| 
1476
 | 
     1  | 
(*  Title:      HOL/ex/sorting.thy
  | 
| 
969
 | 
     2  | 
    ID:         $Id$
  | 
| 
1476
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
969
 | 
     4  | 
    Copyright   1994 TU Muenchen
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
15815
 | 
     7  | 
header{*Sorting: Basic Theory*}
 | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory Sorting
  | 
| 
 | 
    10  | 
imports Main Multiset
  | 
| 
 | 
    11  | 
begin
  | 
| 
13159
 | 
    12  | 
  | 
| 
969
 | 
    13  | 
consts
  | 
| 
13159
 | 
    14  | 
  sorted1:: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 
 | 
    15  | 
  sorted :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 
969
 | 
    16  | 
  | 
| 
5184
 | 
    17  | 
primrec
  | 
| 
2517
 | 
    18  | 
  "sorted1 le [] = True"
  | 
| 
 | 
    19  | 
  "sorted1 le (x#xs) = ((case xs of [] => True | y#ys => le x y) &
  | 
| 
 | 
    20  | 
                        sorted1 le xs)"
  | 
| 
969
 | 
    21  | 
  | 
| 
5184
 | 
    22  | 
primrec
  | 
| 
2517
 | 
    23  | 
  "sorted le [] = True"
  | 
| 
15815
 | 
    24  | 
  "sorted le (x#xs) = ((\<forall>y \<in> set xs. le x y) & sorted le xs)"
  | 
| 
969
 | 
    25  | 
  | 
| 
 | 
    26  | 
  | 
| 
8415
 | 
    27  | 
constdefs
  | 
| 
13159
 | 
    28  | 
  total  :: "('a \<Rightarrow> 'a \<Rightarrow> bool) => bool"
 | 
| 
15815
 | 
    29  | 
   "total r == (\<forall>x y. r x y | r y x)"
  | 
| 
8415
 | 
    30  | 
  
  | 
| 
13159
 | 
    31  | 
  transf :: "('a \<Rightarrow> 'a \<Rightarrow> bool) => bool"
 | 
| 
15815
 | 
    32  | 
   "transf f == (\<forall>x y z. f x y & f y z --> f x z)"
  | 
| 
8415
 | 
    33  | 
  | 
| 
13159
 | 
    34  | 
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
(* Equivalence of two definitions of `sorted' *)
  | 
| 
 | 
    37  | 
  | 
| 
15815
 | 
    38  | 
lemma sorted1_is_sorted: "transf(le) ==> sorted1 le xs = sorted le xs";
  | 
| 
13159
 | 
    39  | 
apply(induct xs)
  | 
| 
 | 
    40  | 
 apply simp
  | 
| 
 | 
    41  | 
apply(simp split: list.split)
  | 
| 
 | 
    42  | 
apply(unfold transf_def);
  | 
| 
 | 
    43  | 
apply(blast)
  | 
| 
 | 
    44  | 
done
  | 
| 
 | 
    45  | 
  | 
| 
15815
 | 
    46  | 
lemma sorted_append [simp]:
  | 
| 
 | 
    47  | 
 "sorted le (xs@ys) = 
  | 
| 
 | 
    48  | 
  (sorted le xs & sorted le ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. le x y))"
  | 
| 
13159
 | 
    49  | 
by (induct xs, auto)
  | 
| 
 | 
    50  | 
  | 
| 
969
 | 
    51  | 
end
  |