| author | huffman | 
| Thu, 17 Nov 2011 12:38:03 +0100 | |
| changeset 45544 | c0304794e9e4 | 
| parent 45542 | 4849dbe6e310 | 
| child 45605 | a89b4bc311a5 | 
| permissions | -rw-r--r-- | 
| 27468 | 1  | 
(* Title : HOL/Hyperreal/StarDef.thy  | 
2  | 
Author : Jacques D. Fleuriot and Brian Huffman  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Construction of Star Types Using Ultrafilters *}
 | 
|
6  | 
||
7  | 
theory StarDef  | 
|
8  | 
imports Filter  | 
|
9  | 
uses ("transfer.ML")
 | 
|
10  | 
begin  | 
|
11  | 
||
12  | 
subsection {* A Free Ultrafilter over the Naturals *}
 | 
|
13  | 
||
14  | 
definition  | 
|
15  | 
  FreeUltrafilterNat :: "nat set set"  ("\<U>") where
 | 
|
16  | 
"\<U> = (SOME U. freeultrafilter U)"  | 
|
17  | 
||
18  | 
lemma freeultrafilter_FreeUltrafilterNat: "freeultrafilter \<U>"  | 
|
19  | 
apply (unfold FreeUltrafilterNat_def)  | 
|
20  | 
apply (rule someI_ex [where P=freeultrafilter])  | 
|
21  | 
apply (rule freeultrafilter_Ex)  | 
|
22  | 
apply (rule nat_infinite)  | 
|
23  | 
done  | 
|
24  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30198 
diff
changeset
 | 
25  | 
interpretation FreeUltrafilterNat: freeultrafilter FreeUltrafilterNat  | 
| 27468 | 26  | 
by (rule freeultrafilter_FreeUltrafilterNat)  | 
27  | 
||
28  | 
text {* This rule takes the place of the old ultra tactic *}
 | 
|
29  | 
||
30  | 
lemma ultra:  | 
|
31  | 
  "\<lbrakk>{n. P n} \<in> \<U>; {n. P n \<longrightarrow> Q n} \<in> \<U>\<rbrakk> \<Longrightarrow> {n. Q n} \<in> \<U>"
 | 
|
32  | 
by (simp add: Collect_imp_eq  | 
|
33  | 
FreeUltrafilterNat.Un_iff FreeUltrafilterNat.Compl_iff)  | 
|
34  | 
||
35  | 
||
36  | 
subsection {* Definition of @{text star} type constructor *}
 | 
|
37  | 
||
38  | 
definition  | 
|
39  | 
starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set" where  | 
|
40  | 
  "starrel = {(X,Y). {n. X n = Y n} \<in> \<U>}"
 | 
|
41  | 
||
42  | 
typedef 'a star = "(UNIV :: (nat \<Rightarrow> 'a) set) // starrel"  | 
|
43  | 
by (auto intro: quotientI)  | 
|
44  | 
||
45  | 
definition  | 
|
46  | 
star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star" where  | 
|
47  | 
  "star_n X = Abs_star (starrel `` {X})"
 | 
|
48  | 
||
49  | 
theorem star_cases [case_names star_n, cases type: star]:  | 
|
50  | 
"(\<And>X. x = star_n X \<Longrightarrow> P) \<Longrightarrow> P"  | 
|
51  | 
by (cases x, unfold star_n_def star_def, erule quotientE, fast)  | 
|
52  | 
||
53  | 
lemma all_star_eq: "(\<forall>x. P x) = (\<forall>X. P (star_n X))"  | 
|
54  | 
by (auto, rule_tac x=x in star_cases, simp)  | 
|
55  | 
||
56  | 
lemma ex_star_eq: "(\<exists>x. P x) = (\<exists>X. P (star_n X))"  | 
|
57  | 
by (auto, rule_tac x=x in star_cases, auto)  | 
|
58  | 
||
59  | 
text {* Proving that @{term starrel} is an equivalence relation *}
 | 
|
60  | 
||
61  | 
lemma starrel_iff [iff]: "((X,Y) \<in> starrel) = ({n. X n = Y n} \<in> \<U>)"
 | 
|
62  | 
by (simp add: starrel_def)  | 
|
63  | 
||
64  | 
lemma equiv_starrel: "equiv UNIV starrel"  | 
|
| 40815 | 65  | 
proof (rule equivI)  | 
| 30198 | 66  | 
show "refl starrel" by (simp add: refl_on_def)  | 
| 27468 | 67  | 
show "sym starrel" by (simp add: sym_def eq_commute)  | 
68  | 
show "trans starrel" by (auto intro: transI elim!: ultra)  | 
|
69  | 
qed  | 
|
70  | 
||
71  | 
lemmas equiv_starrel_iff =  | 
|
72  | 
eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I]  | 
|
73  | 
||
74  | 
lemma starrel_in_star: "starrel``{x} \<in> star"
 | 
|
75  | 
by (simp add: star_def quotientI)  | 
|
76  | 
||
77  | 
lemma star_n_eq_iff: "(star_n X = star_n Y) = ({n. X n = Y n} \<in> \<U>)"
 | 
|
78  | 
by (simp add: star_n_def Abs_star_inject starrel_in_star equiv_starrel_iff)  | 
|
79  | 
||
80  | 
||
81  | 
subsection {* Transfer principle *}
 | 
|
82  | 
||
83  | 
text {* This introduction rule starts each transfer proof. *}
 | 
|
84  | 
lemma transfer_start:  | 
|
85  | 
  "P \<equiv> {n. Q} \<in> \<U> \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
 | 
|
86  | 
by (subgoal_tac "P \<equiv> Q", simp, simp add: atomize_eq)  | 
|
87  | 
||
88  | 
text {*Initialize transfer tactic.*}
 | 
|
89  | 
use "transfer.ML"  | 
|
90  | 
setup Transfer.setup  | 
|
91  | 
||
92  | 
text {* Transfer introduction rules. *}
 | 
|
93  | 
||
94  | 
lemma transfer_ex [transfer_intro]:  | 
|
95  | 
  "\<lbrakk>\<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
 | 
|
96  | 
    \<Longrightarrow> \<exists>x::'a star. p x \<equiv> {n. \<exists>x. P n x} \<in> \<U>"
 | 
|
97  | 
by (simp only: ex_star_eq FreeUltrafilterNat.Collect_ex)  | 
|
98  | 
||
99  | 
lemma transfer_all [transfer_intro]:  | 
|
100  | 
  "\<lbrakk>\<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
 | 
|
101  | 
    \<Longrightarrow> \<forall>x::'a star. p x \<equiv> {n. \<forall>x. P n x} \<in> \<U>"
 | 
|
102  | 
by (simp only: all_star_eq FreeUltrafilterNat.Collect_all)  | 
|
103  | 
||
104  | 
lemma transfer_not [transfer_intro]:  | 
|
105  | 
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>\<rbrakk> \<Longrightarrow> \<not> p \<equiv> {n. \<not> P n} \<in> \<U>"
 | 
|
106  | 
by (simp only: FreeUltrafilterNat.Collect_not)  | 
|
107  | 
||
108  | 
lemma transfer_conj [transfer_intro]:  | 
|
109  | 
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
 | 
|
110  | 
    \<Longrightarrow> p \<and> q \<equiv> {n. P n \<and> Q n} \<in> \<U>"
 | 
|
111  | 
by (simp only: FreeUltrafilterNat.Collect_conj)  | 
|
112  | 
||
113  | 
lemma transfer_disj [transfer_intro]:  | 
|
114  | 
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
 | 
|
115  | 
    \<Longrightarrow> p \<or> q \<equiv> {n. P n \<or> Q n} \<in> \<U>"
 | 
|
116  | 
by (simp only: FreeUltrafilterNat.Collect_disj)  | 
|
117  | 
||
118  | 
lemma transfer_imp [transfer_intro]:  | 
|
119  | 
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
 | 
|
120  | 
    \<Longrightarrow> p \<longrightarrow> q \<equiv> {n. P n \<longrightarrow> Q n} \<in> \<U>"
 | 
|
121  | 
by (simp only: imp_conv_disj transfer_disj transfer_not)  | 
|
122  | 
||
123  | 
lemma transfer_iff [transfer_intro]:  | 
|
124  | 
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
 | 
|
