| 
61640
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
67406
 | 
     3  | 
section \<open>Lists Sorted wrt $<$\<close>
  | 
| 
61640
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Sorted_Less
  | 
| 
 | 
     6  | 
imports Less_False
  | 
| 
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
hide_const sorted
  | 
| 
 | 
    10  | 
  | 
| 
69505
 | 
    11  | 
text \<open>Is a list sorted without duplicates, i.e., wrt \<open><\<close>?.\<close>
  | 
| 
61640
 | 
    12  | 
  | 
| 
66441
 | 
    13  | 
abbreviation sorted :: "'a::linorder list \<Rightarrow> bool" where
  | 
| 
67399
 | 
    14  | 
"sorted \<equiv> sorted_wrt (<)"
  | 
| 
61640
 | 
    15  | 
  | 
| 
68125
 | 
    16  | 
lemmas sorted_wrt_Cons = sorted_wrt.simps(2)
  | 
| 
 | 
    17  | 
  | 
| 
69597
 | 
    18  | 
text \<open>The definition of \<^const>\<open>sorted_wrt\<close> relates each element to all the elements after it.
  | 
| 
68109
 | 
    19  | 
This causes a blowup of the formulas. Thus we simplify matters by only comparing adjacent elements.\<close>
  | 
| 
 | 
    20  | 
  | 
| 
68125
 | 
    21  | 
declare
  | 
| 
 | 
    22  | 
  sorted_wrt.simps(2)[simp del]
  | 
| 
 | 
    23  | 
  sorted_wrt1[simp] sorted_wrt2[OF transp_less, simp]
  | 
| 
68109
 | 
    24  | 
  | 
| 
61640
 | 
    25  | 
lemma sorted_cons: "sorted (x#xs) \<Longrightarrow> sorted xs"
  | 
| 
66441
 | 
    26  | 
by(simp add: sorted_wrt_Cons)
  | 
| 
61640
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma sorted_cons': "ASSUMPTION (sorted (x#xs)) \<Longrightarrow> sorted xs"
  | 
| 
 | 
    29  | 
by(rule ASSUMPTION_D [THEN sorted_cons])
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma sorted_snoc: "sorted (xs @ [y]) \<Longrightarrow> sorted xs"
  | 
| 
66441
 | 
    32  | 
by(simp add: sorted_wrt_append)
  | 
| 
61640
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma sorted_snoc': "ASSUMPTION (sorted (xs @ [y])) \<Longrightarrow> sorted xs"
  | 
| 
 | 
    35  | 
by(rule ASSUMPTION_D [THEN sorted_snoc])
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma sorted_mid_iff:
  | 
| 
 | 
    38  | 
  "sorted(xs @ y # ys) = (sorted(xs @ [y]) \<and> sorted(y # ys))"
  | 
| 
66441
 | 
    39  | 
by(fastforce simp add: sorted_wrt_Cons sorted_wrt_append)
  | 
| 
61640
 | 
    40  | 
  | 
| 
 | 
    41  | 
lemma sorted_mid_iff2:
  | 
| 
 | 
    42  | 
  "sorted(x # xs @ y # ys) =
  | 
| 
 | 
    43  | 
  (sorted(x # xs) \<and> x < y \<and> sorted(xs @ [y]) \<and> sorted(y # ys))"
  | 
| 
66441
 | 
    44  | 
by(fastforce simp add: sorted_wrt_Cons sorted_wrt_append)
  | 
| 
61640
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma sorted_mid_iff': "NO_MATCH [] ys \<Longrightarrow>
  | 
| 
 | 
    47  | 
  sorted(xs @ y # ys) = (sorted(xs @ [y]) \<and> sorted(y # ys))"
  | 
| 
 | 
    48  | 
by(rule sorted_mid_iff)
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
lemmas sorted_lems = sorted_mid_iff' sorted_mid_iff2 sorted_cons' sorted_snoc'
  | 
| 
 | 
    51  | 
  | 
| 
69597
 | 
    52  | 
text\<open>Splay trees need two additional \<^const>\<open>sorted\<close> lemmas:\<close>
  | 
| 
61696
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma sorted_snoc_le:
  | 
| 
 | 
    55  | 
  "ASSUMPTION(sorted(xs @ [x])) \<Longrightarrow> x \<le> y \<Longrightarrow> sorted (xs @ [y])"
  | 
| 
66441
 | 
    56  | 
by (auto simp add: sorted_wrt_append ASSUMPTION_def)
  | 
| 
61696
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma sorted_Cons_le:
  | 
| 
 | 
    59  | 
  "ASSUMPTION(sorted(x # xs)) \<Longrightarrow> y \<le> x \<Longrightarrow> sorted (y # xs)"
  | 
| 
66441
 | 
    60  | 
by (auto simp add: sorted_wrt_Cons ASSUMPTION_def)
  | 
| 
61696
 | 
    61  | 
  | 
| 
61640
 | 
    62  | 
end
  |