author | wenzelm |
Wed, 14 Jan 1998 10:30:01 +0100 | |
changeset 4570 | c04027ccc86e |
parent 3837 | d7f033c74b38 |
child 9249 | c71db8c28727 |
permissions | -rw-r--r-- |
1459 | 1 |
(* Title: CTT/arith |
0 | 2 |
ID: $Id$ |
1459 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1991 University of Cambridge |
5 |
||
6 |
Theorems for arith.thy (Arithmetic operators) |
|
7 |
||
8 |
Proofs about elementary arithmetic: addition, multiplication, etc. |
|
9 |
Tests definitions and simplifier. |
|
10 |
*) |
|
11 |
||
12 |
open Arith; |
|
13 |
val arith_defs = [add_def, diff_def, absdiff_def, mult_def, mod_def, div_def]; |
|
14 |
||
15 |
||
16 |
(** Addition *) |
|
17 |
||
18 |
(*typing of add: short and long versions*) |
|
19 |
||
1294 | 20 |
qed_goalw "add_typing" Arith.thy arith_defs |
0 | 21 |
"[| a:N; b:N |] ==> a #+ b : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
22 |
(fn prems=> [ (typechk_tac prems) ]); |
0 | 23 |
|
1294 | 24 |
qed_goalw "add_typingL" Arith.thy arith_defs |
0 | 25 |
"[| a=c:N; b=d:N |] ==> a #+ b = c #+ d : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
26 |
(fn prems=> [ (equal_tac prems) ]); |
0 | 27 |
|
28 |
||
29 |
(*computation for add: 0 and successor cases*) |
|
30 |
||
1294 | 31 |
qed_goalw "addC0" Arith.thy arith_defs |
0 | 32 |
"b:N ==> 0 #+ b = b : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
33 |
(fn prems=> [ (rew_tac prems) ]); |
0 | 34 |
|
1294 | 35 |
qed_goalw "addC_succ" Arith.thy arith_defs |
0 | 36 |
"[| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
37 |
(fn prems=> [ (rew_tac prems) ]); |
0 | 38 |
|
39 |
||
40 |
(** Multiplication *) |
|
41 |
||
42 |
(*typing of mult: short and long versions*) |
|
43 |
||
1294 | 44 |
qed_goalw "mult_typing" Arith.thy arith_defs |
0 | 45 |
"[| a:N; b:N |] ==> a #* b : N" |
46 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
47 |
[ (typechk_tac([add_typing]@prems)) ]); |
0 | 48 |
|
1294 | 49 |
qed_goalw "mult_typingL" Arith.thy arith_defs |
0 | 50 |
"[| a=c:N; b=d:N |] ==> a #* b = c #* d : N" |
51 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
52 |
[ (equal_tac (prems@[add_typingL])) ]); |
0 | 53 |
|
54 |
(*computation for mult: 0 and successor cases*) |
|
55 |
||
1294 | 56 |
qed_goalw "multC0" Arith.thy arith_defs |
0 | 57 |
"b:N ==> 0 #* b = 0 : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
58 |
(fn prems=> [ (rew_tac prems) ]); |
0 | 59 |
|
1294 | 60 |
qed_goalw "multC_succ" Arith.thy arith_defs |
0 | 61 |
"[| a:N; b:N |] ==> succ(a) #* b = b #+ (a #* b) : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
62 |
(fn prems=> [ (rew_tac prems) ]); |
0 | 63 |
|
64 |
||
65 |
(** Difference *) |
|
66 |
||
67 |
(*typing of difference*) |
|
68 |
||
1294 | 69 |
qed_goalw "diff_typing" Arith.thy arith_defs |
0 | 70 |
"[| a:N; b:N |] ==> a - b : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
71 |
(fn prems=> [ (typechk_tac prems) ]); |
0 | 72 |
|
1294 | 73 |
qed_goalw "diff_typingL" Arith.thy arith_defs |
0 | 74 |
"[| a=c:N; b=d:N |] ==> a - b = c - d : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
75 |
(fn prems=> [ (equal_tac prems) ]); |
0 | 76 |
|
77 |
||
78 |
||
79 |
(*computation for difference: 0 and successor cases*) |
|
80 |
||
1294 | 81 |
qed_goalw "diffC0" Arith.thy arith_defs |
