'a => 'a set" ("(1{_..})") where
 | 
| 25062 | 37 |   "{l..} == {x. l\<le>x}"
 | 
| 24691 | 38 | |
| 39 | definition | |
| 25062 | 40 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 41 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 42 | |
| 43 | definition | |
| 25062 | 44 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 45 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 46 | |
| 47 | definition | |
| 25062 | 48 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 49 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 50 | |
| 51 | definition | |
| 25062 | 52 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 53 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 54 | |
| 55 | end | |
| 8924 | 56 | |
| 13735 | 57 | |
| 15048 | 58 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 59 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 60 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 61 | |
| 14418 | 62 | syntax | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 63 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 64 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 65 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 66 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 67 | |
| 30372 | 68 | syntax (xsymbols) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 69 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 70 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 71 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 72 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 73 | |
| 30372 | 74 | syntax (latex output) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 75 |   "_UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 76 |   "_UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ < _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 77 |   "_INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 78 |   "_INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ < _)/ _)" [0, 0, 10] 10)
 | 
| 14418 | 79 | |
| 80 | translations | |
| 81 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 82 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 83 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 84 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 85 | |
| 86 | ||
| 14485 | 87 | subsection {* Various equivalences *}
 | 
| 13735 | 88 | |
| 25062 | 89 | lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 13850 | 90 | by (simp add: lessThan_def) | 
| 13735 | 91 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 92 | lemma Compl_lessThan [simp]: | 
| 13735 | 93 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 94 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 95 | done | 
| 96 | ||
| 13850 | 97 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 98 | by auto | |
| 13735 | 99 | |
| 25062 | 100 | lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 13850 | 101 | by (simp add: greaterThan_def) | 
| 13735 | 102 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 103 | lemma Compl_greaterThan [simp]: | 
| 13735 | 104 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 105 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 106 | |
| 13850 | 107 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 108 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 109 | apply (rule double_complement) | 
| 13735 | 110 | done | 
| 111 | ||
| 25062 | 112 | lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 13850 | 113 | by (simp add: atLeast_def) | 
| 13735 | 114 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 115 | lemma Compl_atLeast [simp]: | 
| 13735 | 116 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 117 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 118 | |
| 25062 | 119 | lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 13850 | 120 | by (simp add: atMost_def) | 
| 13735 | 121 | |
| 14485 | 122 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 123 | by (blast intro: order_antisym) | |
| 13850 | 124 | |
| 50999 | 125 | lemma (in linorder) lessThan_Int_lessThan: "{ a <..} \<inter> { b <..} = { max a b <..}"
 | 
| 126 | by auto | |
| 127 | ||
| 128 | lemma (in linorder) greaterThan_Int_greaterThan: "{..< a} \<inter> {..< b} = {..< min a b}"
 | |
| 129 | by auto | |
| 13850 | 130 | |
| 14485 | 131 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 132 | |
| 133 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 134 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 135 | by (blast intro: order_trans) | 
| 13850 | 136 | |
| 137 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 139 | by (blast intro: order_antisym order_trans) | 
| 140 | ||
| 141 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 142 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 143 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 144 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 145 | done | 
| 146 | ||
| 147 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 148 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 149 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | apply (erule equalityE) | 
| 29709 | 151 | apply simp_all | 
| 13850 | 152 | done | 
| 153 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 154 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 155 | by (blast intro: order_trans) | 
| 156 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 158 | by (blast intro: order_antisym order_trans) | 
| 159 | ||
| 160 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 161 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 162 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 163 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 164 | done | 
| 165 | ||
| 166 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 167 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 168 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 169 | apply (erule equalityE) | 
| 29709 | 170 | apply simp_all | 
| 13735 | 171 | done | 
| 172 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 173 | lemma lessThan_strict_subset_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 174 | fixes m n :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 175 |   shows "{..<m} < {..<n} \<longleftrightarrow> m < n"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 176 | by (metis leD lessThan_subset_iff linorder_linear not_less_iff_gr_or_eq psubset_eq) | 
| 13735 | 177 | |
| 13850 | 178 | subsection {*Two-sided intervals*}
 | 
| 13735 | 179 | |
| 24691 | 180 | context ord | 
| 181 | begin | |
| 182 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 183 | lemma greaterThanLessThan_iff [simp,no_atp]: | 
| 25062 | 184 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 185 | by (simp add: greaterThanLessThan_def) | 
| 186 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 187 | lemma atLeastLessThan_iff [simp,no_atp]: | 
| 25062 | 188 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 189 | by (simp add: atLeastLessThan_def) | 
| 190 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 191 | lemma greaterThanAtMost_iff [simp,no_atp]: | 
| 25062 | 192 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 193 | by (simp add: greaterThanAtMost_def) | 
| 194 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 195 | lemma atLeastAtMost_iff [simp,no_atp]: | 
| 25062 | 196 |   "(i : {l..u}) = (l <= i & i <= u)"
 | 
| 13735 | 197 | by (simp add: atLeastAtMost_def) | 
| 198 | ||
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 199 | text {* The above four lemmas could be declared as iffs. Unfortunately this
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 200 | breaks many proofs. Since it only helps blast, it is better to leave them | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 201 | alone. *} | 
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 202 | |
| 50999 | 203 | lemma greaterThanLessThan_eq: "{ a <..< b} = { a <..} \<inter> {..< b }"
 | 
| 204 | by auto | |
| 205 | ||
| 24691 | 206 | end | 
| 13735 | 207 | |
| 32400 | 208 | subsubsection{* Emptyness, singletons, subset *}
 | 
| 15554 | 209 | |
| 24691 | 210 | context order | 
| 211 | begin | |
| 15554 | 212 | |
| 32400 | 213 | lemma atLeastatMost_empty[simp]: | 
| 214 |   "b < a \<Longrightarrow> {a..b} = {}"
 | |
| 215 | by(auto simp: atLeastAtMost_def atLeast_def atMost_def) | |
| 216 | ||
| 217 | lemma atLeastatMost_empty_iff[simp]: | |
| 218 |   "{a..b} = {} \<longleftrightarrow> (~ a <= b)"
 | |
| 219 | by auto (blast intro: order_trans) | |
| 220 | ||
| 221 | lemma atLeastatMost_empty_iff2[simp]: | |
| 222 |   "{} = {a..b} \<longleftrightarrow> (~ a <= b)"
 | |
| 223 | by auto (blast intro: order_trans) | |
| 224 | ||
| 225 | lemma atLeastLessThan_empty[simp]: | |
| 226 |   "b <= a \<Longrightarrow> {a..<b} = {}"
 | |
| 227 | by(auto simp: atLeastLessThan_def) | |
| 24691 | 228 | |
| 32400 | 229 | lemma atLeastLessThan_empty_iff[simp]: | 
| 230 |   "{a..<b} = {} \<longleftrightarrow> (~ a < b)"
 | |
| 231 | by auto (blast intro: le_less_trans) | |
| 232 | ||
| 233 | lemma atLeastLessThan_empty_iff2[simp]: | |
| 234 |   "{} = {a..<b} \<longleftrightarrow> (~ a < b)"
 | |
| 235 | by auto (blast intro: le_less_trans) | |
| 15554 | 236 | |
| 32400 | 237 | lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 238 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 239 | ||
| 32400 | 240 | lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> ~ k < l"
 | 
| 241 | by auto (blast intro: less_le_trans) | |
| 242 | ||
| 243 | lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> ~ k < l"
 | |
| 244 | by auto (blast intro: less_le_trans) | |
| 245 | ||
| 29709 | 246 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 17719 | 247 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 248 | ||
| 25062 | 249 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 250 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 251 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 252 | lemma atLeastAtMost_singleton': "a = b \<Longrightarrow> {a .. b} = {a}" by simp
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 253 | |
| 32400 | 254 | lemma atLeastatMost_subset_iff[simp]: | 
| 255 |   "{a..b} <= {c..d} \<longleftrightarrow> (~ a <= b) | c <= a & b <= d"
 | |
| 256 | unfolding atLeastAtMost_def atLeast_def atMost_def | |
| 257 | by (blast intro: order_trans) | |
| 258 | ||
| 259 | lemma atLeastatMost_psubset_iff: | |
| 260 |   "{a..b} < {c..d} \<longleftrightarrow>
 | |
| 261 | ((~ a <= b) | c <= a & b <= d & (c < a | b < d)) & c <= d" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 262 | by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans) | 
| 32400 | 263 | |
| 51334 | 264 | lemma Icc_eq_Icc[simp]: | 
| 265 |   "{l..h} = {l'..h'} = (l=l' \<and> h=h' \<or> \<not> l\<le>h \<and> \<not> l'\<le>h')"
 | |
| 266 | by(simp add: order_class.eq_iff)(auto intro: order_trans) | |
