| author | nipkow | 
| Wed, 01 Apr 2009 16:55:31 +0200 | |
| changeset 30839 | bf99ceb7d015 | 
| parent 25974 | 0cb35fa9c6fa | 
| child 36319 | 8feb2c4bef1a | 
| permissions | -rw-r--r-- | 
| 
9114
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Lambda/Type.thy  | 
| 
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
3  | 
Author: Stefan Berghofer  | 
| 
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
4  | 
Copyright 2000 TU Muenchen  | 
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
5  | 
*)  | 
| 
9114
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
6  | 
|
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
7  | 
header {* Simply-typed lambda terms *}
 | 
| 
9114
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
8  | 
|
| 16417 | 9  | 
theory Type imports ListApplication begin  | 
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
10  | 
|
| 
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
11  | 
|
| 11946 | 12  | 
subsection {* Environments *}
 | 
13  | 
||
| 19086 | 14  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
15  | 
  shift :: "(nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"  ("_<_:_>" [90, 0, 0] 91) where
 | 
| 19086 | 16  | 
"e<i:a> = (\<lambda>j. if j < i then e j else if j = i then a else e (j - 1))"  | 
| 19363 | 17  | 
|
| 21210 | 18  | 
notation (xsymbols)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19380 
diff
changeset
 | 
19  | 
  shift  ("_\<langle>_:_\<rangle>" [90, 0, 0] 91)
 | 
| 19363 | 20  | 
|
| 21210 | 21  | 
notation (HTML output)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19380 
diff
changeset
 | 
22  | 
  shift  ("_\<langle>_:_\<rangle>" [90, 0, 0] 91)
 | 
| 11946 | 23  | 
|
24  | 
lemma shift_eq [simp]: "i = j \<Longrightarrow> (e\<langle>i:T\<rangle>) j = T"  | 
|
25  | 
by (simp add: shift_def)  | 
|
26  | 
||
27  | 
lemma shift_gt [simp]: "j < i \<Longrightarrow> (e\<langle>i:T\<rangle>) j = e j"  | 
|
28  | 
by (simp add: shift_def)  | 
|
29  | 
||
30  | 
lemma shift_lt [simp]: "i < j \<Longrightarrow> (e\<langle>i:T\<rangle>) j = e (j - 1)"  | 
|
31  | 
by (simp add: shift_def)  | 
|
32  | 
||
33  | 
lemma shift_commute [simp]: "e\<langle>i:U\<rangle>\<langle>0:T\<rangle> = e\<langle>0:T\<rangle>\<langle>Suc i:U\<rangle>"  | 
|
34  | 
apply (rule ext)  | 
|
35  | 
apply (case_tac x)  | 
|
36  | 
apply simp  | 
|
37  | 
apply (case_tac nat)  | 
|
38  | 
apply (simp_all add: shift_def)  | 
|
39  | 
done  | 
|
40  | 
||
41  | 
||
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
42  | 
subsection {* Types and typing rules *}
 | 
| 
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
43  | 
|
| 9641 | 44  | 
datatype type =  | 
| 9622 | 45  | 
Atom nat  | 
| 11945 | 46  | 
| Fun type type (infixr "\<Rightarrow>" 200)  | 
| 
9114
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
47  | 
|
| 23750 | 48  | 
inductive typing :: "(nat \<Rightarrow> type) \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool"  ("_ \<turnstile> _ : _" [50, 50, 50] 50)
 | 
| 22271 | 49  | 
where  | 
50  | 
Var [intro!]: "env x = T \<Longrightarrow> env \<turnstile> Var x : T"  | 
|
51  | 
| Abs [intro!]: "env\<langle>0:T\<rangle> \<turnstile> t : U \<Longrightarrow> env \<turnstile> Abs t : (T \<Rightarrow> U)"  | 
|
52  | 
| App [intro!]: "env \<turnstile> s : T \<Rightarrow> U \<Longrightarrow> env \<turnstile> t : T \<Longrightarrow> env \<turnstile> (s \<degree> t) : U"  | 
|
53  | 
||
| 23750 | 54  | 
inductive_cases typing_elims [elim!]:  | 
| 22271 | 55  | 
"e \<turnstile> Var i : T"  | 
56  | 
"e \<turnstile> t \<degree> u : T"  | 
|
57  | 
"e \<turnstile> Abs t : T"  | 
|
58  | 
||
| 25974 | 59  | 
primrec  | 
| 11943 | 60  | 
typings :: "(nat \<Rightarrow> type) \<Rightarrow> dB list \<Rightarrow> type list \<Rightarrow> bool"  | 
| 25974 | 61  | 
where  | 
62  | 
"typings e [] Ts = (Ts = [])"  | 
|
63  | 
| "typings e (t # ts) Ts =  | 
|
64  | 
(case Ts of  | 
|
65  | 
[] \<Rightarrow> False  | 
|
66  | 
| T # Ts \<Rightarrow> e \<turnstile> t : T \<and> typings e ts Ts)"  | 
|