125  | 
    \<Longrightarrow> p = q \<equiv> {n. P n = Q n} \<in> \<U>"
 | 
|
126  | 
by (simp only: iff_conv_conj_imp transfer_conj transfer_imp)  | 
|
127  | 
||
128  | 
lemma transfer_if_bool [transfer_intro]:  | 
|
129  | 
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; x \<equiv> {n. X n} \<in> \<U>; y \<equiv> {n. Y n} \<in> \<U>\<rbrakk>
 | 
|
130  | 
    \<Longrightarrow> (if p then x else y) \<equiv> {n. if P n then X n else Y n} \<in> \<U>"
 | 
|
131  | 
by (simp only: if_bool_eq_conj transfer_conj transfer_imp transfer_not)  | 
|
132  | 
||
133  | 
lemma transfer_eq [transfer_intro]:  | 
|
134  | 
  "\<lbrakk>x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk> \<Longrightarrow> x = y \<equiv> {n. X n = Y n} \<in> \<U>"
 | 
|
135  | 
by (simp only: star_n_eq_iff)  | 
|
136  | 
||
137  | 
lemma transfer_if [transfer_intro]:  | 
|
138  | 
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk>
 | 
|
139  | 
\<Longrightarrow> (if p then x else y) \<equiv> star_n (\<lambda>n. if P n then X n else Y n)"  | 
|
140  | 
apply (rule eq_reflection)  | 
|
141  | 
apply (auto simp add: star_n_eq_iff transfer_not elim!: ultra)  | 
|
142  | 
done  | 
|
143  | 
||
144  | 
lemma transfer_fun_eq [transfer_intro]:  | 
|
145  | 
"\<lbrakk>\<And>X. f (star_n X) = g (star_n X)  | 
|
146  | 
    \<equiv> {n. F n (X n) = G n (X n)} \<in> \<U>\<rbrakk>
 | 
|
147  | 
      \<Longrightarrow> f = g \<equiv> {n. F n = G n} \<in> \<U>"
 | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
148  | 
by (simp only: fun_eq_iff transfer_all)  | 
| 27468 | 149  | 
|
150  | 
lemma transfer_star_n [transfer_intro]: "star_n X \<equiv> star_n (\<lambda>n. X n)"  | 
|
151  | 
by (rule reflexive)  | 
|
152  | 
||
153  | 
lemma transfer_bool [transfer_intro]: "p \<equiv> {n. p} \<in> \<U>"
 | 
|
154  | 
by (simp add: atomize_eq)  | 
|
155  | 
||
156  | 
||
157  | 
subsection {* Standard elements *}
 | 
|
158  | 
||
159  | 
definition  | 
|
160  | 
star_of :: "'a \<Rightarrow> 'a star" where  | 
|
161  | 
"star_of x == star_n (\<lambda>n. x)"  | 
|
162  | 
||
163  | 
definition  | 
|
164  | 
Standard :: "'a star set" where  | 
|
165  | 
"Standard = range star_of"  | 
|
166  | 
||
167  | 
text {* Transfer tactic should remove occurrences of @{term star_of} *}
 | 
|
168  | 
setup {* Transfer.add_const "StarDef.star_of" *}
 | 
|
169  | 
||
170  | 
declare star_of_def [transfer_intro]  | 
|
171  | 
||
172  | 
lemma star_of_inject: "(star_of x = star_of y) = (x = y)"  | 
|
173  | 
by (transfer, rule refl)  | 
|
174  | 
||
175  | 
lemma Standard_star_of [simp]: "star_of x \<in> Standard"  | 
|
176  | 
by (simp add: Standard_def)  | 
|
177  | 
||
178  | 
||
179  | 
subsection {* Internal functions *}
 | 
|
180  | 
||
181  | 
definition  | 
|
182  | 
  Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" ("_ \<star> _" [300,301] 300) where
 | 
|
183  | 
"Ifun f \<equiv> \<lambda>x. Abs_star  | 
|
184  | 
       (\<Union>F\<in>Rep_star f. \<Union>X\<in>Rep_star x. starrel``{\<lambda>n. F n (X n)})"
 | 
|
185  | 
||
186  | 
lemma Ifun_congruent2:  | 
|
187  | 
  "congruent2 starrel starrel (\<lambda>F X. starrel``{\<lambda>n. F n (X n)})"
 | 
|
188  | 
by (auto simp add: congruent2_def equiv_starrel_iff elim!: ultra)  | 
|
189  | 
||
190  | 
lemma Ifun_star_n: "star_n F \<star> star_n X = star_n (\<lambda>n. F n (X n))"  | 
|
191  | 
by (simp add: Ifun_def star_n_def Abs_star_inverse starrel_in_star  | 
|
192  | 
UN_equiv_class2 [OF equiv_starrel equiv_starrel Ifun_congruent2])  | 
|
193  | 
||
194  | 
text {* Transfer tactic should remove occurrences of @{term Ifun} *}
 | 
|
195  | 
setup {* Transfer.add_const "StarDef.Ifun" *}
 | 
|
196  | 
||
197  | 
lemma transfer_Ifun [transfer_intro]:  | 
|
198  | 
"\<lbrakk>f \<equiv> star_n F; x \<equiv> star_n X\<rbrakk> \<Longrightarrow> f \<star> x \<equiv> star_n (\<lambda>n. F n (X n))"  | 
|
199  | 
by (simp only: Ifun_star_n)  | 
|
200  | 
||
201  | 
lemma Ifun_star_of [simp]: "star_of f \<star> star_of x = star_of (f x)"  | 
|
202  | 
by (transfer, rule refl)  | 
|
203  | 
||
204  | 
lemma Standard_Ifun [simp]:  | 
|
205  | 
"\<lbrakk>f \<in> Standard; x \<in> Standard\<rbrakk> \<Longrightarrow> f \<star> x \<in> Standard"  | 
|
206  | 
by (auto simp add: Standard_def)  | 
|
207  | 
||
208  | 
text {* Nonstandard extensions of functions *}
 | 
|
209  | 
||
210  | 
definition  | 
|
211  | 
  starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a star \<Rightarrow> 'b star)"  ("*f* _" [80] 80) where
 | 
|
212  | 
"starfun f == \<lambda>x. star_of f \<star> x"  | 
|
213  | 
||
214  | 
definition  | 
|
215  | 
  starfun2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a star \<Rightarrow> 'b star \<Rightarrow> 'c star)"
 | 
|
216  | 
    ("*f2* _" [80] 80) where
 | 
|
217  | 
"starfun2 f == \<lambda>x y. star_of f \<star> x \<star> y"  | 
|
218  | 
||
219  | 
declare starfun_def [transfer_unfold]  | 
|
220  | 
declare starfun2_def [transfer_unfold]  | 
|
221  | 
||
222  | 
lemma starfun_star_n: "( *f* f) (star_n X) = star_n (\<lambda>n. f (X n))"  | 
|
223  | 
by (simp only: starfun_def star_of_def Ifun_star_n)  | 
|
224  | 
||
225  | 
lemma starfun2_star_n:  | 
|
226  | 
"( *f2* f) (star_n X) (star_n Y) = star_n (\<lambda>n. f (X n) (Y n))"  | 
|
227  | 
by (simp only: starfun2_def star_of_def Ifun_star_n)  | 
|
228  | 
||
229  | 
lemma starfun_star_of [simp]: "( *f* f) (star_of x) = star_of (f x)"  | 
|
230  | 
by (transfer, rule refl)  | 
|
231  | 
||
232  | 
lemma starfun2_star_of [simp]: "( *f2* f) (star_of x) = *f* f x"  | 
|
233  | 
by (transfer, rule refl)  | 
|
234  | 
||
235  | 
lemma Standard_starfun [simp]: "x \<in> Standard \<Longrightarrow> starfun f x \<in> Standard"  | 
|
236  | 
by (simp add: starfun_def)  | 
|
237  | 
||
238  | 
lemma Standard_starfun2 [simp]:  | 
|
239  | 
"\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> starfun2 f x y \<in> Standard"  | 
|
240  | 
by (simp add: starfun2_def)  | 
|
241  | 
||
242  | 
lemma Standard_starfun_iff:  | 
|
243  | 
assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"  | 
|
244  | 
shows "(starfun f x \<in> Standard) = (x \<in> Standard)"  | 
|
245  | 
proof  | 
|
246  | 