| 267 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 268 | lemma atLeastAtMost_singleton_iff[simp]: | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 269 |   "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 270 | proof | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 271 |   assume "{a..b} = {c}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 272 | hence *: "\<not> (\<not> a \<le> b)" unfolding atLeastatMost_empty_iff[symmetric] by simp | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 273 |   with `{a..b} = {c}` have "c \<le> a \<and> b \<le> c" by auto
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 274 | with * show "a = b \<and> b = c" by auto | 
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 275 | qed simp | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 276 | |
| 51334 | 277 | lemma Icc_subset_Ici_iff[simp]: | 
| 278 |   "{l..h} \<subseteq> {l'..} = (~ l\<le>h \<or> l\<ge>l')"
 | |
| 279 | by(auto simp: subset_eq intro: order_trans) | |
| 280 | ||
| 281 | lemma Icc_subset_Iic_iff[simp]: | |
| 282 |   "{l..h} \<subseteq> {..h'} = (~ l\<le>h \<or> h\<le>h')"
 | |
| 283 | by(auto simp: subset_eq intro: order_trans) | |
| 284 | ||
| 285 | lemma not_Ici_eq_empty[simp]: "{l..} \<noteq> {}"
 | |
| 286 | by(auto simp: set_eq_iff) | |
| 287 | ||
| 288 | lemma not_Iic_eq_empty[simp]: "{..h} \<noteq> {}"
 | |
| 289 | by(auto simp: set_eq_iff) | |
| 290 | ||
| 291 | lemmas not_empty_eq_Ici_eq_empty[simp] = not_Ici_eq_empty[symmetric] | |
| 292 | lemmas not_empty_eq_Iic_eq_empty[simp] = not_Iic_eq_empty[symmetric] | |
| 293 | ||
| 24691 | 294 | end | 
| 14485 | 295 | |
| 51334 | 296 | context no_top | 
| 297 | begin | |
| 298 | ||
| 299 | (* also holds for no_bot but no_top should suffice *) | |
| 300 | lemma not_UNIV_le_Icc[simp]: "\<not> UNIV \<subseteq> {l..h}"
 | |
| 301 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 302 | ||
| 303 | lemma not_UNIV_le_Iic[simp]: "\<not> UNIV \<subseteq> {..h}"
 | |
| 304 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 305 | ||
| 306 | lemma not_Ici_le_Icc[simp]: "\<not> {l..} \<subseteq> {l'..h'}"
 | |
| 307 | using gt_ex[of h'] | |
| 308 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 309 | ||
| 310 | lemma not_Ici_le_Iic[simp]: "\<not> {l..} \<subseteq> {..h'}"
 | |
| 311 | using gt_ex[of h'] | |
| 312 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 313 | ||
| 314 | end | |
| 315 | ||
| 316 | context no_bot | |
| 317 | begin | |
| 318 | ||
| 319 | lemma not_UNIV_le_Ici[simp]: "\<not> UNIV \<subseteq> {l..}"
 | |
| 320 | using lt_ex[of l] by(auto simp: subset_eq less_le_not_le) | |
| 321 | ||
| 322 | lemma not_Iic_le_Icc[simp]: "\<not> {..h} \<subseteq> {l'..h'}"
 | |
| 323 | using lt_ex[of l'] | |
| 324 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 325 | ||
| 326 | lemma not_Iic_le_Ici[simp]: "\<not> {..h} \<subseteq> {l'..}"
 | |
| 327 | using lt_ex[of l'] | |
| 328 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 329 | ||
| 330 | end | |
| 331 | ||
| 332 | ||
| 333 | context no_top | |
| 334 | begin | |
| 335 | ||
| 336 | (* also holds for no_bot but no_top should suffice *) | |
| 337 | lemma not_UNIV_eq_Icc[simp]: "\<not> UNIV = {l'..h'}"
 | |
| 338 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 339 | ||
| 340 | lemmas not_Icc_eq_UNIV[simp] = not_UNIV_eq_Icc[symmetric] | |
| 341 | ||
| 342 | lemma not_UNIV_eq_Iic[simp]: "\<not> UNIV = {..h'}"
 | |
| 343 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 344 | ||
| 345 | lemmas not_Iic_eq_UNIV[simp] = not_UNIV_eq_Iic[symmetric] | |
| 346 | ||
| 347 | lemma not_Icc_eq_Ici[simp]: "\<not> {l..h} = {l'..}"
 | |
| 348 | unfolding atLeastAtMost_def using not_Ici_le_Iic[of l'] by blast | |
| 349 | ||
| 350 | lemmas not_Ici_eq_Icc[simp] = not_Icc_eq_Ici[symmetric] | |
| 351 | ||
| 352 | (* also holds for no_bot but no_top should suffice *) | |
| 353 | lemma not_Iic_eq_Ici[simp]: "\<not> {..h} = {l'..}"
 | |
| 354 | using not_Ici_le_Iic[of l' h] by blast | |
| 355 | ||
| 356 | lemmas not_Ici_eq_Iic[simp] = not_Iic_eq_Ici[symmetric] | |
| 357 | ||
| 358 | end | |
| 359 | ||
| 360 | context no_bot | |
| 361 | begin | |
| 362 | ||
| 363 | lemma not_UNIV_eq_Ici[simp]: "\<not> UNIV = {l'..}"
 | |
| 364 | using lt_ex[of l'] by(auto simp: set_eq_iff less_le_not_le) | |
| 365 | ||
| 366 | lemmas not_Ici_eq_UNIV[simp] = not_UNIV_eq_Ici[symmetric] | |
| 367 | ||
| 368 | lemma not_Icc_eq_Iic[simp]: "\<not> {l..h} = {..h'}"
 | |
| 369 | unfolding atLeastAtMost_def using not_Iic_le_Ici[of h'] by blast | |
| 370 | ||
| 371 | lemmas not_Iic_eq_Icc[simp] = not_Icc_eq_Iic[symmetric] | |
| 372 | ||
| 373 | end | |
| 374 | ||
| 375 | ||
| 53216 | 376 | context dense_linorder | 
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 377 | begin | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 378 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 379 | lemma greaterThanLessThan_empty_iff[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 380 |   "{ a <..< b } = {} \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 381 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 382 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 383 | lemma greaterThanLessThan_empty_iff2[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 384 |   "{} = { a <..< b } \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 385 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 386 | |
| 42901 | 387 | lemma atLeastLessThan_subseteq_atLeastAtMost_iff: | 
| 388 |   "{a ..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 389 | using dense[of "max a d" "b"] | |
| 390 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 391 | ||
| 392 | lemma greaterThanAtMost_subseteq_atLeastAtMost_iff: | |
| 393 |   "{a <.. b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 394 | using dense[of "a" "min c b"] | |
| 395 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 396 | ||
| 397 | lemma greaterThanLessThan_subseteq_atLeastAtMost_iff: | |
| 398 |   "{a <..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 399 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 400 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 401 | ||
| 43657 | 402 | lemma atLeastAtMost_subseteq_atLeastLessThan_iff: | 
| 403 |   "{a .. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a \<le> b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 404 | using dense[of "max a d" "b"] | |
| 405 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 406 | ||
| 407 | lemma greaterThanAtMost_subseteq_atLeastLessThan_iff: | |
| 408 |   "{a <.. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 409 | using dense[of "a" "min c b"] | |
| 410 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 411 | ||
| 412 | lemma greaterThanLessThan_subseteq_atLeastLessThan_iff: | |
| 413 |   "{a <..< b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 414 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 415 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 416 | ||
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 417 | end | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 418 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 419 | context no_top | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 420 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 421 | |
| 51334 | 422 | lemma greaterThan_non_empty[simp]: "{x <..} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 423 | using gt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 424 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 425 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 426 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 427 | context no_bot | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 428 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 429 | |
| 51334 | 430 | lemma lessThan_non_empty[simp]: "{..< x} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 431 | using lt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 432 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 433 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 434 | |
| 32408 | 435 | lemma (in linorder) atLeastLessThan_subset_iff: | 
| 436 |   "{a..<b} <= {c..<d} \<Longrightarrow> b <= a | c<=a & b<=d"
 | |
| 437 | apply (auto simp:subset_eq Ball_def) | |
| 438 | apply(frule_tac x=a in spec) | |
| 439 | apply(erule_tac x=d in allE) | |
| 440 | apply (simp add: less_imp_le) | |
| 441 | done | |
| 442 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 443 | lemma atLeastLessThan_inj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 444 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 445 |   assumes eq: "{a ..< b} = {c ..< d}" and "a < b" "c < d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 446 | shows "a = c" "b = d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 447 | using assms by (metis atLeastLessThan_subset_iff eq less_le_not_le linorder_antisym_conv2 subset_refl)+ | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 448 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 449 | lemma atLeastLessThan_eq_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 450 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 451 | assumes "a < b" "c < d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 452 |   shows "{a ..< b} = {c ..< d} \<longleftrightarrow> a = c \<and> b = d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 453 | using atLeastLessThan_inj assms by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 454 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 455 | lemma (in order_bot) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 51334 | 456 | by (auto simp: set_eq_iff intro: le_bot) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 457 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 458 | lemma (in order_top) atMost_eq_UNIV_iff: "{..x} = UNIV \<longleftrightarrow> x = top"
 | 
| 51334 | 459 | by (auto simp: set_eq_iff intro: top_le) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 460 | |
| 51334 | 461 | lemma (in bounded_lattice) atLeastAtMost_eq_UNIV_iff: | 
| 462 |   "{x..y} = UNIV \<longleftrightarrow> (x = bot \<and> y = top)"
 | |
| 463 | by (auto simp: set_eq_iff intro: top_le le_bot) | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 464 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 465 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 466 | subsubsection {* Intersection *}
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 467 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 468 | context linorder | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 469 | begin | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 470 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 471 | lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 472 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 473 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 474 | lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 475 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 476 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 477 | lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 478 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 479 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 480 | lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 481 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 482 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 483 | lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 484 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 485 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 486 | lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 487 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 488 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 489 | lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 490 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 491 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 492 | lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 493 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 494 | |
