| author | nipkow | 
| Wed, 01 Apr 2009 16:55:31 +0200 | |
| changeset 30839 | bf99ceb7d015 | 
| parent 29655 | ac31940cfb69 | 
| child 31380 | f25536c0bb80 | 
| permissions | -rw-r--r-- | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Hilbert_Choice.thy  | 
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
2  | 
Author: Lawrence C Paulson  | 
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
3  | 
Copyright 2001 University of Cambridge  | 
| 12023 | 4  | 
*)  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 14760 | 6  | 
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
7  | 
|
| 15131 | 8  | 
theory Hilbert_Choice  | 
| 
29655
 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 
haftmann 
parents: 
27760 
diff
changeset
 | 
9  | 
imports Nat Wellfounded Plain  | 
| 16417 | 10  | 
uses ("Tools/meson.ML") ("Tools/specification_package.ML")
 | 
| 15131 | 11  | 
begin  | 
| 12298 | 12  | 
|
13  | 
subsection {* Hilbert's epsilon *}
 | 
|
14  | 
||
| 
22690
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
15  | 
axiomatization  | 
| 
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
16  | 
  Eps :: "('a => bool) => 'a"
 | 
| 
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
17  | 
where  | 
| 
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
18  | 
someI: "P x ==> P (Eps P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
19  | 
|
| 
14872
 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 
wenzelm 
parents: 
14760 
diff
changeset
 | 
20  | 
syntax (epsilon)  | 
| 
 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 
wenzelm 
parents: 
14760 
diff
changeset
 | 
21  | 
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
22  | 
syntax (HOL)  | 
| 12298 | 23  | 
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
24  | 
syntax  | 
| 12298 | 25  | 
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
26  | 
translations  | 
| 
22690
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
27  | 
"SOME x. P" == "CONST Eps (%x. P)"  | 
| 
13763
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
28  | 
|
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
29  | 
print_translation {*
 | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
30  | 
(* to avoid eta-contraction of body *)  | 
| 
22690
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
31  | 
[(@{const_syntax Eps}, fn [Abs abs] =>
 | 
| 
13763
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
32  | 
let val (x,t) = atomic_abs_tr' abs  | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
33  | 
in Syntax.const "_Eps" $ x $ t end)]  | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
34  | 
*}  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
35  | 
|
| 12298 | 36  | 
constdefs  | 
37  | 
  inv :: "('a => 'b) => ('b => 'a)"
 | 
|
38  | 
"inv(f :: 'a => 'b) == %y. SOME x. f x = y"  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
39  | 
|
| 12298 | 40  | 
  Inv :: "'a set => ('a => 'b) => ('b => 'a)"
 | 
| 14760 | 41  | 
"Inv A f == %x. SOME y. y \<in> A & f y = x"  | 
42  | 
||
43  | 
||
44  | 
subsection {*Hilbert's Epsilon-operator*}
 | 
|
45  | 
||
46  | 
text{*Easier to apply than @{text someI} if the witness comes from an
 | 
|
47  | 
existential formula*}  | 
|
48  | 
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)"  | 
|
49  | 
apply (erule exE)  | 
|
50  | 
apply (erule someI)  | 
|
51  | 
done  | 
|
52  | 
||
53  | 
text{*Easier to apply than @{text someI} because the conclusion has only one
 | 
|
54  | 
occurrence of @{term P}.*}
 | 
|
55  | 
lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"  | 
|
56  | 
by (blast intro: someI)  | 
|
57  | 
||
58  | 
text{*Easier to apply than @{text someI2} if the witness comes from an
 | 
|
59  | 
existential formula*}  | 
|
60  | 
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"  | 
|
61  | 
by (blast intro: someI2)  | 
|
62  | 
||
63  | 
lemma some_equality [intro]:  | 
|
64  | 
"[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a"  | 
|
65  | 
by (blast intro: someI2)  | 
|
66  | 
||
67  | 
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a"  | 
|
68  | 
by (blast intro: some_equality)  | 
|
69  | 
||
70  | 
lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)"  | 
|
71  | 