| 19086 | 67  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
68  | 
abbreviation  | 
| 19086 | 69  | 
typings_rel :: "(nat \<Rightarrow> type) \<Rightarrow> dB list \<Rightarrow> type list \<Rightarrow> bool"  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
70  | 
    ("_ ||- _ : _" [50, 50, 50] 50) where
 | 
| 19363 | 71  | 
"env ||- ts : Ts == typings env ts Ts"  | 
| 19086 | 72  | 
|
| 21210 | 73  | 
notation (latex)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19380 
diff
changeset
 | 
74  | 
  typings_rel  ("_ \<tturnstile> _ : _" [50, 50, 50] 50)
 | 
| 
9114
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
75  | 
|
| 25974 | 76  | 
abbreviation  | 
77  | 
funs :: "type list \<Rightarrow> type \<Rightarrow> type" (infixr "=>>" 200) where  | 
|
78  | 
"Ts =>> T == foldr Fun Ts T"  | 
|
79  | 
||
80  | 
notation (latex)  | 
|
81  | 
funs (infixr "\<Rrightarrow>" 200)  | 
|
| 
9114
 
de99e37effda
Subject reduction and strong normalization of simply-typed lambda terms.
 
berghofe 
parents:  
diff
changeset
 | 
82  | 
|
| 9622 | 83  | 
|
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
84  | 
subsection {* Some examples *}
 | 
| 9622 | 85  | 
|
| 12011 | 86  | 
lemma "e \<turnstile> Abs (Abs (Abs (Var 1 \<degree> (Var 2 \<degree> Var 1 \<degree> Var 0)))) : ?T"  | 
| 11935 | 87  | 
by force  | 
| 9622 | 88  | 
|
| 12011 | 89  | 
lemma "e \<turnstile> Abs (Abs (Abs (Var 2 \<degree> Var 0 \<degree> (Var 1 \<degree> Var 0)))) : ?T"  | 
| 11935 | 90  | 
by force  | 
| 9622 | 91  | 
|
92  | 
||
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
93  | 
subsection {* Lists of types *}
 | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
94  | 
|
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
95  | 
lemma lists_typings:  | 
| 22271 | 96  | 
"e \<tturnstile> ts : Ts \<Longrightarrow> listsp (\<lambda>t. \<exists>T. e \<turnstile> t : T) ts"  | 
| 20503 | 97  | 
apply (induct ts arbitrary: Ts)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
98  | 
apply (case_tac Ts)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
99  | 
apply simp  | 
| 22271 | 100  | 
apply (rule listsp.Nil)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
101  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
102  | 
apply (case_tac Ts)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
103  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
104  | 
apply simp  | 
| 22271 | 105  | 
apply (rule listsp.Cons)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
106  | 
apply blast  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
107  | 
apply blast  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
108  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
109  | 
|
| 18241 | 110  | 
lemma types_snoc: "e \<tturnstile> ts : Ts \<Longrightarrow> e \<turnstile> t : T \<Longrightarrow> e \<tturnstile> ts @ [t] : Ts @ [T]"  | 
| 20503 | 111  | 
apply (induct ts arbitrary: Ts)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
112  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
113  | 
apply (case_tac Ts)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
114  | 
apply simp+  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
115  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
116  | 
|
| 18241 | 117  | 
lemma types_snoc_eq: "e \<tturnstile> ts @ [t] : Ts @ [T] =  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
118  | 
(e \<tturnstile> ts : Ts \<and> e \<turnstile> t : T)"  | 
| 20503 | 119  | 
apply (induct ts arbitrary: Ts)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
120  | 
apply (case_tac Ts)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
121  | 
apply simp+  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
122  | 
apply (case_tac Ts)  | 
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14565 
diff
changeset
 | 
123  | 
apply (case_tac "ts @ [t]")  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
124  | 
apply simp+  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
125  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
126  | 
|
| 25974 | 127  | 