| 50417 | 495 | lemma Int_atMost[simp]: "{..a} \<inter> {..b} = {.. min a b}"
 | 
| 496 | by (auto simp: min_def) | |
| 497 | ||
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 498 | end | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 499 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 500 | context complete_lattice | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 501 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 502 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 503 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 504 |   shows Sup_atLeast[simp]: "Sup {x ..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 505 |     and Sup_greaterThanAtLeast[simp]: "x < top \<Longrightarrow> Sup {x <..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 506 |     and Sup_atMost[simp]: "Sup {.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 507 |     and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 508 |     and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 509 | by (auto intro!: Sup_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 510 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 511 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 512 |   shows Inf_atMost[simp]: "Inf {.. x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 513 |     and Inf_atMostLessThan[simp]: "top < x \<Longrightarrow> Inf {..< x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 514 |     and Inf_atLeast[simp]: "Inf {x ..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 515 |     and Inf_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Inf { x .. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 516 |     and Inf_atLeastLessThan[simp]: "x < y \<Longrightarrow> Inf { x ..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 517 | by (auto intro!: Inf_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 518 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 519 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 520 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 521 | lemma | 
| 53216 | 522 |   fixes x y :: "'a :: {complete_lattice, dense_linorder}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 523 |   shows Sup_lessThan[simp]: "Sup {..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 524 |     and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 525 |     and Sup_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Sup { x <..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 526 |     and Inf_greaterThan[simp]: "Inf {x <..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 527 |     and Inf_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Inf { x <.. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 528 |     and Inf_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Inf { x <..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 529 | by (auto intro!: Inf_eqI Sup_eqI intro: dense_le dense_le_bounded dense_ge dense_ge_bounded) | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 530 | |
| 14485 | 531 | subsection {* Intervals of natural numbers *}
 | 
| 532 | ||
| 15047 | 533 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 534 | ||
| 14485 | 535 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 536 | by (simp add: lessThan_def) | |
| 537 | ||
| 538 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 539 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 540 | ||
| 43156 | 541 | text {* The following proof is convenient in induction proofs where
 | 
| 39072 | 542 | new elements get indices at the beginning. So it is used to transform | 
| 543 | @{term "{..<Suc n}"} to @{term "0::nat"} and @{term "{..< n}"}. *}
 | |
| 544 | ||
| 545 | lemma lessThan_Suc_eq_insert_0: "{..<Suc n} = insert 0 (Suc ` {..<n})"
 | |
| 546 | proof safe | |
| 547 |   fix x assume "x < Suc n" "x \<notin> Suc ` {..<n}"
 | |
| 548 | then have "x \<noteq> Suc (x - 1)" by auto | |
| 549 | with `x < Suc n` show "x = 0" by auto | |
| 550 | qed | |
| 551 | ||
| 14485 | 552 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | 
| 553 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 554 | ||
| 555 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | |
| 556 | by blast | |
| 557 | ||
| 15047 | 558 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 559 | ||
| 14485 | 560 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 561 | apply (simp add: greaterThan_def) | |
| 562 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 563 | done | |
| 564 | ||
| 565 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 566 | apply (simp add: greaterThan_def) | |
| 567 | apply (auto elim: linorder_neqE) | |
| 568 | done | |
| 569 | ||
| 570 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 571 | by blast | |
| 572 | ||
| 15047 | 573 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 574 | ||
| 14485 | 575 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 576 | by (unfold atLeast_def UNIV_def, simp) | |
| 577 | ||
| 578 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 579 | apply (simp add: atLeast_def) | |
| 580 | apply (simp add: Suc_le_eq) | |
| 581 | apply (simp add: order_le_less, blast) | |
| 582 | done | |
| 583 | ||
| 584 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 585 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 586 | ||
| 587 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 588 | by blast | |
| 589 | ||
| 15047 | 590 | subsubsection {* The Constant @{term atMost} *}
 | 
| 591 | ||
| 14485 | 592 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 593 | by (simp add: atMost_def) | |
| 594 | ||
| 595 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 596 | apply (simp add: atMost_def) | |
| 597 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 598 | done | |
| 599 | ||
| 600 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 601 | by blast | |
| 602 | ||
| 15047 | 603 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 604 | ||
| 28068 | 605 | text{*The orientation of the following 2 rules is tricky. The lhs is
 | 
| 24449 | 606 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 607 | in this theory --- the reverse orientation complicates proofs (eg | |
| 608 | nontermination). But outside, when the definition of the lhs is rarely | |
| 609 | used, the opposite orientation seems preferable because it reduces a | |
| 610 | specific concept to a more general one. *} | |
| 28068 | 611 | |
| 15047 | 612 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | 
| 15042 | 613 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 614 | |
| 28068 | 615 | lemma atLeast0AtMost: "{0..n::nat} = {..n}"
 | 
| 616 | by(simp add:atMost_def atLeastAtMost_def) | |
| 617 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 618 | declare atLeast0LessThan[symmetric, code_unfold] | 
| 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 619 | atLeast0AtMost[symmetric, code_unfold] | 
| 24449 | 620 | |
| 621 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 15047 | 622 | by (simp add: atLeastLessThan_def) | 
| 24449 | 623 | |
| 15047 | 624 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 625 | ||
| 626 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 627 | lemma atLeastLessThanSuc: | |
| 628 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 629 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 630 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 631 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 632 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 633 | (* | 
| 15047 | 634 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 635 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 636 | ||
| 637 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 638 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 639 | *) | 
| 15045 | 640 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 641 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 642 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 643 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 644 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 645 | greaterThanAtMost_def) | 
| 646 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 647 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 648 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 649 | greaterThanLessThan_def) | 
| 650 | ||
| 15554 | 651 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 652 | by (auto simp add: atLeastAtMost_def) | |
| 653 | ||
| 45932 | 654 | lemma atLeastAtMost_insertL: "m \<le> n \<Longrightarrow> insert m {Suc m..n} = {m ..n}"
 | 
| 655 | by auto | |
| 656 | ||
| 43157 | 657 | text {* The analogous result is useful on @{typ int}: *}
 | 
| 658 | (* here, because we don't have an own int section *) | |
| 659 | lemma atLeastAtMostPlus1_int_conv: | |
| 660 |   "m <= 1+n \<Longrightarrow> {m..1+n} = insert (1+n) {m..n::int}"
 | |
| 661 | by (auto intro: set_eqI) | |
| 662 | ||
| 33044 | 663 | lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
 | 
| 664 | apply (induct k) | |
| 665 | apply (simp_all add: atLeastLessThanSuc) | |
| 666 | done | |