by (blast intro: someI)  | 
|
72  | 
||
73  | 
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x"  | 
|
74  | 
apply (rule some_equality)  | 
|
75  | 
apply (rule refl, assumption)  | 
|
76  | 
done  | 
|
77  | 
||
78  | 
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x"  | 
|
79  | 
apply (rule some_equality)  | 
|
80  | 
apply (rule refl)  | 
|
81  | 
apply (erule sym)  | 
|
82  | 
done  | 
|
83  | 
||
84  | 
||
85  | 
subsection{*Axiom of Choice, Proved Using the Description Operator*}
 | 
|
86  | 
||
87  | 
text{*Used in @{text "Tools/meson.ML"}*}
 | 
|
88  | 
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)"  | 
|
89  | 
by (fast elim: someI)  | 
|
90  | 
||
91  | 
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)"  | 
|
92  | 
by (fast elim: someI)  | 
|
93  | 
||
94  | 
||
95  | 
subsection {*Function Inverse*}
 | 
|
96  | 
||
97  | 
lemma inv_id [simp]: "inv id = id"  | 
|
98  | 
by (simp add: inv_def id_def)  | 
|
99  | 
||
100  | 
text{*A one-to-one function has an inverse.*}
 | 
|
101  | 
lemma inv_f_f [simp]: "inj f ==> inv f (f x) = x"  | 
|
102  | 
by (simp add: inv_def inj_eq)  | 
|
103  | 
||
104  | 
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x"  | 
|
105  | 
apply (erule subst)  | 
|
106  | 
apply (erule inv_f_f)  | 
|
107  | 
done  | 
|
108  | 
||
109  | 
lemma inj_imp_inv_eq: "[| inj f; \<forall>x. f(g x) = x |] ==> inv f = g"  | 
|
110  | 
by (blast intro: ext inv_f_eq)  | 
|
111  | 
||
112  | 
text{*But is it useful?*}
 | 
|
113  | 
lemma inj_transfer:  | 
|
114  | 
assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)"  | 
|
115  | 
shows "P x"  | 
|
116  | 
proof -  | 
|
117  | 
have "f x \<in> range f" by auto  | 
|
118  | 
hence "P(inv f (f x))" by (rule minor)  | 
|
119  | 
thus "P x" by (simp add: inv_f_f [OF injf])  | 
|
120  | 
qed  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
121  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
122  | 
|
| 14760 | 123  | 
lemma inj_iff: "(inj f) = (inv f o f = id)"  | 
124  | 
apply (simp add: o_def expand_fun_eq)  | 
|
125  | 
apply (blast intro: inj_on_inverseI inv_f_f)  | 
|
126  | 
done  | 
|
127  | 
||
| 23433 | 128  | 
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"  | 
129  | 
by (simp add: inj_iff)  | 
|
130  | 
||
131  | 
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"  | 
|
132  | 
by (simp add: o_assoc[symmetric])  | 
|
133  | 
||
134  | 
lemma inv_image_cancel[simp]:  | 
|
135  | 
"inj f ==> inv f ` f ` S = S"  | 
|
136  | 
by (simp add: image_compose[symmetric])  | 
|
137  | 
||
| 14760 | 138  | 
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"  | 
139  | 
by (blast intro: surjI inv_f_f)  | 
|
140  | 
||
141  | 
lemma f_inv_f: "y \<in> range(f) ==> f(inv f y) = y"  | 
|
142  | 
apply (simp add: inv_def)  | 
|
143  | 
apply (fast intro: someI)  | 
|
144  | 
done  | 
|
145  | 
||
146  | 
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"  | 
|
147  | 
by (simp add: f_inv_f surj_range)  | 
|
148  | 
||
149  | 
lemma inv_injective:  | 
|
150  | 
assumes eq: "inv f x = inv f y"  | 
|
151  | 
and x: "x: range f"  | 
|
152  | 
and y: "y: range f"  | 
|
153  | 
shows "x=y"  | 
|
154  | 
proof -  | 
|
155  | 
have "f (inv f x) = f (inv f y)" using eq by simp  | 
|
156  | 
thus ?thesis by (simp add: f_inv_f x y)  | 
|
157  | 
qed  | 
|
158  | 
||
159  | 
lemma inj_on_inv: "A <= range(f) ==> inj_on (inv f) A"  | 
|
160  | 
by (fast intro: inj_onI elim: inv_injective injD)  | 
|
161  | 
||
162  | 
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"  | 
|
163  | 
by (simp add: inj_on_inv surj_range)  | 
|
164  | 
||
165  | 
lemma surj_iff: "(surj f) = (f o inv f = id)"  | 
|
166  | 
apply (simp add: o_def expand_fun_eq)  | 
|
167  | 
apply (blast intro: surjI surj_f_inv_f)  | 
|
168  | 
done  | 
|
169  | 
||
170  | 
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g"  | 
|
171  | 
apply (rule ext)  | 
|
172  | 
apply (drule_tac x = "inv f x" in spec)  | 
|
173  | 
apply (simp add: surj_f_inv_f)  | 
|
174  | 
done  | 
|
175  | 
||
176  | 
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)"  | 
|
177  | 
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)  | 
|
| 12372 | 178  | 
|
| 14760 | 179  | 
lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g"  | 