assume "x \<in> Standard"  | 
|
247  | 
thus "starfun f x \<in> Standard" by simp  | 
|
248  | 
next  | 
|
249  | 
have inj': "\<And>x y. starfun f x = starfun f y \<Longrightarrow> x = y"  | 
|
250  | 
using inj by transfer  | 
|
251  | 
assume "starfun f x \<in> Standard"  | 
|
252  | 
then obtain b where b: "starfun f x = star_of b"  | 
|
253  | 
unfolding Standard_def ..  | 
|
254  | 
hence "\<exists>x. starfun f x = star_of b" ..  | 
|
255  | 
hence "\<exists>a. f a = b" by transfer  | 
|
256  | 
then obtain a where "f a = b" ..  | 
|
257  | 
hence "starfun f (star_of a) = star_of b" by transfer  | 
|
258  | 
with b have "starfun f x = starfun f (star_of a)" by simp  | 
|
259  | 
hence "x = star_of a" by (rule inj')  | 
|
260  | 
thus "x \<in> Standard"  | 
|
261  | 
unfolding Standard_def by auto  | 
|
262  | 
qed  | 
|
263  | 
||
264  | 
lemma Standard_starfun2_iff:  | 
|
265  | 
assumes inj: "\<And>a b a' b'. f a b = f a' b' \<Longrightarrow> a = a' \<and> b = b'"  | 
|
266  | 
shows "(starfun2 f x y \<in> Standard) = (x \<in> Standard \<and> y \<in> Standard)"  | 
|
267  | 
proof  | 
|
268  | 
assume "x \<in> Standard \<and> y \<in> Standard"  | 
|
269  | 
thus "starfun2 f x y \<in> Standard" by simp  | 
|
270  | 
next  | 
|
271  | 
have inj': "\<And>x y z w. starfun2 f x y = starfun2 f z w \<Longrightarrow> x = z \<and> y = w"  | 
|
272  | 
using inj by transfer  | 
|
273  | 
assume "starfun2 f x y \<in> Standard"  | 
|
274  | 
then obtain c where c: "starfun2 f x y = star_of c"  | 
|
275  | 
unfolding Standard_def ..  | 
|
276  | 
hence "\<exists>x y. starfun2 f x y = star_of c" by auto  | 
|
277  | 
hence "\<exists>a b. f a b = c" by transfer  | 
|
278  | 
then obtain a b where "f a b = c" by auto  | 
|
279  | 
hence "starfun2 f (star_of a) (star_of b) = star_of c"  | 
|
280  | 
by transfer  | 
|
281  | 
with c have "starfun2 f x y = starfun2 f (star_of a) (star_of b)"  | 
|
282  | 
by simp  | 
|
283  | 
hence "x = star_of a \<and> y = star_of b"  | 
|
284  | 
by (rule inj')  | 
|
285  | 
thus "x \<in> Standard \<and> y \<in> Standard"  | 
|
286  | 
unfolding Standard_def by auto  | 
|
287  | 
qed  | 
|
288  | 
||
289  | 
||
290  | 
subsection {* Internal predicates *}
 | 
|
291  | 
||
292  | 
definition unstar :: "bool star \<Rightarrow> bool" where  | 
|
| 37765 | 293  | 
"unstar b \<longleftrightarrow> b = star_of True"  | 
| 27468 | 294  | 
|
295  | 
lemma unstar_star_n: "unstar (star_n P) = ({n. P n} \<in> \<U>)"
 | 
|
296  | 
by (simp add: unstar_def star_of_def star_n_eq_iff)  | 
|
297  | 
||
298  | 
lemma unstar_star_of [simp]: "unstar (star_of p) = p"  | 
|
299  | 
by (simp add: unstar_def star_of_inject)  | 
|
300  | 
||
301  | 
text {* Transfer tactic should remove occurrences of @{term unstar} *}
 | 
|
302  | 
setup {* Transfer.add_const "StarDef.unstar" *}
 | 
|
303  | 
||
304  | 
lemma transfer_unstar [transfer_intro]:  | 
|
305  | 
  "p \<equiv> star_n P \<Longrightarrow> unstar p \<equiv> {n. P n} \<in> \<U>"
 | 
|
306  | 
by (simp only: unstar_star_n)  | 
|
307  | 
||
308  | 
definition  | 
|
309  | 
  starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool"  ("*p* _" [80] 80) where
 | 
|
310  | 
"*p* P = (\<lambda>x. unstar (star_of P \<star> x))"  | 
|
311  | 
||
312  | 
definition  | 
|
313  | 
  starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool"  ("*p2* _" [80] 80) where
 | 
|
314  | 
"*p2* P = (\<lambda>x y. unstar (star_of P \<star> x \<star> y))"  | 
|
315  | 
||
316  | 
declare starP_def [transfer_unfold]  | 
|
317  | 
declare starP2_def [transfer_unfold]  | 
|
318  | 
||
319  | 
lemma starP_star_n: "( *p* P) (star_n X) = ({n. P (X n)} \<in> \<U>)"
 | 
|
320  | 
by (simp only: starP_def star_of_def Ifun_star_n unstar_star_n)  | 
|
321  | 
||
322  | 
lemma starP2_star_n:  | 
|
323  | 
  "( *p2* P) (star_n X) (star_n Y) = ({n. P (X n) (Y n)} \<in> \<U>)"
 | 
|
324  | 
by (simp only: starP2_def star_of_def Ifun_star_n unstar_star_n)  | 
|
325  | 
||
326  | 
lemma starP_star_of [simp]: "( *p* P) (star_of x) = P x"  | 
|
327  | 
by (transfer, rule refl)  | 
|
328  | 
||
329  | 
lemma starP2_star_of [simp]: "( *p2* P) (star_of x) = *p* P x"  | 
|
330  | 
by (transfer, rule refl)  | 
|
331  | 
||
332  | 
||
333  | 
subsection {* Internal sets *}
 | 
|
334  | 
||
335  | 
definition  | 
|
336  | 
Iset :: "'a set star \<Rightarrow> 'a star set" where  | 
|
337  | 
  "Iset A = {x. ( *p2* op \<in>) x A}"
 | 
|
338  | 
||
339  | 
lemma Iset_star_n:  | 
|
340  | 
  "(star_n X \<in> Iset (star_n A)) = ({n. X n \<in> A n} \<in> \<U>)"
 | 
|
341  | 
by (simp add: Iset_def starP2_star_n)  | 
|
342  | 
||
343  | 
text {* Transfer tactic should remove occurrences of @{term Iset} *}
 | 
|
344  | 
setup {* Transfer.add_const "StarDef.Iset" *}
 | 
|
345  | 
||
346  | 
lemma transfer_mem [transfer_intro]:  | 
|
347  | 
"\<lbrakk>x \<equiv> star_n X; a \<equiv> Iset (star_n A)\<rbrakk>  | 
|
348  | 
    \<Longrightarrow> x \<in> a \<equiv> {n. X n \<in> A n} \<in> \<U>"
 | 
|
349  | 
by (simp only: Iset_star_n)  | 
|
350  | 
||
351  | 
lemma transfer_Collect [transfer_intro]:  | 
|
352  | 
  "\<lbrakk>\<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
 | 
|
353  | 
\<Longrightarrow> Collect p \<equiv> Iset (star_n (\<lambda>n. Collect (P n)))"  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
354  | 
by (simp add: atomize_eq set_eq_iff all_star_eq Iset_star_n)  | 
| 27468 | 355  | 
|
356  | 
lemma transfer_set_eq [transfer_intro]:  | 
|
357  | 
"\<lbrakk>a \<equiv> Iset (star_n A); b \<equiv> Iset (star_n B)\<rbrakk>  | 
|
358  | 
    \<Longrightarrow> a = b \<equiv> {n. A n = B n} \<in> \<U>"
 | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
359  | 
by (simp only: set_eq_iff transfer_all transfer_iff transfer_mem)  | 
| 27468 | 360  | 
|
361  | 
lemma transfer_ball [transfer_intro]:  | 
|
362  | 
  "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
 | 
|
363  | 
    \<Longrightarrow> \<forall>x\<in>a. p x \<equiv> {n. \<forall>x\<in>A n. P n x} \<in> \<U>"
 | 
|
364  | 
by (simp only: Ball_def transfer_all transfer_imp transfer_mem)  | 
|
365  | 
||
366  | 
lemma transfer_bex [transfer_intro]:  | 
|
367  | 
  "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