| 667 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 668 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 669 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 670 | lemma image_add_atLeastAtMost: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 671 |   "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 672 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 673 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 674 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 675 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 676 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 677 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 678 |     hence "n - k : {i..j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 679 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 680 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 681 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 682 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 683 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 684 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 685 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 686 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 687 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 688 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 689 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 690 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 691 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 692 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 693 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 694 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 695 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 696 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 697 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 698 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 699 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 700 | using image_add_atLeastAtMost[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 701 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 702 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 703 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 704 | using image_add_atLeastLessThan[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 705 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 706 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 707 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 708 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 709 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 710 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 711 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 712 | |
| 37664 | 713 | lemma image_minus_const_atLeastLessThan_nat: | 
| 714 | fixes c :: nat | |
| 715 |   shows "(\<lambda>i. i - c) ` {x ..< y} =
 | |
| 716 |       (if c < y then {x - c ..< y - c} else if x < y then {0} else {})"
 | |
| 717 | (is "_ = ?right") | |
| 718 | proof safe | |
| 719 | fix a assume a: "a \<in> ?right" | |
| 720 |   show "a \<in> (\<lambda>i. i - c) ` {x ..< y}"
 | |
| 721 | proof cases | |
| 722 | assume "c < y" with a show ?thesis | |
| 723 | by (auto intro!: image_eqI[of _ _ "a + c"]) | |
| 724 | next | |
| 725 | assume "\<not> c < y" with a show ?thesis | |
| 726 | by (auto intro!: image_eqI[of _ _ x] split: split_if_asm) | |
| 727 | qed | |
| 728 | qed auto | |
| 729 | ||
| 51152 | 730 | lemma image_int_atLeastLessThan: "int ` {a..<b} = {int a..<int b}"
 | 
| 731 | by(auto intro!: image_eqI[where x="nat x", standard]) | |
| 732 | ||
| 35580 | 733 | context ordered_ab_group_add | 
| 734 | begin | |
| 735 | ||
| 736 | lemma | |
| 737 | fixes x :: 'a | |
| 738 |   shows image_uminus_greaterThan[simp]: "uminus ` {x<..} = {..<-x}"
 | |
| 739 |   and image_uminus_atLeast[simp]: "uminus ` {x..} = {..-x}"
 | |
| 740 | proof safe | |
| 741 | fix y assume "y < -x" | |
| 742 | hence *: "x < -y" using neg_less_iff_less[of "-y" x] by simp | |
| 743 |   have "- (-y) \<in> uminus ` {x<..}"
 | |
| 744 | by (rule imageI) (simp add: *) | |
| 745 |   thus "y \<in> uminus ` {x<..}" by simp
 | |
| 746 | next | |
| 747 | fix y assume "y \<le> -x" | |
| 748 |   have "- (-y) \<in> uminus ` {x..}"
 | |
| 749 | by (rule imageI) (insert `y \<le> -x`[THEN le_imp_neg_le], simp) | |
| 750 |   thus "y \<in> uminus ` {x..}" by simp
 | |
| 751 | qed simp_all | |
| 752 | ||
| 753 | lemma | |
| 754 | fixes x :: 'a | |
| 755 |   shows image_uminus_lessThan[simp]: "uminus ` {..<x} = {-x<..}"
 | |
| 756 |   and image_uminus_atMost[simp]: "uminus ` {..x} = {-x..}"
 | |
| 757 | proof - | |
| 758 |   have "uminus ` {..<x} = uminus ` uminus ` {-x<..}"
 | |
| 759 |     and "uminus ` {..x} = uminus ` uminus ` {-x..}" by simp_all
 | |
| 760 |   thus "uminus ` {..<x} = {-x<..}" and "uminus ` {..x} = {-x..}"
 | |
| 761 | by (simp_all add: image_image | |
| 762 | del: image_uminus_greaterThan image_uminus_atLeast) | |
| 763 | qed | |
| 764 | ||
| 765 | lemma | |
| 766 | fixes x :: 'a | |
| 767 |   shows image_uminus_atLeastAtMost[simp]: "uminus ` {x..y} = {-y..-x}"
 | |
| 768 |   and image_uminus_greaterThanAtMost[simp]: "uminus ` {x<..y} = {-y..<-x}"
 | |
| 769 |   and image_uminus_atLeastLessThan[simp]: "uminus ` {x..<y} = {-y<..-x}"
 | |
| 770 |   and image_uminus_greaterThanLessThan[simp]: "uminus ` {x<..<y} = {-y<..<-x}"
 | |
| 771 | by (simp_all add: atLeastAtMost_def greaterThanAtMost_def atLeastLessThan_def | |
| 772 | greaterThanLessThan_def image_Int[OF inj_uminus] Int_commute) | |
| 773 | end | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 774 | |
| 14485 | 775 | subsubsection {* Finiteness *}
 | 
| 776 | ||
| 15045 | 777 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 778 | by (induct k) (simp_all add: lessThan_Suc) | 
| 779 | ||
| 780 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 781 | by (induct k) (simp_all add: atMost_Suc) | |
| 782 | ||
| 783 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 784 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 785 | by (simp add: greaterThanLessThan_def) | 
| 786 | ||
| 787 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 788 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 789 | by (simp add: atLeastLessThan_def) | 
| 790 | ||
| 791 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 792 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 793 | by (simp add: greaterThanAtMost_def) | 
| 794 | ||
| 795 | lemma finite_atLeastAtMost [iff]: | |
| 796 |   fixes l :: nat shows "finite {l..u}"
 | |
| 797 | by (simp add: atLeastAtMost_def) | |
| 798 | ||
| 28068 | 799 | text {* A bounded set of natural numbers is finite. *}
 | 
| 14485 | 800 | lemma bounded_nat_set_is_finite: | 
| 24853 | 801 | "(ALL i:N. i < (n::nat)) ==> finite N" | 
| 28068 | 802 | apply (rule finite_subset) | 
| 803 | apply (rule_tac [2] finite_lessThan, auto) | |
| 804 | done | |
| 805 | ||
| 31044 | 806 | text {* A set of natural numbers is finite iff it is bounded. *}
 | 
| 807 | lemma finite_nat_set_iff_bounded: | |
| 808 | "finite(N::nat set) = (EX m. ALL n:N. n<m)" (is "?F = ?B") | |
| 809 | proof | |
| 810 | assume f:?F show ?B | |
| 811 | using Max_ge[OF `?F`, simplified less_Suc_eq_le[symmetric]] by blast | |
| 812 | next | |
| 813 | assume ?B show ?F using `?B` by(blast intro:bounded_nat_set_is_finite) | |
| 814 | qed | |
| 815 | ||
| 816 | lemma finite_nat_set_iff_bounded_le: | |
| 817 | "finite(N::nat set) = (EX m. ALL n:N. n<=m)" | |
| 818 | apply(simp add:finite_nat_set_iff_bounded) | |
| 819 | apply(blast dest:less_imp_le_nat le_imp_less_Suc) | |
| 820 | done | |
| 821 | ||
| 28068 | 822 | lemma finite_less_ub: | 
| 823 |      "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
 | |
| 824 | by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
 | |
| 14485 | 825 | |
| 24853 | 826 | text{* Any subset of an interval of natural numbers the size of the
 | 
| 827 | subset is exactly that interval. *} | |
| 828 | ||
| 829 | lemma subset_card_intvl_is_intvl: | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 830 |   assumes "A \<subseteq> {k..<k+card A}"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 831 |   shows "A = {k..<k+card A}"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 832 | proof (cases "finite A") | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 833 | case True | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 834 | from this and assms show ?thesis | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 835 | proof (induct A rule: finite_linorder_max_induct) | 
| 24853 | 836 | case empty thus ?case by auto | 
| 837 | next | |
| 33434 | 838 | case (insert b A) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 839 | hence *: "b \<notin> A" by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 840 |     with insert have "A <= {k..<k+card A}" and "b = k+card A"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 841 | by fastforce+ | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 842 | with insert * show ?case by auto | 
| 24853 | 843 | qed | 
| 844 | next | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 845 | case False | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 846 | with assms show ?thesis by simp | 
| 24853 | 847 | qed | 
| 848 | ||
| 849 | ||
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 850 | subsubsection {* Proving Inclusions and Equalities between Unions *}
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 851 | |
| 36755 | 852 | lemma UN_le_eq_Un0: | 
| 853 |   "(\<Union>i\<le>n::nat. M i) = (\<Union>i\<in>{1..n}. M i) \<union> M 0" (is "?A = ?B")
 | |
| 854 | proof | |
| 855 | show "?A <= ?B" | |
| 856 | proof | |
| 857 | fix x assume "x : ?A" | |
| 858 | then obtain i where i: "i\<le>n" "x : M i" by auto | |
| 859 | show "x : ?B" | |
| 860 | proof(cases i) | |
| 861 | case 0 with i show ?thesis by simp | |
| 862 | next | |
| 863 | case (Suc j) with i show ?thesis by auto | |
| 864 | qed | |
| 865 | qed | |
| 866 | next | |
| 867 | show "?B <= ?A" by auto | |
| 868 | qed | |
| 869 | ||
| 870 | lemma UN_le_add_shift: | |
| 871 |   "(\<Union>i\<le>n::nat. M(i+k)) = (\<Union>i\<in>{k..n+k}. M i)" (is "?A = ?B")
 | |
| 872 | proof | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 873 | show "?A <= ?B" by fastforce | 
| 36755 | 874 | next | 
| 875 | show "?B <= ?A" | |
| 876 | proof | |
| 877 | fix x assume "x : ?B" | |
| 878 |     then obtain i where i: "i : {k..n+k}" "x : M(i)" by auto
 | |
| 879 | hence "i-k\<le>n & x : M((i-k)+k)" by auto | |
| 880 | thus "x : ?A" by blast | |
| 881 | qed | |
| 882 | qed | |
| 883 | ||
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 884 | lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 885 | by (auto simp add: atLeast0LessThan) | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 886 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 887 | lemma UN_finite_subset: "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 888 | by (subst UN_UN_finite_eq [symmetric]) blast | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 889 | |
| 33044 | 890 | lemma UN_finite2_subset: | 
| 891 |      "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) \<subseteq> (\<Union>n. B n)"
 | |
| 892 | apply (rule UN_finite_subset) | |
| 893 | apply (subst UN_UN_finite_eq [symmetric, of B]) | |
| 894 | apply blast | |
| 895 | done | |
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 896 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 897 | lemma UN_finite2_eq: | 
| 33044 | 898 |   "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) = (\<Union>n. B n)"
 | 
| 899 | apply (rule subset_antisym) | |
| 900 | apply (rule UN_finite2_subset, blast) | |
| 901 | apply (rule UN_finite2_subset [where k=k]) | |
| 35216 | 902 | apply (force simp add: atLeastLessThan_add_Un [of 0]) | 
| 33044 | 903 | done | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 904 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 905 | |
| 14485 | 906 | subsubsection {* Cardinality *}
 | 
| 907 | ||
| 15045 | 908 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 909 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 910 | |
| 911 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 912 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 913 | ||