180  | 
apply (rule ext)  | 
|
181  | 
apply (auto simp add: inv_def)  | 
|
182  | 
done  | 
|
183  | 
||
184  | 
lemma inv_inv_eq: "bij f ==> inv (inv f) = f"  | 
|
185  | 
apply (rule inv_equality)  | 
|
186  | 
apply (auto simp add: bij_def surj_f_inv_f)  | 
|
187  | 
done  | 
|
188  | 
||
189  | 
(** bij(inv f) implies little about f. Consider f::bool=>bool such that  | 
|
190  | 
f(True)=f(False)=True. Then it's consistent with axiom someI that  | 
|
191  | 
inv f could be any function at all, including the identity function.  | 
|
192  | 
If inv f=id then inv f is a bijection, but inj f, surj(f) and  | 
|
193  | 
inv(inv f)=f all fail.  | 
|
194  | 
**)  | 
|
195  | 
||
196  | 
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"  | 
|
197  | 
apply (rule inv_equality)  | 
|
198  | 
apply (auto simp add: bij_def surj_f_inv_f)  | 
|
199  | 
done  | 
|
200  | 
||
201  | 
||
202  | 
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A"  | 
|
203  | 
by (simp add: image_eq_UN surj_f_inv_f)  | 
|
204  | 
||
205  | 
lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A"  | 
|
206  | 
by (simp add: image_eq_UN)  | 
|
207  | 
||
208  | 
lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X"  | 
|
209  | 
by (auto simp add: image_def)  | 
|
210  | 
||
211  | 
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
 | 
|
212  | 
apply auto  | 
|
213  | 
apply (force simp add: bij_is_inj)  | 
|
214  | 
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])  | 
|
215  | 
done  | 
|
216  | 
||
217  | 
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A"  | 
|
218  | 
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])  | 
|
219  | 
apply (blast intro: bij_is_inj [THEN inv_f_f, symmetric])  | 
|
220  | 
done  | 
|
221  | 
||
222  | 
||
223  | 
subsection {*Inverse of a PI-function (restricted domain)*}
 | 
|
224  | 
||
225  | 
lemma Inv_f_f: "[| inj_on f A; x \<in> A |] ==> Inv A f (f x) = x"  | 
|
226  | 
apply (simp add: Inv_def inj_on_def)  | 
|
227  | 
apply (blast intro: someI2)  | 
|
228  | 
done  | 
|
229  | 
||
230  | 
lemma f_Inv_f: "y \<in> f`A ==> f (Inv A f y) = y"  | 
|
231  | 
apply (simp add: Inv_def)  | 
|
| 13585 | 232  | 
apply (fast intro: someI2)  | 
233  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
234  | 
|
| 14760 | 235  | 
lemma Inv_injective:  | 
236  | 
assumes eq: "Inv A f x = Inv A f y"  | 
|
237  | 
and x: "x: f`A"  | 
|
238  | 
and y: "y: f`A"  | 
|
239  | 
shows "x=y"  | 
|
240  | 
proof -  | 
|
241  | 
have "f (Inv A f x) = f (Inv A f y)" using eq by simp  | 
|
242  | 
thus ?thesis by (simp add: f_Inv_f x y)  | 
|
243  | 
qed  | 
|
244  | 
||
245  | 
lemma inj_on_Inv: "B <= f`A ==> inj_on (Inv A f) B"  | 
|
246  | 
apply (rule inj_onI)  | 
|
247  | 
apply (blast intro: inj_onI dest: Inv_injective injD)  | 
|
248  | 
done  | 
|
249  | 
||
250  | 
lemma Inv_mem: "[| f ` A = B; x \<in> B |] ==> Inv A f x \<in> A"  | 
|
251  | 
apply (simp add: Inv_def)  | 
|
252  | 
apply (fast intro: someI2)  | 
|
253  | 
done  | 
|
254  | 
||
255  | 
lemma Inv_f_eq: "[| inj_on f A; f x = y; x \<in> A |] ==> Inv A f y = x"  | 
|
| 
14399
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
256  | 
apply (erule subst)  | 
| 14760 | 257  | 
apply (erule Inv_f_f, assumption)  | 
| 
14399
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
258  | 
done  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
259  | 
|
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
260  | 
lemma Inv_comp:  | 
| 14760 | 261  | 
"[| inj_on f (g ` A); inj_on g A; x \<in> f ` g ` A |] ==>  | 
| 
14399
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
262  | 
Inv A (f o g) x = (Inv A g o Inv (g ` A) f) x"  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
263  | 
apply simp  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
264  | 
apply (rule Inv_f_eq)  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
265  | 
apply (fast intro: comp_inj_on)  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
266  | 
apply (simp add: f_Inv_f Inv_mem)  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
267  | 
apply (simp add: Inv_mem)  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
268  | 
done  | 
| 
 
dc677b35e54f
New lemmas about inversion of restricted functions.