 | 
|
368  | 
    \<Longrightarrow> \<exists>x\<in>a. p x \<equiv> {n. \<exists>x\<in>A n. P n x} \<in> \<U>"
 | 
|
369  | 
by (simp only: Bex_def transfer_ex transfer_conj transfer_mem)  | 
|
370  | 
||
371  | 
lemma transfer_Iset [transfer_intro]:  | 
|
372  | 
"\<lbrakk>a \<equiv> star_n A\<rbrakk> \<Longrightarrow> Iset a \<equiv> Iset (star_n (\<lambda>n. A n))"  | 
|
373  | 
by simp  | 
|
374  | 
||
375  | 
text {* Nonstandard extensions of sets. *}
 | 
|
376  | 
||
377  | 
definition  | 
|
378  | 
  starset :: "'a set \<Rightarrow> 'a star set" ("*s* _" [80] 80) where
 | 
|
379  | 
"starset A = Iset (star_of A)"  | 
|
380  | 
||
381  | 
declare starset_def [transfer_unfold]  | 
|
382  | 
||
383  | 
lemma starset_mem: "(star_of x \<in> *s* A) = (x \<in> A)"  | 
|
384  | 
by (transfer, rule refl)  | 
|
385  | 
||
386  | 
lemma starset_UNIV: "*s* (UNIV::'a set) = (UNIV::'a star set)"  | 
|
387  | 
by (transfer UNIV_def, rule refl)  | 
|
388  | 
||
389  | 
lemma starset_empty: "*s* {} = {}"
 | 
|
390  | 
by (transfer empty_def, rule refl)  | 
|
391  | 
||
392  | 
lemma starset_insert: "*s* (insert x A) = insert (star_of x) ( *s* A)"  | 
|
393  | 
by (transfer insert_def Un_def, rule refl)  | 
|
394  | 
||
395  | 
lemma starset_Un: "*s* (A \<union> B) = *s* A \<union> *s* B"  | 
|
396  | 
by (transfer Un_def, rule refl)  | 
|
397  | 
||
398  | 
lemma starset_Int: "*s* (A \<inter> B) = *s* A \<inter> *s* B"  | 
|
399  | 
by (transfer Int_def, rule refl)  | 
|
400  | 
||
401  | 
lemma starset_Compl: "*s* -A = -( *s* A)"  | 
|
402  | 
by (transfer Compl_eq, rule refl)  | 
|
403  | 
||
404  | 
lemma starset_diff: "*s* (A - B) = *s* A - *s* B"  | 
|
405  | 
by (transfer set_diff_eq, rule refl)  | 
|
406  | 
||
407  | 
lemma starset_image: "*s* (f ` A) = ( *f* f) ` ( *s* A)"  | 
|
408  | 
by (transfer image_def, rule refl)  | 
|
409  | 
||
410  | 
lemma starset_vimage: "*s* (f -` A) = ( *f* f) -` ( *s* A)"  | 
|
411  | 
by (transfer vimage_def, rule refl)  | 
|
412  | 
||
413  | 
lemma starset_subset: "( *s* A \<subseteq> *s* B) = (A \<subseteq> B)"  | 
|
414  | 
by (transfer subset_eq, rule refl)  | 
|
415  | 
||
416  | 
lemma starset_eq: "( *s* A = *s* B) = (A = B)"  | 
|
417  | 
by (transfer, rule refl)  | 
|
418  | 
||
419  | 
lemmas starset_simps [simp] =  | 
|
420  | 
starset_mem starset_UNIV  | 
|
421  | 
starset_empty starset_insert  | 
|
422  | 
starset_Un starset_Int  | 
|
423  | 
starset_Compl starset_diff  | 
|
424  | 
starset_image starset_vimage  | 
|
425  | 
starset_subset starset_eq  | 
|
426  | 
||
427  | 
||
428  | 
subsection {* Syntactic classes *}
 | 
|
429  | 
||
430  | 
instantiation star :: (zero) zero  | 
|
431  | 
begin  | 
|
432  | 
||
433  | 
definition  | 
|
| 37765 | 434  | 
star_zero_def: "0 \<equiv> star_of 0"  | 
| 27468 | 435  | 
|
436  | 
instance ..  | 
|
437  | 
||
438  | 
end  | 
|
439  | 
||
440  | 
instantiation star :: (one) one  | 
|
441  | 
begin  | 
|
442  | 
||
443  | 
definition  | 
|
| 37765 | 444  | 
star_one_def: "1 \<equiv> star_of 1"  | 
| 27468 | 445  | 
|
446  | 
instance ..  | 
|
447  | 
||
448  | 
end  | 
|
449  | 
||
450  | 
instantiation star :: (plus) plus  | 
|
451  | 
begin  | 
|
452  | 
||
453  | 
definition  | 
|
| 37765 | 454  | 
star_add_def: "(op +) \<equiv> *f2* (op +)"  | 
| 27468 | 455  | 
|
456  | 
instance ..  | 
|
457  | 
||
458  | 
end  | 
|
459  | 
||
460  | 
instantiation star :: (times) times  | 
|
461  | 
begin  | 
|
462  | 
||
463  | 
definition  | 
|
| 37765 | 464  | 
star_mult_def: "(op *) \<equiv> *f2* (op *)"  | 
| 27468 | 465  | 
|
466  | 
instance ..  | 
|
467  | 
||
468  | 
end  | 
|
469  | 
||
470  | 
instantiation star :: (uminus) uminus  | 
|
471  | 
begin  | 
|
472  | 
||
473  | 
definition  | 
|
| 37765 | 474  | 
star_minus_def: "uminus \<equiv> *f* uminus"  | 
| 27468 | 475  | 
|
476  | 
instance ..  | 
|
477  | 
||
478  | 
end  | 
|
479  | 
||
480  | 
instantiation star :: (minus) minus  | 
|
481  | 
begin  | 
|
482  | 
||
483  | 
definition  | 
|
| 37765 | 484  | 
star_diff_def: "(op -) \<equiv> *f2* (op -)"  | 
| 27468 | 485  | 
|
486  | 
instance ..  | 
|
487  | 
||
488  | 
end  | 
|
489  | 
||
490  | 
instantiation star :: (abs) abs  | 
|
491  | 
begin  | 
|
492  | 
||
493  | 
definition  | 
|
494  | 
star_abs_def: "abs \<equiv> *f* abs"  | 
|
495  | 
||
496  | 
instance ..  | 
|
497  | 
||
498  | 
end  | 
|
499  | 
||
500  | 
instantiation star :: (sgn) sgn  | 
|
501  | 
begin  | 
|
502  | 
||
503  | 
definition  | 
|
504  | 
star_sgn_def: "sgn \<equiv> *f* sgn"  | 
|
505  | 
||
506  | 
instance ..  | 
|
507  | 
||
508  | 
end  | 
|
509  | 
||
510  | 
instantiation star :: (inverse) inverse  | 
|
511  | 
begin  | 
|
512  | 
||
513  | 
definition  | 
|
514  | 
star_divide_def: "(op /) \<equiv> *f2* (op /)"  | 
|
515  | 
||
516  | 
definition  | 
|
517  | 
star_inverse_def: "inverse \<equiv> *f* inverse"  | 
|
518  | 
||
519  | 
instance ..  | 
|
520  | 
||
521  | 
end  | 
|
522  | 
||
523  | 
instantiation star :: (number) number  | 
|
524  | 
begin  | 
|
525  | 
||
526  | 
definition  | 
|
527  | 
star_number_def: "number_of b \<equiv> star_of (number_of b)"  | 
|
528  | 
||
529  | 
instance ..  | 
|
530  | 
||
531  | 
end  | 
|
532  | 
||
| 
35050
 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 
haftmann 
parents: 
35043 
diff
changeset
 | 
533  | 
instance star :: (Rings.dvd) Rings.dvd ..  | 
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
27468 
diff
changeset
 | 
534  | 
|
| 27468 | 535  | 
instantiation star :: (Divides.div) Divides.div  | 
536  | 
begin  | 
|
537  | 
||
538  | 
definition  | 
|
539  | 
star_div_def: "(op div) \<equiv> *f2* (op div)"  | 
|
540  | 
||
541  | 
definition  | 
|
542  | 
star_mod_def: "(op mod) \<equiv> *f2* (op mod)"  | 
|
543  | 
||
544  | 
instance ..  | 
|
545  | 
||
546  | 
end  | 
|
547  | 
||
548  | 
instantiation star :: (ord) ord  | 
|
549  | 
begin  | 
|
550  | 
||
551  | 
definition  | 
|
552  | 
star_le_def: "(op \<le>) \<equiv> *p2* (op \<le>)"  | 
|
553  | 
||
554  | 
definition  | 
|
555  | 
star_less_def: "(op <) \<equiv> *p2* (op <)"  | 
|
556  | 
||
557  | 
instance ..  | 
|
558  | 
||
559  | 
end  | 
|
560  | 
||