| 15045 | 914 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 915 |   apply (subgoal_tac "card {l..<u} = card {..<u-l}")
 | |
| 14485 | 916 | apply (erule ssubst, rule card_lessThan) | 
| 15045 | 917 |   apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
 | 
| 14485 | 918 | apply (erule subst) | 
| 919 | apply (rule card_image) | |
| 920 | apply (simp add: inj_on_def) | |
| 921 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | |
| 922 | apply (rule_tac x = "x - l" in exI) | |
| 923 | apply arith | |
| 924 | done | |
| 925 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 926 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 927 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 928 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 929 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 930 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 931 | ||
| 15045 | 932 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 933 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 934 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 935 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 936 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 937 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 938 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 939 | done | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 940 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 941 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 942 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 943 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 944 | |
| 31438 | 945 | lemma finite_same_card_bij: | 
| 946 | "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> EX h. bij_betw h A B" | |
| 947 | apply(drule ex_bij_betw_finite_nat) | |
| 948 | apply(drule ex_bij_betw_nat_finite) | |
| 949 | apply(auto intro!:bij_betw_trans) | |
| 950 | done | |
| 951 | ||
| 952 | lemma ex_bij_betw_nat_finite_1: | |
| 953 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
 | |
| 954 | by (rule finite_same_card_bij) auto | |
| 955 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 956 | lemma bij_betw_iff_card: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 957 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 958 | shows BIJ: "(\<exists>f. bij_betw f A B) \<longleftrightarrow> (card A = card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 959 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 960 | proof(auto simp add: bij_betw_same_card) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 961 | assume *: "card A = card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 962 |   obtain f where "bij_betw f A {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 963 | using FIN ex_bij_betw_finite_nat by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 964 |   moreover obtain g where "bij_betw g {0 ..< card B} B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 965 | using FIN' ex_bij_betw_nat_finite by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 966 | ultimately have "bij_betw (g o f) A B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 967 | using * by (auto simp add: bij_betw_trans) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 968 | thus "(\<exists>f. bij_betw f A B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 969 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 970 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 971 | lemma inj_on_iff_card_le: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 972 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 973 | shows "(\<exists>f. inj_on f A \<and> f ` A \<le> B) = (card A \<le> card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 974 | proof (safe intro!: card_inj_on_le) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 975 | assume *: "card A \<le> card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 976 |   obtain f where 1: "inj_on f A" and 2: "f ` A = {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 977 | using FIN ex_bij_betw_finite_nat unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 978 |   moreover obtain g where "inj_on g {0 ..< card B}" and 3: "g ` {0 ..< card B} = B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 979 | using FIN' ex_bij_betw_nat_finite unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 980 | ultimately have "inj_on g (f ` A)" using subset_inj_on[of g _ "f ` A"] * by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 981 | hence "inj_on (g o f) A" using 1 comp_inj_on by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 982 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 983 |   {have "{0 ..< card A} \<le> {0 ..< card B}" using * by force
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 984 |    with 2 have "f ` A  \<le> {0 ..< card B}" by blast
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 985 | hence "(g o f) ` A \<le> B" unfolding comp_def using 3 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 986 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 987 | ultimately show "(\<exists>f. inj_on f A \<and> f ` A \<le> B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 988 | qed (insert assms, auto) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 989 | |
| 14485 | 990 | subsection {* Intervals of integers *}
 | 
| 991 | ||
| 15045 | 992 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 993 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 994 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 995 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 996 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 997 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 998 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 999 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 1000 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 1001 | ||
| 1002 | subsubsection {* Finiteness *}
 | |
| 1003 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1004 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 1005 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 1006 | apply (unfold image_def lessThan_def) | 
| 1007 | apply auto | |
| 1008 | apply (rule_tac x = "nat x" in exI) | |
| 35216 | 1009 | apply (auto simp add: zless_nat_eq_int_zless [THEN sym]) | 
| 14485 | 1010 | done | 
| 1011 | ||
| 15045 | 1012 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 47988 | 1013 | apply (cases "0 \<le> u") | 
| 14485 | 1014 | apply (subst image_atLeastZeroLessThan_int, assumption) | 
| 1015 | apply (rule finite_imageI) | |
| 1016 | apply auto | |
| 1017 | done | |
| 1018 | ||
| 15045 | 1019 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 1020 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 1021 | apply (erule subst) | 
| 1022 | apply (rule finite_imageI) | |
| 1023 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1024 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 1025 | done | 
| 1026 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1027 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 1028 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 1029 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1030 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 1031 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 1032 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1033 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 1034 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 1035 | ||
| 24853 | 1036 | |
| 14485 | 1037 | subsubsection {* Cardinality *}
 | 
| 1038 | ||
| 15045 | 1039 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 47988 | 1040 | apply (cases "0 \<le> u") | 
| 14485 | 1041 | apply (subst image_atLeastZeroLessThan_int, assumption) | 
| 1042 | apply (subst card_image) | |
| 1043 | apply (auto simp add: inj_on_def) | |
| 1044 | done | |
| 1045 | ||
| 15045 | 1046 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 1047 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 1048 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 1049 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 1050 | apply (erule subst) | 
| 1051 | apply (rule card_image) | |
| 1052 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1053 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 1054 | done | 
| 1055 | ||
| 1056 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 29667 | 1057 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 1058 | apply (auto simp add: algebra_simps) | |
| 1059 | done | |
| 14485 | 1060 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1061 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 29667 | 1062 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 1063 | |
| 15045 | 1064 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 29667 | 1065 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 1066 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1067 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1068 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1069 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1070 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1071 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1072 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1073 | lemma card_less: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1074 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1075 | shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1076 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1077 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1078 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1079 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1080 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1081 | lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 37388 | 1082 | apply (rule card_bij_eq [of Suc _ _ "\<lambda>x. x - Suc 0"]) | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1083 | apply simp | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 1084 | apply fastforce | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1085 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1086 | apply (rule inj_on_diff_nat) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1087 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1088 | apply (case_tac x) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1089 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1090 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1091 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1092 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1093 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1094 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1095 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1096 | lemma card_less_Suc: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1097 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1098 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1099 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1100 |   from assms have a: "0 \<in> {k \<in> M. k < Suc i}" by simp