 
ballarin 
parents: 
14208 
diff
changeset
 | 
269  | 
|
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
26072 
diff
changeset
 | 
270  | 
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
26072 
diff
changeset
 | 
271  | 
apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
26072 
diff
changeset
 | 
272  | 
apply (simp add: image_compose [symmetric] o_def)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
26072 
diff
changeset
 | 
273  | 
apply (simp add: image_def Inv_f_f)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
26072 
diff
changeset
 | 
274  | 
done  | 
| 14760 | 275  | 
|
276  | 
subsection {*Other Consequences of Hilbert's Epsilon*}
 | 
|
277  | 
||
278  | 
text {*Hilbert's Epsilon and the @{term split} Operator*}
 | 
|
279  | 
||
280  | 
text{*Looping simprule*}
 | 
|
281  | 
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))"  | 
|
| 26347 | 282  | 
by simp  | 
| 14760 | 283  | 
|
284  | 
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))"  | 
|
| 26347 | 285  | 
by (simp add: split_def)  | 
| 14760 | 286  | 
|
287  | 
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)"  | 
|
| 26347 | 288  | 
by blast  | 
| 14760 | 289  | 
|
290  | 
||
291  | 
text{*A relation is wellfounded iff it has no infinite descending chain*}
 | 
|
292  | 
lemma wf_iff_no_infinite_down_chain:  | 
|
293  | 
"wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))"  | 
|
294  | 
apply (simp only: wf_eq_minimal)  | 
|
295  | 
apply (rule iffI)  | 
|
296  | 
apply (rule notI)  | 
|
297  | 
apply (erule exE)  | 
|
298  | 
 apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
 | 
|
299  | 
apply (erule contrapos_np, simp, clarify)  | 
|
300  | 
apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q")  | 
|
301  | 
apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI)  | 
|
302  | 
apply (rule allI, simp)  | 
|
303  | 
apply (rule someI2_ex, blast, blast)  | 
|
304  | 
apply (rule allI)  | 
|
305  | 
apply (induct_tac "n", simp_all)  | 
|
306  | 
apply (rule someI2_ex, blast+)  | 
|
307  | 
done  | 
|
308  | 
||
| 27760 | 309  | 
lemma wf_no_infinite_down_chainE:  | 
310  | 
assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r"  | 
|
311  | 
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast  | 
|
312  | 
||
313  | 
||
| 14760 | 314  | 
text{*A dynamically-scoped fact for TFL *}
 | 
| 12298 | 315  | 
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"  | 
316  | 
by (blast intro: someI)  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
317  | 
|
| 12298 | 318  | 
|
319  | 
subsection {* Least value operator *}
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
320  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
321  | 
constdefs  | 
| 12298 | 322  | 
LeastM :: "['a => 'b::ord, 'a => bool] => 'a"  | 
| 14760 | 323  | 
"LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
324  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
325  | 
syntax  | 
| 12298 | 326  | 
  "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
327  | 
translations  | 
| 12298 | 328  | 
"LEAST x WRT m. P" == "LeastM m (%x. P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
329  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
330  | 
lemma LeastMI2:  | 
| 12298 | 331  | 
"P x ==> (!!y. P y ==> m x <= m y)  | 
332  | 
==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)  | 
|
333  | 
==> Q (LeastM m P)"  | 
|
| 14760 | 334  | 
apply (simp add: LeastM_def)  | 
| 14208 | 335  | 
apply (rule someI2_ex, blast, blast)  | 
| 12298 | 336  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
337  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
338  | 
lemma LeastM_equality:  | 
| 12298 | 339  | 
"P k ==> (!!x. P x ==> m k <= m x)  | 
340  | 
==> m (LEAST x WRT m. P x) = (m k::'a::order)"  | 
|
| 14208 | 341  | 
apply (rule LeastMI2, assumption, blast)  | 
| 12298 | 342  | 
apply (blast intro!: order_antisym)  | 
343  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
344  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
345  | 
lemma wf_linord_ex_has_least:  | 
| 14760 | 346  | 
"wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k  | 
347  | 
==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)"  | 
|
| 12298 | 348  | 
apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])  | 
| 14208 | 349  | 
apply (drule_tac x = "m`Collect P" in spec, force)  | 
| 12298 | 350  | 