561  | 
lemmas star_class_defs [transfer_unfold] =  | 
|
562  | 
star_zero_def star_one_def star_number_def  | 
|
563  | 
star_add_def star_diff_def star_minus_def  | 
|
564  | 
star_mult_def star_divide_def star_inverse_def  | 
|
565  | 
star_le_def star_less_def star_abs_def star_sgn_def  | 
|
| 
30968
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
566  | 
star_div_def star_mod_def  | 
| 27468 | 567  | 
|
568  | 
text {* Class operations preserve standard elements *}
 | 
|
569  | 
||
570  | 
lemma Standard_zero: "0 \<in> Standard"  | 
|
571  | 
by (simp add: star_zero_def)  | 
|
572  | 
||
573  | 
lemma Standard_one: "1 \<in> Standard"  | 
|
574  | 
by (simp add: star_one_def)  | 
|
575  | 
||
576  | 
lemma Standard_number_of: "number_of b \<in> Standard"  | 
|
577  | 
by (simp add: star_number_def)  | 
|
578  | 
||
579  | 
lemma Standard_add: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x + y \<in> Standard"  | 
|
580  | 
by (simp add: star_add_def)  | 
|
581  | 
||
582  | 
lemma Standard_diff: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x - y \<in> Standard"  | 
|
583  | 
by (simp add: star_diff_def)  | 
|
584  | 
||
585  | 
lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard"  | 
|
586  | 
by (simp add: star_minus_def)  | 
|
587  | 
||
588  | 
lemma Standard_mult: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x * y \<in> Standard"  | 
|
589  | 
by (simp add: star_mult_def)  | 
|
590  | 
||
591  | 
lemma Standard_divide: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x / y \<in> Standard"  | 
|
592  | 
by (simp add: star_divide_def)  | 
|
593  | 
||
594  | 
lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard"  | 
|
595  | 
by (simp add: star_inverse_def)  | 
|
596  | 
||
597  | 
lemma Standard_abs: "x \<in> Standard \<Longrightarrow> abs x \<in> Standard"  | 
|
598  | 
by (simp add: star_abs_def)  | 
|
599  | 
||
600  | 
lemma Standard_div: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x div y \<in> Standard"  | 
|
601  | 
by (simp add: star_div_def)  | 
|
602  | 
||
603  | 
lemma Standard_mod: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x mod y \<in> Standard"  | 
|
604  | 
by (simp add: star_mod_def)  | 
|
605  | 
||
606  | 
lemmas Standard_simps [simp] =  | 
|
607  | 
Standard_zero Standard_one Standard_number_of  | 
|
608  | 
Standard_add Standard_diff Standard_minus  | 
|
609  | 
Standard_mult Standard_divide Standard_inverse  | 
|
610  | 
Standard_abs Standard_div Standard_mod  | 
|
611  | 
||
612  | 
text {* @{term star_of} preserves class operations *}
 | 
|
613  | 
||
614  | 
lemma star_of_add: "star_of (x + y) = star_of x + star_of y"  | 
|
615  | 
by transfer (rule refl)  | 
|
616  | 
||
617  | 
lemma star_of_diff: "star_of (x - y) = star_of x - star_of y"  | 
|
618  | 
by transfer (rule refl)  | 
|
619  | 
||
620  | 
lemma star_of_minus: "star_of (-x) = - star_of x"  | 
|
621  | 
by transfer (rule refl)  | 
|
622  | 
||
623  | 
lemma star_of_mult: "star_of (x * y) = star_of x * star_of y"  | 
|
624  | 
by transfer (rule refl)  | 
|
625  | 
||
626  | 
lemma star_of_divide: "star_of (x / y) = star_of x / star_of y"  | 
|
627  | 
by transfer (rule refl)  | 
|
628  | 
||
629  | 
lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)"  | 
|
630  | 
by transfer (rule refl)  | 
|
631  | 
||
632  | 
lemma star_of_div: "star_of (x div y) = star_of x div star_of y"  | 
|
633  | 
by transfer (rule refl)  | 
|
634  | 
||
635  | 
lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y"  | 
|
636  | 
by transfer (rule refl)  | 
|
637  | 
||
638  | 
lemma star_of_abs: "star_of (abs x) = abs (star_of x)"  | 
|
639  | 
by transfer (rule refl)  | 
|
640  | 
||
641  | 
text {* @{term star_of} preserves numerals *}
 | 
|
642  | 
||
643  | 
lemma star_of_zero: "star_of 0 = 0"  | 
|
644  | 
by transfer (rule refl)  | 
|
645  | 
||
646  | 
lemma star_of_one: "star_of 1 = 1"  | 
|
647  | 
by transfer (rule refl)  | 
|
648  | 
||
649  | 
lemma star_of_number_of: "star_of (number_of x) = number_of x"  | 
|
650  | 
by transfer (rule refl)  | 
|
651  | 
||
652  | 
text {* @{term star_of} preserves orderings *}
 | 
|
653  | 
||
654  | 
lemma star_of_less: "(star_of x < star_of y) = (x < y)"  | 
|
655  | 
by transfer (rule refl)  | 
|
656  | 
||
657  | 
lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)"  | 
|
658  | 
by transfer (rule refl)  | 
|
659  | 
||
660  | 
lemma star_of_eq: "(star_of x = star_of y) = (x = y)"  | 
|
661  | 
by transfer (rule refl)  | 
|
662  | 
||
663  | 
text{*As above, for 0*}
 | 
|
664  | 
||
665  | 
lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero]  | 
|
666  | 
lemmas star_of_0_le = star_of_le [of 0, simplified star_of_zero]  | 
|
667  | 
lemmas star_of_0_eq = star_of_eq [of 0, simplified star_of_zero]  | 
|
668  | 
||
669  | 
lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero]  | 
|
670  | 
lemmas star_of_le_0 = star_of_le [of _ 0, simplified star_of_zero]  | 
|
671  | 
lemmas star_of_eq_0 = star_of_eq [of _ 0, simplified star_of_zero]  | 
|
672  | 
||
673  | 
text{*As above, for 1*}
 | 
|
674  | 
||
675  | 
lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one]  | 
|
676  | 
lemmas star_of_1_le = star_of_le [of 1, simplified star_of_one]  | 
|
677  | 
lemmas star_of_1_eq = star_of_eq [of 1, simplified star_of_one]  | 
|
678  | 
||
679  | 
lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one]  | 
|
680  | 
lemmas star_of_le_1 = star_of_le [of _ 1, simplified star_of_one]  | 
|
681  | 
lemmas star_of_eq_1 = star_of_eq [of _ 1, simplified star_of_one]  | 
|
682  | 
||
683  | 
text{*As above, for numerals*}
 | 
|
684  | 
||
685  | 
lemmas star_of_number_less =  | 
|
686  | 
star_of_less [of "number_of w", standard, simplified star_of_number_of]  | 
|
687  | 
lemmas star_of_number_le =  | 
|
688  | 
star_of_le [of "number_of w", standard, simplified star_of_number_of]  | 
|
689  | 
lemmas star_of_number_eq =  | 
|
690  | 
star_of_eq [of "number_of w", standard, simplified star_of_number_of]  | 
|
691  | 
||
692  | 
lemmas star_of_less_number =  | 
|
693  | 
star_of_less [of _ "number_of w", standard, simplified star_of_number_of]  | 
|
694  | 
lemmas star_of_le_number =  | 
|
695  | 