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1101 |   hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1102 | by (auto simp only: insert_Diff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1103 |   have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}"  by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1104 |   from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1105 | apply (subst card_insert) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1106 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1107 | apply (subst b) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1108 | apply (subst card_less_Suc2[symmetric]) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1109 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1110 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1111 | with c show ?thesis by simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1112 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1113 | |
| 14485 | 1114 | |
| 13850 | 1115 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 1116 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 1117 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 1118 | |
| 14577 | 1119 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 1120 | |
| 14577 | 1121 | text {* Singletons and open intervals *}
 | 
| 13735 | 1122 | |
| 1123 | lemma ivl_disj_un_singleton: | |
| 15045 | 1124 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 1125 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 1126 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 1127 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 1128 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 1129 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1130 | by auto | 
| 13735 | 1131 | |
| 14577 | 1132 | text {* One- and two-sided intervals *}
 | 
| 13735 | 1133 | |
| 1134 | lemma ivl_disj_un_one: | |
| 15045 | 1135 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 1136 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 1137 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 1138 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 1139 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 1140 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 1141 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 1142 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1143 | by auto | 
| 13735 | 1144 | |
| 14577 | 1145 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 1146 | |
| 1147 | lemma ivl_disj_un_two: | |
| 15045 | 1148 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 1149 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 1150 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 1151 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 1152 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 1153 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 1154 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 1155 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1156 | by auto | 
| 13735 | 1157 | |
| 1158 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two | |
| 1159 | ||
| 14577 | 1160 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 1161 | |
| 14577 | 1162 | text {* One- and two-sided intervals *}
 | 
| 13735 | 1163 | |
| 1164 | lemma ivl_disj_int_one: | |
| 15045 | 1165 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 1166 |   "{..<l} Int {l..<u} = {}"
 | |
| 1167 |   "{..l} Int {l<..u} = {}"
 | |
| 1168 |   "{..<l} Int {l..u} = {}"
 | |
| 1169 |   "{l<..u} Int {u<..} = {}"
 | |
| 1170 |   "{l<..<u} Int {u..} = {}"
 | |
| 1171 |   "{l..u} Int {u<..} = {}"
 | |
| 1172 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1173 | by auto | 
| 13735 | 1174 | |
| 14577 | 1175 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 1176 | |
| 1177 | lemma ivl_disj_int_two: | |
| 15045 | 1178 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 1179 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 1180 |   "{l..<m} Int {m..<u} = {}"
 | |
| 1181 |   "{l..m} Int {m<..<u} = {}"
 | |
| 1182 |   "{l<..<m} Int {m..u} = {}"
 | |
| 1183 |   "{l<..m} Int {m<..u} = {}"
 | |
| 1184 |   "{l..<m} Int {m..u} = {}"
 | |
| 1185 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1186 | by auto | 
| 13735 | 1187 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 1188 | lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two | 
| 13735 | 1189 | |
| 15542 | 1190 | subsubsection {* Some Differences *}
 | 
| 1191 | ||
| 1192 | lemma ivl_diff[simp]: | |
| 1193 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 1194 | by(auto) | |
| 1195 | ||
| 1196 | ||
| 1197 | subsubsection {* Some Subset Conditions *}
 | |
| 1198 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 1199 | lemma ivl_subset [simp,no_atp]: | 
| 15542 | 1200 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | 
| 1201 | apply(auto simp:linorder_not_le) | |
| 1202 | apply(rule ccontr) | |
| 1203 | apply(insert linorder_le_less_linear[of i n]) | |
| 1204 | apply(clarsimp simp:linorder_not_le) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 1205 | apply(fastforce) | 
| 15542 | 1206 | done | 
| 1207 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1208 | |
| 15042 | 1209 | subsection {* Summation indexed over intervals *}
 | 
| 1210 | ||
| 1211 | syntax | |
| 1212 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1213 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1214 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 1215 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 1216 | syntax (xsymbols) | 
| 1217 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1218 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1219 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 1220 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 1221 | syntax (HTML output) | 
| 1222 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1223 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1224 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 1225 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 1226 | syntax (latex_sum output) | 
| 15052 | 1227 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1228 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 1229 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 1230 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 1231 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1232 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 1233 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 1234 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1235 | |
| 15048 | 1236 | translations | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1237 |   "\<Sum>x=a..b. t" == "CONST setsum (%x. t) {a..b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1238 |   "\<Sum>x=a..<b. t" == "CONST setsum (%x. t) {a..<b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1239 |   "\<Sum>i\<le>n. t" == "CONST setsum (\<lambda>i. t) {..n}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1240 |   "\<Sum>i<n. t" == "CONST setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1241 | |
| 15052 | 1242 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 1243 | summation over intervals: | 
| 15052 | 1244 | \begin{center}
 | 
| 1245 | \begin{tabular}{lll}
 | |
| 15056 | 1246 | Old & New & \LaTeX\\ | 
| 1247 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 1248 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 1249 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 1250 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 1251 | \end{tabular}
 | 
| 1252 | \end{center}
 | |
| 15056 | 1253 | The left column shows the term before introduction of the new syntax, | 
| 1254 | the middle column shows the new (default) syntax, and the right column | |
| 1255 | shows a special syntax. The latter is only meaningful for latex output | |
| 1256 | and has to be activated explicitly by setting the print mode to | |
| 21502 | 1257 | @{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
 | 
| 15056 | 1258 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 1259 | works well with italic-style formulae, not tt-style. | |
| 15052 | 1260 | |
| 1261 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 1262 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 1263 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 1264 | special form for @{term"{..<n}"}. *}
 | |
| 1265 | ||
| 15542 | 1266 | text{* This congruence rule should be used for sums over intervals as
 | 
| 1267 | the standard theorem @{text[source]setsum_cong} does not work well
 | |
| 1268 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | |
| 1269 | the context. *} | |
| 1270 | ||
| 1271 | lemma setsum_ivl_cong: | |
| 1272 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 1273 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 1274 | by(rule setsum_cong, simp_all) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1275 | |
| 16041 | 1276 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 1277 | on intervals are not? *) | |
| 1278 | ||
| 16052 | 1279 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 1280 | by (simp add:atMost_Suc add_ac) | |
| 1281 | ||
| 16041 | 1282 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 1283 | by (simp add:lessThan_Suc add_ac) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1284 | |
| 15911 | 1285 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 1286 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 1287 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 1288 | ||
| 15911 | 1289 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 1290 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 1291 | by (auto simp:add_ac atLeastLessThanSuc) | |
| 16041 | 1292 | (* | 
| 15561 | 1293 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 1294 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 1295 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 16041 | 1296 | *) | 
| 28068 | 1297 | |
| 1298 | lemma setsum_head: | |
| 1299 | fixes n :: nat | |
| 1300 | assumes mn: "m <= n" | |
| 1301 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | |
| 1302 | proof - | |
| 1303 | from mn | |
| 1304 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 1305 | by (auto intro: ivl_disj_un_singleton) | |
| 1306 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | |
| 1307 | by (simp add: atLeast0LessThan) | |
| 1308 | also have "\<dots> = ?rhs" by simp | |
| 1309 | finally show ?thesis . | |
| 1310 | qed | |
| 1311 | ||
| 1312 | lemma setsum_head_Suc: | |
| 1313 |   "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
 | |
| 1314 | by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost) | |
| 1315 | ||
| 1316 | lemma setsum_head_upt_Suc: | |
| 1317 |   "m < n \<Longrightarrow> setsum f {m..<n} = f m + setsum f {Suc m..<n}"
 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1318 | apply(insert setsum_head_Suc[of m "n - Suc 0" f]) | 
| 29667 | 1319 | apply (simp add: atLeastLessThanSuc_atLeastAtMost[symmetric] algebra_simps) | 
| 28068 | 1320 | done | 
| 1321 | ||