lemma rev_exhaust2 [extraction_expand]:  | 
128  | 
obtains (Nil) "xs = []" | (snoc) ys y where "xs = ys @ [y]"  | 
|
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
129  | 
  -- {* Cannot use @{text rev_exhaust} from the @{text List}
 | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
130  | 
theory, since it is not constructive *}  | 
| 25974 | 131  | 
apply (subgoal_tac "\<forall>ys. xs = rev ys \<longrightarrow> thesis")  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
132  | 
apply (erule_tac x="rev xs" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
133  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
134  | 
apply (rule allI)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
135  | 
apply (rule impI)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
136  | 
apply (case_tac ys)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
137  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
138  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
139  | 
apply atomize  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
140  | 
apply (erule allE)+  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
141  | 
apply (erule mp, rule conjI)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
142  | 
apply (rule refl)+  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
143  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
144  | 
|
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
145  | 
lemma types_snocE: "e \<tturnstile> ts @ [t] : Ts \<Longrightarrow>  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
146  | 
(\<And>Us U. Ts = Us @ [U] \<Longrightarrow> e \<tturnstile> ts : Us \<Longrightarrow> e \<turnstile> t : U \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
147  | 
apply (cases Ts rule: rev_exhaust2)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
148  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
149  | 
apply (case_tac "ts @ [t]")  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
150  | 
apply (simp add: types_snoc_eq)+  | 
| 17589 | 151  | 
apply iprover  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
152  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
153  | 
|
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
154  | 
|
| 11950 | 155  | 
subsection {* n-ary function types *}
 | 
| 9622 | 156  | 
|
| 11987 | 157  | 
lemma list_app_typeD:  | 
| 18241 | 158  | 
"e \<turnstile> t \<degree>\<degree> ts : T \<Longrightarrow> \<exists>Ts. e \<turnstile> t : Ts \<Rrightarrow> T \<and> e \<tturnstile> ts : Ts"  | 
| 20503 | 159  | 
apply (induct ts arbitrary: t T)  | 
| 9622 | 160  | 
apply simp  | 
| 11987 | 161  | 
apply atomize  | 
| 9622 | 162  | 
apply simp  | 
| 12011 | 163  | 
apply (erule_tac x = "t \<degree> a" in allE)  | 
| 9622 | 164  | 
apply (erule_tac x = T in allE)  | 
165  | 
apply (erule impE)  | 
|
166  | 
apply assumption  | 
|
167  | 
apply (elim exE conjE)  | 
|
| 23750 | 168  | 
apply (ind_cases "e \<turnstile> t \<degree> u : T" for t u T)  | 
| 9622 | 169  | 
apply (rule_tac x = "Ta # Ts" in exI)  | 
170  | 
apply simp  | 
|
171  | 
done  | 
|
172  | 
||
| 11935 | 173  | 
lemma list_app_typeE:  | 
| 12011 | 174  | 
"e \<turnstile> t \<degree>\<degree> ts : T \<Longrightarrow> (\<And>Ts. e \<turnstile> t : Ts \<Rrightarrow> T \<Longrightarrow> e \<tturnstile> ts : Ts \<Longrightarrow> C) \<Longrightarrow> C"  | 
| 11935 | 175  | 
by (insert list_app_typeD) fast  | 
176  | 
||
| 11987 | 177  | 
lemma list_app_typeI:  | 
| 18241 | 178  | 
"e \<turnstile> t : Ts \<Rrightarrow> T \<Longrightarrow> e \<tturnstile> ts : Ts \<Longrightarrow> e \<turnstile> t \<degree>\<degree> ts : T"  | 
| 20503 | 179  | 
apply (induct ts arbitrary: t T Ts)  | 
| 9622 | 180  | 
apply simp  | 
| 11987 | 181  | 
apply atomize  | 
| 9622 | 182  | 
apply (case_tac Ts)  | 
183  | 
apply simp  | 
|
184  | 
apply simp  | 
|
| 12011 | 185  | 
apply (erule_tac x = "t \<degree> a" in allE)  | 
| 9622 | 186  | 
apply (erule_tac x = T in allE)  | 
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14565 
diff
changeset