done  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
351  | 
|
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
352  | 
lemma ex_has_least_nat:  | 
| 14760 | 353  | 
"P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))"  | 
| 12298 | 354  | 
apply (simp only: pred_nat_trancl_eq_le [symmetric])  | 
355  | 
apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])  | 
|
| 16796 | 356  | 
apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption)  | 
| 12298 | 357  | 
done  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
358  | 
|
| 12298 | 359  | 
lemma LeastM_nat_lemma:  | 
| 14760 | 360  | 
"P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))"  | 
361  | 
apply (simp add: LeastM_def)  | 
|
| 12298 | 362  | 
apply (rule someI_ex)  | 
363  | 
apply (erule ex_has_least_nat)  | 
|
364  | 
done  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
365  | 
|
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
366  | 
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard]  | 
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
367  | 
|
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
368  | 
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"  | 
| 14208 | 369  | 
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption)  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
370  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
371  | 
|
| 12298 | 372  | 
subsection {* Greatest value operator *}
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
373  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
374  | 
constdefs  | 
| 12298 | 375  | 
GreatestM :: "['a => 'b::ord, 'a => bool] => 'a"  | 
| 14760 | 376  | 
"GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"  | 
| 12298 | 377  | 
|
378  | 
  Greatest :: "('a::ord => bool) => 'a"    (binder "GREATEST " 10)
 | 
|
379  | 
"Greatest == GreatestM (%x. x)"  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
380  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
381  | 
syntax  | 
| 12298 | 382  | 
"_GreatestM" :: "[pttrn, 'a=>'b::ord, bool] => 'a"  | 
383  | 
      ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
384  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
385  | 
translations  | 
| 12298 | 386  | 
"GREATEST x WRT m. P" == "GreatestM m (%x. P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
387  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
388  | 
lemma GreatestMI2:  | 
| 12298 | 389  | 
"P x ==> (!!y. P y ==> m y <= m x)  | 
390  | 
==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)  | 
|
391  | 
==> Q (GreatestM m P)"  | 
|
| 14760 | 392  | 
apply (simp add: GreatestM_def)  | 
| 14208 | 393  | 
apply (rule someI2_ex, blast, blast)  | 
| 12298 | 394  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
395  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
396  | 
lemma GreatestM_equality:  | 
| 12298 | 397  | 
"P k ==> (!!x. P x ==> m x <= m k)  | 
398  | 
==> m (GREATEST x WRT m. P x) = (m k::'a::order)"  | 
|
| 14208 | 399  | 
apply (rule_tac m = m in GreatestMI2, assumption, blast)  | 
| 12298 | 400  | 
apply (blast intro!: order_antisym)  | 
401  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
402  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
403  | 
lemma Greatest_equality:  | 
| 12298 | 404  | 
"P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"  | 
| 14760 | 405  | 
apply (simp add: Greatest_def)  | 
| 14208 | 406  | 
apply (erule GreatestM_equality, blast)  | 
| 12298 | 407  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
408  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
409  | 
lemma ex_has_greatest_nat_lemma:  | 
| 14760 | 410  | 
"P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x))  | 
411  | 
==> \<exists>y. P y & ~ (m y < m k + n)"  | 
|
| 15251 | 412  | 
apply (induct n, force)  | 
| 12298 | 413  | 
apply (force simp add: le_Suc_eq)  | 
414  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
415  | 
|
| 12298 | 416  | 
lemma ex_has_greatest_nat:  | 
| 14760 | 417  | 
"P k ==> \<forall>y. P y --> m y < b  | 
418  | 
==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)"  | 
|
| 12298 | 419  | 
apply (rule ccontr)  | 
420  | 
apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)  | 
|
| 14208 | 421  | 
apply (subgoal_tac [3] "m k <= b", auto)  | 
| 12298 | 422  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
423  | 
|
| 12298 | 424  | 