| 31501 | 1322 | lemma setsum_ub_add_nat: assumes "(m::nat) \<le> n + 1" | 
| 1323 |   shows "setsum f {m..n + p} = setsum f {m..n} + setsum f {n + 1..n + p}"
 | |
| 1324 | proof- | |
| 1325 |   have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using `m \<le> n+1` by auto
 | |
| 1326 | thus ?thesis by (auto simp: ivl_disj_int setsum_Un_disjoint | |
| 1327 | atLeastSucAtMost_greaterThanAtMost) | |
| 1328 | qed | |
| 28068 | 1329 | |
| 15539 | 1330 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 1331 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 1332 | by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un) | |
| 1333 | ||
| 1334 | lemma setsum_diff_nat_ivl: | |
| 1335 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 1336 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 1337 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 1338 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 1339 | apply (simp add: add_ac) | |
| 1340 | done | |
| 1341 | ||
| 31505 | 1342 | lemma setsum_natinterval_difff: | 
| 1343 |   fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
 | |
| 1344 |   shows  "setsum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
 | |
| 1345 | (if m <= n then f m - f(n + 1) else 0)" | |
| 1346 | by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) | |
| 1347 | ||
| 44008 | 1348 | lemma setsum_restrict_set': | 
| 1349 |   "finite A \<Longrightarrow> setsum f {x \<in> A. x \<in> B} = (\<Sum>x\<in>A. if x \<in> B then f x else 0)"
 | |
| 1350 | by (simp add: setsum_restrict_set [symmetric] Int_def) | |
| 1351 | ||
| 1352 | lemma setsum_restrict_set'': | |
| 1353 |   "finite A \<Longrightarrow> setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
 | |
| 1354 |   by (simp add: setsum_restrict_set' [of A f "{x. P x}", simplified mem_Collect_eq])
 | |
| 31509 | 1355 | |
| 1356 | lemma setsum_setsum_restrict: | |
| 44008 | 1357 | "finite S \<Longrightarrow> finite T \<Longrightarrow> | 
| 1358 |     setsum (\<lambda>x. setsum (\<lambda>y. f x y) {y. y \<in> T \<and> R x y}) S = setsum (\<lambda>y. setsum (\<lambda>x. f x y) {x. x \<in> S \<and> R x y}) T"
 | |
| 1359 | by (simp add: setsum_restrict_set'') (rule setsum_commute) | |
| 31509 | 1360 | |
| 1361 | lemma setsum_image_gen: assumes fS: "finite S" | |
| 1362 |   shows "setsum g S = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
 | |
| 1363 | proof- | |
| 1364 |   { fix x assume "x \<in> S" then have "{y. y\<in> f`S \<and> f x = y} = {f x}" by auto }
 | |
| 1365 |   hence "setsum g S = setsum (\<lambda>x. setsum (\<lambda>y. g x) {y. y\<in> f`S \<and> f x = y}) S"
 | |
| 1366 | by simp | |
| 1367 |   also have "\<dots> = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
 | |
| 1368 | by (rule setsum_setsum_restrict[OF fS finite_imageI[OF fS]]) | |
| 1369 | finally show ?thesis . | |
| 1370 | qed | |
| 1371 | ||
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1372 | lemma setsum_le_included: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1373 | fixes f :: "'a \<Rightarrow> 'b::ordered_comm_monoid_add" | 
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1374 | assumes "finite s" "finite t" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1375 | and "\<forall>y\<in>t. 0 \<le> g y" "(\<forall>x\<in>s. \<exists>y\<in>t. i y = x \<and> f x \<le> g y)" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1376 | shows "setsum f s \<le> setsum g t" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1377 | proof - | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1378 |   have "setsum f s \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) s"
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1379 | proof (rule setsum_mono) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1380 | fix y assume "y \<in> s" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1381 | with assms obtain z where z: "z \<in> t" "y = i z" "f y \<le> g z" by auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1382 |     with assms show "f y \<le> setsum g {x \<in> t. i x = y}" (is "?A y \<le> ?B y")
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1383 |       using order_trans[of "?A (i z)" "setsum g {z}" "?B (i z)", intro]
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1384 | by (auto intro!: setsum_mono2) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1385 | qed | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1386 |   also have "... \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) (i ` t)"
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1387 | using assms(2-4) by (auto intro!: setsum_mono2 setsum_nonneg) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1388 | also have "... \<le> setsum g t" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1389 | using assms by (auto simp: setsum_image_gen[symmetric]) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1390 | finally show ?thesis . | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1391 | qed | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1392 | |
| 31509 | 1393 | lemma setsum_multicount_gen: | 
| 1394 |   assumes "finite s" "finite t" "\<forall>j\<in>t. (card {i\<in>s. R i j} = k j)"
 | |
| 1395 |   shows "setsum (\<lambda>i. (card {j\<in>t. R i j})) s = setsum k t" (is "?l = ?r")
 | |
| 1396 | proof- | |
| 1397 |   have "?l = setsum (\<lambda>i. setsum (\<lambda>x.1) {j\<in>t. R i j}) s" by auto
 | |
| 1398 | also have "\<dots> = ?r" unfolding setsum_setsum_restrict[OF assms(1-2)] | |
| 1399 | using assms(3) by auto | |
| 1400 | finally show ?thesis . | |
| 1401 | qed | |
| 1402 | ||
| 1403 | lemma setsum_multicount: | |
| 1404 |   assumes "finite S" "finite T" "\<forall>j\<in>T. (card {i\<in>S. R i j} = k)"
 | |
| 1405 |   shows "setsum (\<lambda>i. card {j\<in>T. R i j}) S = k * card T" (is "?l = ?r")
 | |
| 1406 | proof- | |
| 1407 | have "?l = setsum (\<lambda>i. k) T" by(rule setsum_multicount_gen)(auto simp:assms) | |
| 35216 | 1408 | also have "\<dots> = ?r" by(simp add: mult_commute) | 
| 31509 | 1409 | finally show ?thesis by auto | 
| 1410 | qed | |
| 1411 | ||
| 28068 | 1412 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1413 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1414 | |
| 15539 | 1415 | lemma setsum_shift_bounds_nat_ivl: | 
| 1416 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 1417 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 1418 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1419 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1420 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1421 | apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1422 | apply (simp add:image_add_atLeastAtMost o_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1423 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1424 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1425 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1426 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1427 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1428 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1429 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1430 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1431 | by (simp add:setsum_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1432 | |
| 28068 | 1433 | lemma setsum_shift_lb_Suc0_0: | 
| 1434 |   "f(0::nat) = (0::nat) \<Longrightarrow> setsum f {Suc 0..k} = setsum f {0..k}"
 | |
| 1435 | by(simp add:setsum_head_Suc) | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 1436 | |
| 28068 | 1437 | lemma setsum_shift_lb_Suc0_0_upt: | 
| 1438 |   "f(0::nat) = 0 \<Longrightarrow> setsum f {Suc 0..<k} = setsum f {0..<k}"
 | |
| 1439 | apply(cases k)apply simp | |
| 1440 | apply(simp add:setsum_head_upt_Suc) | |
| 1441 | done | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1442 | |
| 52380 | 1443 | lemma setsum_atMost_Suc_shift: | 
| 1444 | fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add" | |
| 1445 | shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | |
| 1446 | proof (induct n) | |
| 1447 | case 0 show ?case by simp | |
| 1448 | next | |
| 1449 | case (Suc n) note IH = this | |
| 1450 | have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))" | |
| 1451 | by (rule setsum_atMost_Suc) | |
| 1452 | also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | |
| 1453 | by (rule IH) | |
| 1454 | also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = | |
| 1455 | f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))" | |
| 1456 | by (rule add_assoc) | |
| 1457 | also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))" | |
| 1458 | by (rule setsum_atMost_Suc [symmetric]) | |
| 1459 | finally show ?case . | |
| 1460 | qed | |
| 1461 | ||
| 1462 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1463 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1464 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1465 | lemma geometric_sum: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1466 | assumes "x \<noteq> 1" | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1467 | shows "(\<Sum>i=0..<n. x ^ i) = (x ^ n - 1) / (x - 1::'a::field)" | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1468 | proof - | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1469 | from assms obtain y where "y = x - 1" and "y \<noteq> 0" by simp_all | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1470 | moreover have "(\<Sum>i=0..<n. (y + 1) ^ i) = ((y + 1) ^ n - 1) / y" | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1471 | proof (induct n) | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1472 | case 0 then show ?case by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1473 | next | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1474 | case (Suc n) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1475 | moreover from Suc `y \<noteq> 0` have "(1 + y) ^ n = (y * inverse y) * (1 + y) ^ n" by simp | 
| 36350 | 1476 | ultimately show ?case by (simp add: field_simps divide_inverse) | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1477 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1478 | ultimately show ?thesis by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1479 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1480 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1481 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1482 | subsection {* The formula for arithmetic sums *}