 | 
187  | 
apply (erule_tac x = list in allE)  | 
| 9622 | 188  | 
apply (erule impE)  | 
189  | 
apply (erule conjE)  | 
|
190  | 
apply (erule typing.App)  | 
|
191  | 
apply assumption  | 
|
192  | 
apply blast  | 
|
193  | 
done  | 
|
194  | 
||
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
195  | 
text {*
 | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
196  | 
For the specific case where the head of the term is a variable,  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
197  | 
the following theorems allow to infer the types of the arguments  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
198  | 
without analyzing the typing derivation. This is crucial  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
199  | 
for program extraction.  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
200  | 
*}  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
201  | 
|
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
202  | 
theorem var_app_type_eq:  | 
| 18241 | 203  | 
"e \<turnstile> Var i \<degree>\<degree> ts : T \<Longrightarrow> e \<turnstile> Var i \<degree>\<degree> ts : U \<Longrightarrow> T = U"  | 
| 20503 | 204  | 
apply (induct ts arbitrary: T U rule: rev_induct)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
205  | 
apply simp  | 
| 23750 | 206  | 
apply (ind_cases "e \<turnstile> Var i : T" for T)  | 
207  | 
apply (ind_cases "e \<turnstile> Var i : T" for T)  | 
|
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
208  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
209  | 
apply simp  | 
| 23750 | 210  | 
apply (ind_cases "e \<turnstile> t \<degree> u : T" for t u T)  | 
211  | 
apply (ind_cases "e \<turnstile> t \<degree> u : T" for t u T)  | 
|
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
212  | 
apply atomize  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
213  | 
apply (erule_tac x="Ta \<Rightarrow> T" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
214  | 
apply (erule_tac x="Tb \<Rightarrow> U" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
215  | 
apply (erule impE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
216  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
217  | 
apply (erule impE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
218  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
219  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
220  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
221  | 
|
| 18241 | 222  | 
lemma var_app_types: "e \<turnstile> Var i \<degree>\<degree> ts \<degree>\<degree> us : T \<Longrightarrow> e \<tturnstile> ts : Ts \<Longrightarrow>  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
223  | 
e \<turnstile> Var i \<degree>\<degree> ts : U \<Longrightarrow> \<exists>Us. U = Us \<Rrightarrow> T \<and> e \<tturnstile> us : Us"  | 
| 20503 | 224  | 
apply (induct us arbitrary: ts Ts U)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
225  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
226  | 
apply (erule var_app_type_eq)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
227  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
228  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
229  | 
apply atomize  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
230  | 
apply (case_tac U)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
231  | 
apply (rule FalseE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
232  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
233  | 
apply (erule list_app_typeE)  | 
| 23750 | 234  | 
apply (ind_cases "e \<turnstile> t \<degree> u : T" for t u T)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
235  | 
apply (drule_tac T="Atom nat" and U="Ta \<Rightarrow> Tsa \<Rrightarrow> T" in var_app_type_eq)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
236  | 
apply assumption  | 
| 9622 | 237  | 
apply simp  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
238  | 
apply (erule_tac x="ts @ [a]" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
239  | 