star_of_le [of _ "number_of w", standard, simplified star_of_number_of]  | 
|
696  | 
lemmas star_of_eq_number =  | 
|
697  | 
star_of_eq [of _ "number_of w", standard, simplified star_of_number_of]  | 
|
698  | 
||
699  | 
lemmas star_of_simps [simp] =  | 
|
700  | 
star_of_add star_of_diff star_of_minus  | 
|
701  | 
star_of_mult star_of_divide star_of_inverse  | 
|
| 
30968
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
702  | 
star_of_div star_of_mod star_of_abs  | 
| 27468 | 703  | 
star_of_zero star_of_one star_of_number_of  | 
704  | 
star_of_less star_of_le star_of_eq  | 
|
705  | 
star_of_0_less star_of_0_le star_of_0_eq  | 
|
706  | 
star_of_less_0 star_of_le_0 star_of_eq_0  | 
|
707  | 
star_of_1_less star_of_1_le star_of_1_eq  | 
|
708  | 
star_of_less_1 star_of_le_1 star_of_eq_1  | 
|
709  | 
star_of_number_less star_of_number_le star_of_number_eq  | 
|
710  | 
star_of_less_number star_of_le_number star_of_eq_number  | 
|
711  | 
||
712  | 
subsection {* Ordering and lattice classes *}
 | 
|
713  | 
||
714  | 
instance star :: (order) order  | 
|
715  | 
apply (intro_classes)  | 
|
| 27682 | 716  | 
apply (transfer, rule less_le_not_le)  | 
| 27468 | 717  | 
apply (transfer, rule order_refl)  | 
718  | 
apply (transfer, erule (1) order_trans)  | 
|
719  | 
apply (transfer, erule (1) order_antisym)  | 
|
720  | 
done  | 
|
721  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
722  | 
instantiation star :: (semilattice_inf) semilattice_inf  | 
| 27468 | 723  | 
begin  | 
724  | 
||
725  | 
definition  | 
|
726  | 
star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf"  | 
|
727  | 
||
728  | 
instance  | 
|
729  | 
by default (transfer star_inf_def, auto)+  | 
|
730  | 
||
731  | 
end  | 
|
732  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
733  | 
instantiation star :: (semilattice_sup) semilattice_sup  | 
| 27468 | 734  | 
begin  | 
735  | 
||
736  | 
definition  | 
|
737  | 
star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup"  | 
|
738  | 
||
739  | 
instance  | 
|
740  | 
by default (transfer star_sup_def, auto)+  | 
|
741  | 
||
742  | 
end  | 
|
743  | 
||
744  | 
instance star :: (lattice) lattice ..  | 
|
745  | 
||
746  | 
instance star :: (distrib_lattice) distrib_lattice  | 
|
747  | 
by default (transfer, auto simp add: sup_inf_distrib1)  | 
|
748  | 
||
749  | 
lemma Standard_inf [simp]:  | 
|
750  | 
"\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> inf x y \<in> Standard"  | 
|
751  | 
by (simp add: star_inf_def)  | 
|
752  | 
||
753  | 
lemma Standard_sup [simp]:  | 
|
754  | 
"\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> sup x y \<in> Standard"  | 
|
755  | 
by (simp add: star_sup_def)  | 
|
756  | 
||
757  | 
lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)"  | 
|
758  | 
by transfer (rule refl)  | 
|
759  | 
||
760  | 
lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)"  | 
|
761  | 
by transfer (rule refl)  | 
|
762  | 
||
763  | 
instance star :: (linorder) linorder  | 
|
764  | 
by (intro_classes, transfer, rule linorder_linear)  | 
|
765  | 
||
766  | 
lemma star_max_def [transfer_unfold]: "max = *f2* max"  | 
|
767  | 
apply (rule ext, rule ext)  | 
|
768  | 
apply (unfold max_def, transfer, fold max_def)  | 
|
769  | 
apply (rule refl)  | 
|
770  | 
done  | 
|
771  | 
||
772  | 
lemma star_min_def [transfer_unfold]: "min = *f2* min"  | 
|
773  | 
apply (rule ext, rule ext)  | 
|
774  | 
apply (unfold min_def, transfer, fold min_def)  | 
|
775  | 
apply (rule refl)  | 
|
776  | 
done  | 
|
777  | 
||
778  | 
lemma Standard_max [simp]:  | 
|
779  | 
"\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> max x y \<in> Standard"  | 
|
780  | 
by (simp add: star_max_def)  | 
|
781  | 
||
782  | 
lemma Standard_min [simp]:  | 
|
783  | 
"\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> min x y \<in> Standard"  | 
|
784  | 
by (simp add: star_min_def)  | 
|
785  | 
||
786  | 
lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)"  | 
|
787  | 
by transfer (rule refl)  | 
|
788  | 
||
789  | 
lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)"  | 
|
790  | 
by transfer (rule refl)  | 
|
791  | 
||
792  | 
||
793  | 
subsection {* Ordered group classes *}
 | 
|
794  | 
||
795  | 
instance star :: (semigroup_add) semigroup_add  | 
|
796  | 
by (intro_classes, transfer, rule add_assoc)  | 
|
797  | 
||
798  | 
instance star :: (ab_semigroup_add) ab_semigroup_add  | 
|
799  | 
by (intro_classes, transfer, rule add_commute)  | 
|
800  | 
||
801  | 
instance star :: (semigroup_mult) semigroup_mult  | 
|
802  | 
by (intro_classes, transfer, rule mult_assoc)  | 
|
803  | 
||
804  | 
instance star :: (ab_semigroup_mult) ab_semigroup_mult  | 
|
805  | 
by (intro_classes, transfer, rule mult_commute)  | 
|
806  | 
||
807  | 
instance star :: (comm_monoid_add) comm_monoid_add  | 
|
| 28059 | 808  | 
by (intro_classes, transfer, rule comm_monoid_add_class.add_0)  | 
| 27468 | 809  | 
|
810  | 
instance star :: (monoid_mult) monoid_mult  | 
|
811  | 
apply (intro_classes)  | 
|
812  | 
apply (transfer, rule mult_1_left)  | 
|
813  | 
apply (transfer, rule mult_1_right)  | 
|
814  | 
done  | 
|
815  | 
||
816  | 
instance star :: (comm_monoid_mult) comm_monoid_mult  | 
|
817  | 
by (intro_classes, transfer, rule mult_1)  | 
|
818  | 
||
819  | 
instance star :: (cancel_semigroup_add) cancel_semigroup_add  | 
|
820  | 
apply (intro_classes)  | 
|
821  | 
apply (transfer, erule add_left_imp_eq)  | 
|
822  | 
apply (transfer, erule add_right_imp_eq)  | 
|
823  | 
done  | 
|
824  | 
||
825  | 
instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add  | 
|
826  | 
by (intro_classes, transfer, rule add_imp_eq)  | 
|
827  | 
||
| 29904 | 828  | 
instance star :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..  | 
829  | 
||
| 27468 | 830  | 
instance star :: (ab_group_add) ab_group_add  | 
831  | 
apply (intro_classes)  | 
|
832  | 
apply (transfer, rule left_minus)  | 
|
833  | 
apply (transfer, rule diff_minus)  | 
|
834  | 
done  | 
|
835  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
836  | 
instance star :: (ordered_ab_semigroup_add) ordered_ab_semigroup_add  | 
| 27468 | 837  | 