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1483 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1484 | lemma gauss_sum: | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1485 |   "(2::'a::comm_semiring_1)*(\<Sum>i\<in>{1..n}. of_nat i) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1486 | of_nat n*((of_nat n)+1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1487 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1488 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1489 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1490 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1491 | case (Suc n) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1492 | then show ?case | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1493 | by (simp add: algebra_simps add: one_add_one [symmetric] del: one_add_one) | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1494 | (* FIXME: make numeral cancellation simprocs work for semirings *) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1495 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1496 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1497 | theorem arith_series_general: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1498 |   "(2::'a::comm_semiring_1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1499 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1500 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1501 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1502 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1503 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1504 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1505 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1506 | by (rule setsum_addf) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1507 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1508 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1509 | unfolding One_nat_def | 
| 28068 | 1510 | by (simp add: setsum_right_distrib atLeast0LessThan[symmetric] setsum_shift_lb_Suc0_0_upt mult_ac) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1511 |   also have "2*\<dots> = 2*?n*a + d*2*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1512 | by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1513 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 28068 | 1514 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 1515 | also from ngt1 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1516 |   have "2*?n*a + d*2*(\<Sum>i\<in>{1..n - 1}. ?I i) = (2*?n*a + d*?I (n - 1)*?I n)"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1517 | by (simp only: mult_ac gauss_sum [of "n - 1"], unfold One_nat_def) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23413diff
changeset | 1518 | (simp add: mult_ac trans [OF add_commute of_nat_Suc [symmetric]]) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1519 | finally show ?thesis | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1520 | unfolding mult_2 by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1521 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1522 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1523 | hence "n = 1 \<or> n = 0" by auto | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1524 | thus ?thesis by (auto simp: mult_2) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1525 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1526 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1527 | lemma arith_series_nat: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1528 |   "(2::nat) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1529 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1530 | have | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1531 |     "2 * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1532 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1533 | by (rule arith_series_general) | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1534 | thus ?thesis | 
| 35216 | 1535 | unfolding One_nat_def by auto | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1536 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1537 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1538 | lemma arith_series_int: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1539 |   "2 * (\<Sum>i\<in>{..<n}. a + int i * d) = int n * (a + (a + int(n - 1)*d))"
 | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1540 | by (fact arith_series_general) (* FIXME: duplicate *) | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1541 | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1542 | lemma sum_diff_distrib: | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1543 | fixes P::"nat\<Rightarrow>nat" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1544 | shows | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1545 | "\<forall>x. Q x \<le> P x \<Longrightarrow> | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1546 | (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1547 | proof (induct n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1548 | case 0 show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1549 | next | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1550 | case (Suc n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1551 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1552 | let ?lhs = "(\<Sum>x<n. P x) - (\<Sum>x<n. Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1553 | let ?rhs = "\<Sum>x<n. P x - Q x" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1554 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1555 | from Suc have "?lhs = ?rhs" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1556 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1557 | from Suc have "?lhs + P n - Q n = ?rhs + (P n - Q n)" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1558 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1559 | from Suc have | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1560 | "(\<Sum>x<n. P x) + P n - ((\<Sum>x<n. Q x) + Q n) = ?rhs + (P n - Q n)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1561 | by (subst diff_diff_left[symmetric], | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1562 | subst diff_add_assoc2) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1563 | (auto simp: diff_add_assoc2 intro: setsum_mono) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1564 | ultimately | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1565 | show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1566 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1567 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1568 | subsection {* Products indexed over intervals *}
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1569 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1570 | syntax | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1571 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1572 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1573 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1574 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<=_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1575 | syntax (xsymbols) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1576 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1577 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1578 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1579 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1580 | syntax (HTML output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1581 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1582 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1583 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1584 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1585 | syntax (latex_prod output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1586 | "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1587 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1588 | "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1589 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1590 | "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1591 |  ("(3\<^raw:$\prod_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1592 | "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1593 |  ("(3\<^raw:$\prod_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1594 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1595 | translations | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1596 |   "\<Prod>x=a..b. t" == "CONST setprod (%x. t) {a..b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1597 |   "\<Prod>x=a..<b. t" == "CONST setprod (%x. t) {a..<b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1598 |   "\<Prod>i\<le>n. t" == "CONST setprod (\<lambda>i. t) {..n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1599 |   "\<Prod>i<n. t" == "CONST setprod (\<lambda>i. t) {..<n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1600 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1601 | subsection {* Transfer setup *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1602 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1603 | lemma transfer_nat_int_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1604 |     "{..n} = nat ` {0..int n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1605 |     "{m..n} = nat ` {int m..int n}"  (* need all variants of these! *)
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1606 | apply (auto simp add: image_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1607 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1608 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1609 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1610 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1611 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1612 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1613 | lemma transfer_nat_int_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1614 |     "x >= 0 \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1615 | by (simp add: nat_set_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1616 | |
| 35644 | 1617 | declare transfer_morphism_nat_int[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1618 | return: transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1619 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1620 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1621 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1622 | lemma transfer_int_nat_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1623 |     "is_nat m \<Longrightarrow> is_nat n \<Longrightarrow> {m..n} = int ` {nat m..nat n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1624 | by (simp only: is_nat_def transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1625 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1626 | transfer_nat_int_set_return_embed nat_0_le | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1627 | cong: transfer_nat_int_set_cong) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1628 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1629 | lemma transfer_int_nat_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1630 |     "is_nat x \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1631 | by (simp only: transfer_nat_int_set_function_closures is_nat_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1632 | |
| 35644 | 1633 | declare transfer_morphism_int_nat[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1634 | return: transfer_int_nat_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1635 | transfer_int_nat_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1636 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1637 | |
| 8924 | 1638 | end |