apply (erule_tac x="Ts @ [type1]" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
240  | 
apply (erule_tac x="type2" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
241  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
242  | 
apply (erule impE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
243  | 
apply (rule types_snoc)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
244  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
245  | 
apply (erule list_app_typeE)  | 
| 23750 | 246  | 
apply (ind_cases "e \<turnstile> t \<degree> u : T" for t u T)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
247  | 
apply (drule_tac T="type1 \<Rightarrow> type2" and U="Ta \<Rightarrow> Tsa \<Rrightarrow> T" in var_app_type_eq)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
248  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
249  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
250  | 
apply (erule impE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
251  | 
apply (rule typing.App)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
252  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
253  | 
apply (erule list_app_typeE)  | 
| 23750 | 254  | 
apply (ind_cases "e \<turnstile> t \<degree> u : T" for t u T)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
255  | 
apply (frule_tac T="type1 \<Rightarrow> type2" and U="Ta \<Rightarrow> Tsa \<Rrightarrow> T" in var_app_type_eq)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
256  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
257  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
258  | 
apply (erule exE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
259  | 
apply (rule_tac x="type1 # Us" in exI)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
260  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
261  | 
apply (erule list_app_typeE)  | 
| 23750 | 262  | 
apply (ind_cases "e \<turnstile> t \<degree> u : T" for t u T)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
263  | 
apply (frule_tac T="type1 \<Rightarrow> Us \<Rrightarrow> T" and U="Ta \<Rightarrow> Tsa \<Rrightarrow> T" in var_app_type_eq)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
264  | 
apply assumption  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
265  | 
apply simp  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
266  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
267  | 
|
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
268  | 
lemma var_app_typesE: "e \<turnstile> Var i \<degree>\<degree> ts : T \<Longrightarrow>  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
269  | 
(\<And>Ts. e \<turnstile> Var i : Ts \<Rrightarrow> T \<Longrightarrow> e \<tturnstile> ts : Ts \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
270  | 
apply (drule var_app_types [of _ _ "[]", simplified])  | 
| 17589 | 271  | 
apply (iprover intro: typing.Var)+  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
272  | 
done  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
273  | 
|
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
274  | 
lemma abs_typeE: "e \<turnstile> Abs t : T \<Longrightarrow> (\<And>U V. e\<langle>0:U\<rangle> \<turnstile> t : V \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
275  | 
apply (cases T)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
276  | 
apply (rule FalseE)  | 
| 22271 | 277  | 
apply (erule typing.cases)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
278  | 
apply simp_all  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
279  | 
apply atomize  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
280  | 
apply (erule_tac x="type1" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
281  | 
apply (erule_tac x="type2" in allE)  | 
| 
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
282  | 
apply (erule mp)  | 
| 22271 | 283  | 
apply (erule typing.cases)  | 
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
284  | 
apply simp_all  | 
| 9622 | 285  | 
done  | 
286  | 
||
287  | 
||
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