lemma GreatestM_nat_lemma:  | 
| 14760 | 425  | 
"P k ==> \<forall>y. P y --> m y < b  | 
426  | 
==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))"  | 
|
427  | 
apply (simp add: GreatestM_def)  | 
|
| 12298 | 428  | 
apply (rule someI_ex)  | 
| 14208 | 429  | 
apply (erule ex_has_greatest_nat, assumption)  | 
| 12298 | 430  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
431  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
432  | 
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard]  | 
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
433  | 
|
| 12298 | 434  | 
lemma GreatestM_nat_le:  | 
| 14760 | 435  | 
"P x ==> \<forall>y. P y --> m y < b  | 
| 12298 | 436  | 
==> (m x::nat) <= m (GreatestM m P)"  | 
| 21020 | 437  | 
apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])  | 
| 12298 | 438  | 
done  | 
439  | 
||
440  | 
||
441  | 
text {* \medskip Specialization to @{text GREATEST}. *}
 | 
|
442  | 
||
| 14760 | 443  | 
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)"  | 
444  | 
apply (simp add: Greatest_def)  | 
|
| 14208 | 445  | 
apply (rule GreatestM_natI, auto)  | 
| 12298 | 446  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
447  | 
|
| 12298 | 448  | 
lemma Greatest_le:  | 
| 14760 | 449  | 
"P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"  | 
450  | 
apply (simp add: Greatest_def)  | 
|
| 14208 | 451  | 
apply (rule GreatestM_nat_le, auto)  | 
| 12298 | 452  | 
done  | 
453  | 
||
454  | 
||
455  | 
subsection {* The Meson proof procedure *}
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
456  | 
|
| 12298 | 457  | 
subsubsection {* Negation Normal Form *}
 | 
458  | 
||
459  | 
text {* de Morgan laws *}
 | 
|
460  | 
||
461  | 
lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"  | 
|
462  | 
and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"  | 
|
463  | 
and meson_not_notD: "~~P ==> P"  | 
|
| 14760 | 464  | 
and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"  | 
465  | 
and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"  | 
|
| 12298 | 466  | 
by fast+  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
467  | 
|
| 12298 | 468  | 
text {* Removal of @{text "-->"} and @{text "<->"} (positive and
 | 
469  | 
negative occurrences) *}  | 
|
470  | 
||
471  | 
lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"  | 
|
472  | 
and meson_not_impD: "~(P-->Q) ==> P & ~Q"  | 
|
473  | 
and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"  | 
|
474  | 
and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"  | 
|
475  | 
    -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
 | 
|
| 18389 | 476  | 
and meson_not_refl_disj_D: "x ~= x | P ==> P"  | 
| 12298 | 477  | 
by fast+  | 
478  | 
||
479  | 
||
480  | 
subsubsection {* Pulling out the existential quantifiers *}
 | 
|
481  | 
||
482  | 
text {* Conjunction *}
 | 
|
483  | 
||
| 14760 | 484  | 
lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"  | 
485  | 
and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"  | 
|
| 12298 | 486  | 
by fast+  | 
487  | 
||
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
488  | 
|
| 12298 | 489  | 
text {* Disjunction *}
 | 
490  | 
||
| 14760 | 491  | 
lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"  | 
| 12298 | 492  | 
  -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
 | 
493  | 
  -- {* With ex-Skolemization, makes fewer Skolem constants *}
 | 
|
| 14760 | 494  | 
and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"  | 
495  | 
and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"  | 
|
| 12298 | 496  | 
by fast+  | 
497  | 
||
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
498  | 
|
| 12298 | 499  | 
subsubsection {* Generating clauses for the Meson Proof Procedure *}
 | 
500  | 
||
501  | 
text {* Disjunctions *}
 | 
|
502  | 
||
503  | 
lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"  | 
|
504  | 
and meson_disj_comm: "P|Q ==> Q|P"  | 
|
505  | 
and meson_disj_FalseD1: "False|P ==> P"  | 
|
506  | 
and meson_disj_FalseD2: "P|False ==> P"  | 
|
507  | 
by fast+  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
508  | 
|
| 14760 | 509  | 
|
510  | 
subsection{*Lemmas for Meson, the Model Elimination Procedure*}
 | 
|
511  | 
||
512  | 
text{* Generation of contrapositives *}
 | 
|
513  | 
||
514  | 
text{*Inserts negated disjunct after removing the negation; P is a literal.