by (intro_classes, transfer, rule add_left_mono)  | 
838  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
839  | 
instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..  | 
| 27468 | 840  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
841  | 
instance star :: (ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le  | 
| 27468 | 842  | 
by (intro_classes, transfer, rule add_le_imp_le_left)  | 
843  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
844  | 
instance star :: (ordered_comm_monoid_add) ordered_comm_monoid_add ..  | 
| 
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
845  | 
instance star :: (ordered_ab_group_add) ordered_ab_group_add ..  | 
| 27468 | 846  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
847  | 
instance star :: (ordered_ab_group_add_abs) ordered_ab_group_add_abs  | 
| 27468 | 848  | 
by intro_classes (transfer,  | 
849  | 
simp add: abs_ge_self abs_leI abs_triangle_ineq)+  | 
|
850  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
851  | 
instance star :: (linordered_cancel_ab_semigroup_add) linordered_cancel_ab_semigroup_add ..  | 
| 27468 | 852  | 
|
853  | 
||
854  | 
subsection {* Ring and field classes *}
 | 
|
855  | 
||
856  | 
instance star :: (semiring) semiring  | 
|
857  | 
apply (intro_classes)  | 
|
858  | 
apply (transfer, rule left_distrib)  | 
|
859  | 
apply (transfer, rule right_distrib)  | 
|
860  | 
done  | 
|
861  | 
||
862  | 
instance star :: (semiring_0) semiring_0  | 
|
863  | 
by intro_classes (transfer, simp)+  | 
|
864  | 
||
865  | 
instance star :: (semiring_0_cancel) semiring_0_cancel ..  | 
|
866  | 
||
867  | 
instance star :: (comm_semiring) comm_semiring  | 
|
868  | 
by (intro_classes, transfer, rule left_distrib)  | 
|
869  | 
||
870  | 
instance star :: (comm_semiring_0) comm_semiring_0 ..  | 
|
871  | 
instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..  | 
|
872  | 
||
873  | 
instance star :: (zero_neq_one) zero_neq_one  | 
|
874  | 
by (intro_classes, transfer, rule zero_neq_one)  | 
|
875  | 
||
876  | 
instance star :: (semiring_1) semiring_1 ..  | 
|
877  | 
instance star :: (comm_semiring_1) comm_semiring_1 ..  | 
|
878  | 
||
879  | 
instance star :: (no_zero_divisors) no_zero_divisors  | 
|
880  | 
by (intro_classes, transfer, rule no_zero_divisors)  | 
|
881  | 
||
882  | 
instance star :: (semiring_1_cancel) semiring_1_cancel ..  | 
|
883  | 
instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..  | 
|
884  | 
instance star :: (ring) ring ..  | 
|
885  | 
instance star :: (comm_ring) comm_ring ..  | 
|
886  | 
instance star :: (ring_1) ring_1 ..  | 
|
887  | 
instance star :: (comm_ring_1) comm_ring_1 ..  | 
|
888  | 
instance star :: (ring_no_zero_divisors) ring_no_zero_divisors ..  | 
|
889  | 
instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..  | 
|
890  | 
instance star :: (idom) idom ..  | 
|
891  | 
||
892  | 
instance star :: (division_ring) division_ring  | 
|
893  | 
apply (intro_classes)  | 
|
894  | 
apply (transfer, erule left_inverse)  | 
|
895  | 
apply (transfer, erule right_inverse)  | 
|
| 35083 | 896  | 
apply (transfer, fact divide_inverse)  | 
| 27468 | 897  | 
done  | 
898  | 
||
| 36412 | 899  | 
instance star :: (division_ring_inverse_zero) division_ring_inverse_zero  | 
900  | 
by (intro_classes, transfer, rule inverse_zero)  | 
|
901  | 
||
| 27468 | 902  | 
instance star :: (field) field  | 
903  | 
apply (intro_classes)  | 
|
904  | 
apply (transfer, erule left_inverse)  | 
|
905  | 
apply (transfer, rule divide_inverse)  | 
|
906  | 
done  | 
|
907  | 
||
| 36412 | 908  | 
instance star :: (field_inverse_zero) field_inverse_zero  | 
909  | 
apply intro_classes  | 
|
910  | 
apply (rule inverse_zero)  | 
|
911  | 
done  | 
|
| 27468 | 912  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
913  | 
instance star :: (ordered_semiring) ordered_semiring  | 
| 27468 | 914  | 
apply (intro_classes)  | 
915  | 
apply (transfer, erule (1) mult_left_mono)  | 
|
916  | 
apply (transfer, erule (1) mult_right_mono)  | 
|
917  | 
done  | 
|
918  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
919  | 
instance star :: (ordered_cancel_semiring) ordered_cancel_semiring ..  | 
| 27468 | 920  | 
|
| 
35043
 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 
haftmann 
parents: 
35035 
diff
changeset
 | 
921  | 
instance star :: (linordered_semiring_strict) linordered_semiring_strict  | 
| 27468 | 922  | 
apply (intro_classes)  | 
923  | 
apply (transfer, erule (1) mult_strict_left_mono)  | 
|
924  | 
apply (transfer, erule (1) mult_strict_right_mono)  | 
|
925  | 
done  | 
|
926  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
927  | 
instance star :: (ordered_comm_semiring) ordered_comm_semiring  | 
| 
38642
 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 
haftmann 
parents: 
38621 
diff
changeset
 | 
928  | 
by (intro_classes, transfer, rule mult_left_mono)  | 
| 27468 | 929  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
930  | 
instance star :: (ordered_cancel_comm_semiring) ordered_cancel_comm_semiring ..  | 
| 27468 | 931  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
932  | 
instance star :: (linordered_comm_semiring_strict) linordered_comm_semiring_strict  | 
| 
38642
 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 
haftmann 
parents: 
38621 
diff
changeset
 | 
933  | 
by (intro_classes, transfer, rule mult_strict_left_mono)  | 
| 27468 | 934  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
935  | 
instance star :: (ordered_ring) ordered_ring ..  | 
| 
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
936  | 
instance star :: (ordered_ring_abs) ordered_ring_abs  | 
| 27468 | 937  | 
by intro_classes (transfer, rule abs_eq_mult)  | 
938  | 
||
939  | 
instance star :: (abs_if) abs_if  | 
|
940  | 
by (intro_classes, transfer, rule abs_if)  | 
|
941  | 
||
942  | 
instance star :: (sgn_if) sgn_if  | 
|
943  | 
by (intro_classes, transfer, rule sgn_if)  | 
|
944  | 
||
| 
35043
 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 
haftmann 
parents: 
35035 
diff
changeset
 | 
945  | 
instance star :: (linordered_ring_strict) linordered_ring_strict ..  | 