288  | 
subsection {* Lifting preserves well-typedness *}
 | 
| 9622 | 289  | 
|
| 18257 | 290  | 
lemma lift_type [intro!]: "e \<turnstile> t : T \<Longrightarrow> e\<langle>i:U\<rangle> \<turnstile> lift t i : T"  | 
| 20503 | 291  | 
by (induct arbitrary: i U set: typing) auto  | 
| 12171 | 292  | 
|
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
293  | 
lemma lift_types:  | 
| 18241 | 294  | 
"e \<tturnstile> ts : Ts \<Longrightarrow> e\<langle>i:U\<rangle> \<tturnstile> (map (\<lambda>t. lift t i) ts) : Ts"  | 
| 20503 | 295  | 
apply (induct ts arbitrary: Ts)  | 
| 9622 | 296  | 
apply simp  | 
297  | 
apply (case_tac Ts)  | 
|
| 11946 | 298  | 
apply auto  | 
| 9622 | 299  | 
done  | 
300  | 
||
301  | 
||
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
302  | 
subsection {* Substitution lemmas *}
 | 
| 9622 | 303  | 
|
| 11994 | 304  | 
lemma subst_lemma:  | 
| 18257 | 305  | 
"e \<turnstile> t : T \<Longrightarrow> e' \<turnstile> u : U \<Longrightarrow> e = e'\<langle>i:U\<rangle> \<Longrightarrow> e' \<turnstile> t[u/i] : T"  | 
| 20503 | 306  | 
apply (induct arbitrary: e' i U u set: typing)  | 
| 11946 | 307  | 
apply (rule_tac x = x and y = i in linorder_cases)  | 
308  | 
apply auto  | 
|
309  | 
apply blast  | 
|
| 9622 | 310  | 
done  | 
311  | 
||
| 12011 | 312  | 
lemma substs_lemma:  | 
| 18241 | 313  | 
"e \<turnstile> u : T \<Longrightarrow> e\<langle>i:T\<rangle> \<tturnstile> ts : Ts \<Longrightarrow>  | 
| 11943 | 314  | 
e \<tturnstile> (map (\<lambda>t. t[u/i]) ts) : Ts"  | 
| 20503 | 315  | 
apply (induct ts arbitrary: Ts)  | 
| 9622 | 316  | 
apply (case_tac Ts)  | 
317  | 
apply simp  | 
|
318  | 
apply simp  | 
|
| 12011 | 319  | 
apply atomize  | 
| 9622 | 320  | 
apply (case_tac Ts)  | 
321  | 
apply simp  | 
|
322  | 
apply simp  | 
|
323  | 
apply (erule conjE)  | 
|
| 12011 | 324  | 
apply (erule (1) subst_lemma)  | 
| 11994 | 325  | 
apply (rule refl)  | 
326  | 
done  | 
|
327  | 
||
| 9622 | 328  | 
|
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
329  | 
subsection {* Subject reduction *}
 | 
| 9622 | 330  | 
|
| 22271 | 331  | 
lemma subject_reduction: "e \<turnstile> t : T \<Longrightarrow> t \<rightarrow>\<^sub>\<beta> t' \<Longrightarrow> e \<turnstile> t' : T"  | 
| 20503 | 332  | 
apply (induct arbitrary: t' set: typing)  | 
| 9622 | 333  | 
apply blast  | 
334  | 
apply blast  | 
|
| 11994 | 335  | 
apply atomize  | 
| 23750 | 336  | 
apply (ind_cases "s \<degree> t \<rightarrow>\<^sub>\<beta> t'" for s t t')  | 
| 9622 | 337  | 
apply hypsubst  | 
| 23750 | 338  | 
apply (ind_cases "env \<turnstile> Abs t : T \<Rightarrow> U" for env t T U)  | 
| 9622 | 339  | 
apply (rule subst_lemma)  | 
340  | 
apply assumption  | 
|
341  | 
apply assumption  | 
|
342  | 
apply (rule ext)  | 
|
| 11935 | 343  | 
apply (case_tac x)  | 
| 11946 | 344  | 
apply auto  | 
| 9622 | 345  | 
done  | 
346  | 
||
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
347  | 
theorem subject_reduction': "t \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<Longrightarrow> e \<turnstile> t : T \<Longrightarrow> e \<turnstile> t' : T"  | 
| 23750 | 348  | 
by (induct set: rtranclp) (iprover intro: subject_reduction)+  | 
| 9622 | 349  | 
|
350  | 
||
| 
14064
 
35d36f43ba06
Moved strong normalization proof to StrongNorm.thy
 
berghofe 
parents: 
13596 
diff
changeset
 | 
351  | 
subsection {* Alternative induction rule for types *}
 | 
| 9622 | 352  | 
|
| 11935 | 353  | 
lemma type_induct [induct type]:  | 
| 18241 | 354  | 
assumes  | 
| 11945 | 355  | 
"(\<And>T. (\<And>T1 T2. T = T1 \<Rightarrow> T2 \<Longrightarrow> P T1) \<Longrightarrow>  | 
| 18241 | 356  | 
(\<And>T1 T2. T = T1 \<Rightarrow> T2 \<Longrightarrow> P T2) \<Longrightarrow> P T)"  | 
357  | 
shows "P T"  | 
|
358  | 
proof (induct T)  | 
|
359  | 
case Atom  | 
|
| 23464 | 360  | 
show ?case by (rule assms) simp_all  | 
| 18241 | 361  | 
next  | 
362  | 
case Fun  | 
|
| 23464 | 363  | 
show ?case by (rule assms) (insert Fun, simp_all)  | 
| 11935 | 364  | 
qed  | 
365  | 
||
| 11638 | 366  | 
end  |