 | 
|
515  | 
Model elimination requires assuming the negation of every attempted subgoal,  | 
|
516  | 
hence the negated disjuncts.*}  | 
|
517  | 
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"  | 
|
518  | 
by blast  | 
|
519  | 
||
520  | 
text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
 | 
|
521  | 
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"  | 
|
522  | 
by blast  | 
|
523  | 
||
524  | 
text{*@{term P} should be a literal*}
 | 
|
525  | 
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"  | 
|
526  | 
by blast  | 
|
527  | 
||
528  | 
text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
 | 
|
529  | 
insert new assumptions, for ordinary resolution.*}  | 
|
530  | 
||
531  | 
lemmas make_neg_rule' = make_refined_neg_rule  | 
|
532  | 
||
533  | 
lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"  | 
|
534  | 
by blast  | 
|
535  | 
||
536  | 
text{* Generation of a goal clause -- put away the final literal *}
 | 
|
537  | 
||
538  | 
lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"  | 
|
539  | 
by blast  | 
|
540  | 
||
541  | 
lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"  | 
|
542  | 
by blast  | 
|
543  | 
||
544  | 
||
545  | 
subsubsection{* Lemmas for Forward Proof*}
 | 
|
546  | 
||
547  | 
text{*There is a similarity to congruence rules*}
 | 
|
548  | 
||
549  | 
(*NOTE: could handle conjunctions (faster?) by  | 
|
550  | 
nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)  | 
|
551  | 
lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q"  | 
|
552  | 
by blast  | 
|
553  | 
||
554  | 
lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q"  | 
|
555  | 
by blast  | 
|
556  | 
||
557  | 
(*Version of @{text disj_forward} for removal of duplicate literals*)
 | 
|
558  | 
lemma disj_forward2:  | 
|
559  | 
"[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q"  | 
|
560  | 
apply blast  | 
|
561  | 
done  | 
|
562  | 
||
563  | 
lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"  | 
|
564  | 
by blast  | 
|
565  | 
||
566  | 
lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"  | 
|
567  | 
by blast  | 
|
568  | 
||
| 17420 | 569  | 
|
570  | 
text{*Many of these bindings are used by the ATP linkup, and not just by
 | 
|
571  | 
legacy proof scripts.*}  | 
|
| 14760 | 572  | 
ML  | 
573  | 
{*
 | 
|
574  | 
val inv_def = thm "inv_def";  | 
|
575  | 
val Inv_def = thm "Inv_def";  | 
|
576  | 
||
577  | 
val someI = thm "someI";  | 
|
578  | 
val someI_ex = thm "someI_ex";  | 
|
579  | 
val someI2 = thm "someI2";  | 
|
580  | 
val someI2_ex = thm "someI2_ex";  | 
|
581  | 
val some_equality = thm "some_equality";  | 
|
582  | 
val some1_equality = thm "some1_equality";  | 
|
583  | 
val some_eq_ex = thm "some_eq_ex";  | 
|
584  | 
val some_eq_trivial = thm "some_eq_trivial";  | 
|
585  | 
val some_sym_eq_trivial = thm "some_sym_eq_trivial";  | 
|
586  | 
val choice = thm "choice";  | 
|
587  | 
val bchoice = thm "bchoice";  | 
|
588  | 
val inv_id = thm "inv_id";  | 
|
589  | 
val inv_f_f = thm "inv_f_f";  | 
|
590  | 
val inv_f_eq = thm "inv_f_eq";  | 
|
591  | 
val inj_imp_inv_eq = thm "inj_imp_inv_eq";  | 
|
592  | 
val inj_transfer = thm "inj_transfer";  | 
|
593  | 
val inj_iff = thm "inj_iff";  | 
|
594  | 
val inj_imp_surj_inv = thm "inj_imp_surj_inv";  | 
|
595  | 
val f_inv_f = thm "f_inv_f";  | 
|
596  | 
val surj_f_inv_f = thm "surj_f_inv_f";  | 
|
597  | 