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
946  | 
instance star :: (ordered_comm_ring) ordered_comm_ring ..  | 
| 27468 | 947  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
948  | 
instance star :: (linordered_semidom) linordered_semidom  | 
| 27468 | 949  | 
by (intro_classes, transfer, rule zero_less_one)  | 
950  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
951  | 
instance star :: (linordered_idom) linordered_idom ..  | 
| 
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
31021 
diff
changeset
 | 
952  | 
instance star :: (linordered_field) linordered_field ..  | 
| 36414 | 953  | 
instance star :: (linordered_field_inverse_zero) linordered_field_inverse_zero ..  | 
| 27468 | 954  | 
|
| 
30968
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
955  | 
|
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
956  | 
subsection {* Power *}
 | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
957  | 
|
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
958  | 
lemma star_power_def [transfer_unfold]:  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
959  | 
"(op ^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x"  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
960  | 
proof (rule eq_reflection, rule ext, rule ext)  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
961  | 
fix n :: nat  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
962  | 
show "\<And>x::'a star. x ^ n = ( *f* (\<lambda>x. x ^ n)) x"  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
963  | 
proof (induct n)  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
964  | 
case 0  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
965  | 
have "\<And>x::'a star. ( *f* (\<lambda>x. 1)) x = 1"  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
966  | 
by transfer simp  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
967  | 
then show ?case by simp  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
968  | 
next  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
969  | 
case (Suc n)  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
970  | 
have "\<And>x::'a star. x * ( *f* (\<lambda>x\<Colon>'a. x ^ n)) x = ( *f* (\<lambda>x\<Colon>'a. x * x ^ n)) x"  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
971  | 
by transfer simp  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
972  | 
with Suc show ?case by simp  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
973  | 
qed  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
974  | 
qed  | 
| 27468 | 975  | 
|
| 
30968
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
976  | 
lemma Standard_power [simp]: "x \<in> Standard \<Longrightarrow> x ^ n \<in> Standard"  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
977  | 
by (simp add: star_power_def)  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
978  | 
|
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
979  | 
lemma star_of_power [simp]: "star_of (x ^ n) = star_of x ^ n"  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
980  | 
by transfer (rule refl)  | 
| 
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
30729 
diff
changeset
 | 
981  | 
|
| 27468 | 982  | 
|
983  | 
subsection {* Number classes *}
 | 
|
984  | 
||
985  | 
lemma star_of_nat_def [transfer_unfold]: "of_nat n = star_of (of_nat n)"  | 
|
986  | 
by (induct n, simp_all)  | 
|
987  | 
||
988  | 
lemma Standard_of_nat [simp]: "of_nat n \<in> Standard"  | 
|
989  | 
by (simp add: star_of_nat_def)  | 
|
990  | 
||
991  | 
lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n"  | 
|
992  | 
by transfer (rule refl)  | 
|
993  | 
||
994  | 
lemma star_of_int_def [transfer_unfold]: "of_int z = star_of (of_int z)"  | 
|
995  | 
by (rule_tac z=z in int_diff_cases, simp)  | 
|
996  | 
||
997  | 
lemma Standard_of_int [simp]: "of_int z \<in> Standard"  | 
|
998  | 
by (simp add: star_of_int_def)  | 
|
999  | 
||
1000  | 
lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z"  | 
|
1001  | 
by transfer (rule refl)  | 
|
1002  | 
||
| 
38621
 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 
haftmann 
parents: 
37765 
diff
changeset
 | 
1003  | 
instance star :: (semiring_char_0) semiring_char_0 proof  | 
| 
 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 
haftmann 
parents: 
37765 
diff
changeset
 | 
1004  | 
have "inj (star_of :: 'a \<Rightarrow> 'a star)" by (rule injI) simp  | 
| 
 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 
haftmann 
parents: 
37765 
diff
changeset
 | 
1005  | 
then have "inj (star_of \<circ> of_nat :: nat \<Rightarrow> 'a star)" using inj_of_nat by (rule inj_comp)  | 
| 
 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 
haftmann 
parents: 
37765 
diff
changeset
 | 
1006  | 
then show "inj (of_nat :: nat \<Rightarrow> 'a star)" by (simp add: comp_def)  | 
| 
 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 
haftmann 
parents: 
37765 
diff
changeset
 | 
1007  | 
qed  | 
| 27468 | 1008  | 
|
1009  | 
instance star :: (ring_char_0) ring_char_0 ..  | 
|
1010  | 
||
| 
45542
 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 
huffman 
parents: 
40815 
diff
changeset
 | 
1011  | 
instance star :: (number_semiring) number_semiring  | 
| 
 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 
huffman 
parents: 
40815 
diff
changeset
 | 
1012  | 
by (intro_classes, simp only: star_number_def star_of_nat_def number_of_int)  | 
| 
 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 
huffman 
parents: 
40815 
diff
changeset
 | 
1013  | 
|
| 27468 | 1014  | 
instance star :: (number_ring) number_ring  | 
1015  | 
by (intro_classes, simp only: star_number_def star_of_int_def number_of_eq)  | 
|
1016  | 
||
1017  | 
subsection {* Finite class *}
 | 
|
1018  | 
||
1019  | 
lemma starset_finite: "finite A \<Longrightarrow> *s* A = star_of ` A"  | 
|
1020  | 
by (erule finite_induct, simp_all)  | 
|
1021  | 
||
1022  | 
instance star :: (finite) finite  | 
|
1023  | 
apply (intro_classes)  | 
|
1024  | 
apply (subst starset_UNIV [symmetric])  | 
|
1025  | 
apply (subst starset_finite [OF finite])  | 
|
1026  | 
apply (rule finite_imageI [OF finite])  | 
|
1027  | 
done  | 
|
1028  | 
||
1029  | 
end  |