val inv_injective = thm "inv_injective";  | 
|
598  | 
val inj_on_inv = thm "inj_on_inv";  | 
|
599  | 
val surj_imp_inj_inv = thm "surj_imp_inj_inv";  | 
|
600  | 
val surj_iff = thm "surj_iff";  | 
|
601  | 
val surj_imp_inv_eq = thm "surj_imp_inv_eq";  | 
|
602  | 
val bij_imp_bij_inv = thm "bij_imp_bij_inv";  | 
|
603  | 
val inv_equality = thm "inv_equality";  | 
|
604  | 
val inv_inv_eq = thm "inv_inv_eq";  | 
|
605  | 
val o_inv_distrib = thm "o_inv_distrib";  | 
|
606  | 
val image_surj_f_inv_f = thm "image_surj_f_inv_f";  | 
|
607  | 
val image_inv_f_f = thm "image_inv_f_f";  | 
|
608  | 
val inv_image_comp = thm "inv_image_comp";  | 
|
609  | 
val bij_image_Collect_eq = thm "bij_image_Collect_eq";  | 
|
610  | 
val bij_vimage_eq_inv_image = thm "bij_vimage_eq_inv_image";  | 
|
611  | 
val Inv_f_f = thm "Inv_f_f";  | 
|
612  | 
val f_Inv_f = thm "f_Inv_f";  | 
|
613  | 
val Inv_injective = thm "Inv_injective";  | 
|
614  | 
val inj_on_Inv = thm "inj_on_Inv";  | 
|
615  | 
val split_paired_Eps = thm "split_paired_Eps";  | 
|
616  | 
val Eps_split = thm "Eps_split";  | 
|
617  | 
val Eps_split_eq = thm "Eps_split_eq";  | 
|
618  | 
val wf_iff_no_infinite_down_chain = thm "wf_iff_no_infinite_down_chain";  | 
|
619  | 
val Inv_mem = thm "Inv_mem";  | 
|
620  | 
val Inv_f_eq = thm "Inv_f_eq";  | 
|
621  | 
val Inv_comp = thm "Inv_comp";  | 
|
622  | 
val tfl_some = thm "tfl_some";  | 
|
623  | 
val make_neg_rule = thm "make_neg_rule";  | 
|
624  | 
val make_refined_neg_rule = thm "make_refined_neg_rule";  | 
|
625  | 
val make_pos_rule = thm "make_pos_rule";  | 
|
626  | 
val make_neg_rule' = thm "make_neg_rule'";  | 
|
627  | 
val make_pos_rule' = thm "make_pos_rule'";  | 
|
628  | 
val make_neg_goal = thm "make_neg_goal";  | 
|
629  | 
val make_pos_goal = thm "make_pos_goal";  | 
|
630  | 
val conj_forward = thm "conj_forward";  | 
|
631  | 
val disj_forward = thm "disj_forward";  | 
|
632  | 
val disj_forward2 = thm "disj_forward2";  | 
|
633  | 
val all_forward = thm "all_forward";  | 
|
634  | 
val ex_forward = thm "ex_forward";  | 
|
635  | 
*}  | 
|
636  | 
||
637  | 
||
| 
21999
 
0cf192e489e2
improvements to proof reconstruction. Some files loaded in a different order
 
paulson 
parents: 
21243 
diff
changeset
 | 
638  | 
subsection {* Meson package *}
 | 
| 
17893
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
639  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
640  | 
use "Tools/meson.ML"  | 
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
641  | 
|
| 
26562
 
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
 
paulson 
parents: 
26347 
diff
changeset
 | 
642  | 
setup Meson.setup  | 
| 
 
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
 
paulson 
parents: 
26347 
diff
changeset
 | 
643  | 
|
| 
17893
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
644  | 
|
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
645  | 
subsection {* Specification package -- Hilbertized version *}
 | 
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
646  | 
|
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
647  | 
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c"  | 
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
648  | 
by (simp only: someI_ex)  | 
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
649  | 
|
| 14115 | 650  | 
use "Tools/specification_package.ML"  | 
651  | 
||
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
652  | 
end  |