0 | 82 |
"a:N ==> a - 0 = a : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
83 |
(fn prems=> [ (rew_tac prems) ]); |
0 | 84 |
|
85 |
(*Note: rec(a, 0, %z w.z) is pred(a). *) |
|
86 |
||
1294 | 87 |
qed_goalw "diff_0_eq_0" Arith.thy arith_defs |
0 | 88 |
"b:N ==> 0 - b = 0 : N" |
89 |
(fn prems=> |
|
90 |
[ (NE_tac "b" 1), |
|
91 |
(hyp_rew_tac prems) ]); |
|
92 |
||
93 |
||
94 |
(*Essential to simplify FIRST!! (Else we get a critical pair) |
|
95 |
succ(a) - succ(b) rewrites to pred(succ(a) - b) *) |
|
1294 | 96 |
qed_goalw "diff_succ_succ" Arith.thy arith_defs |
0 | 97 |
"[| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N" |
98 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
99 |
[ (hyp_rew_tac prems), |
0 | 100 |
(NE_tac "b" 1), |
101 |
(hyp_rew_tac prems) ]); |
|
102 |
||
103 |
||
104 |
||
105 |
(*** Simplification *) |
|
106 |
||
107 |
val arith_typing_rls = |
|
108 |
[add_typing, mult_typing, diff_typing]; |
|
109 |
||
110 |
val arith_congr_rls = |
|
111 |
[add_typingL, mult_typingL, diff_typingL]; |
|
112 |
||
113 |
val congr_rls = arith_congr_rls@standard_congr_rls; |
|
114 |
||
115 |
val arithC_rls = |
|
116 |
[addC0, addC_succ, |
|
117 |
multC0, multC_succ, |
|
118 |
diffC0, diff_0_eq_0, diff_succ_succ]; |
|
119 |
||
120 |
||
121 |
structure Arith_simp_data: TSIMP_DATA = |
|
122 |
struct |
|
1459 | 123 |
val refl = refl_elem |
124 |
val sym = sym_elem |
|
125 |
val trans = trans_elem |
|
126 |
val refl_red = refl_red |
|
127 |
val trans_red = trans_red |
|
128 |
val red_if_equal = red_if_equal |
|
129 |
val default_rls = arithC_rls @ comp_rls |
|
130 |
val routine_tac = routine_tac (arith_typing_rls @ routine_rls) |
|
0 | 131 |
end; |
132 |
||
133 |
structure Arith_simp = TSimpFun (Arith_simp_data); |
|
134 |
||
135 |
fun arith_rew_tac prems = make_rew_tac |
|
136 |
(Arith_simp.norm_tac(congr_rls, prems)); |
|
137 |
||
138 |
fun hyp_arith_rew_tac prems = make_rew_tac |
|
139 |
(Arith_simp.cond_norm_tac(prove_cond_tac, congr_rls, prems)); |
|
140 |
||
141 |
||
142 |
(********** |
|
143 |
Addition |
|
144 |
**********) |
|
145 |
||
146 |
(*Associative law for addition*) |
|
1294 | 147 |
qed_goal "add_assoc" Arith.thy |
0 | 148 |
"[| a:N; b:N; c:N |] ==> (a #+ b) #+ c = a #+ (b #+ c) : N" |
149 |
(fn prems=> |
|
150 |
[ (NE_tac "a" 1), |
|
151 |
(hyp_arith_rew_tac prems) ]); |
|
152 |
||
153 |
||
154 |
(*Commutative law for addition. Can be proved using three inductions. |
|
155 |
Must simplify after first induction! Orientation of rewrites is delicate*) |
|
1294 | 156 |
qed_goal "add_commute" Arith.thy |
0 | 157 |
"[| a:N; b:N |] ==> a #+ b = b #+ a : N" |
158 |
(fn prems=> |
|
159 |
[ (NE_tac "a" 1), |
|
160 |
(hyp_arith_rew_tac prems), |
|
161 |
(NE_tac "b" 2), |
|
1459 | 162 |
(rtac sym_elem 1), |
0 | 163 |
(NE_tac "b" 1), |
164 |
(hyp_arith_rew_tac prems) ]); |
|
165 |
||
166 |
||
167 |
(**************** |
|
168 |
Multiplication |
|
169 |
****************) |
|
170 |
||
171 |
(*Commutative law for multiplication |
|
1294 | 172 |
qed_goal "mult_commute" Arith.thy |
0 | 173 |
"[| a:N; b:N |] ==> a #* b = b #* a : N" |
174 |
(fn prems=> |
|
175 |
[ (NE_tac "a" 1), |
|
176 |
(hyp_arith_rew_tac prems), |
|
177 |
(NE_tac "b" 2), |
|
1459 | 178 |
(rtac sym_elem 1), |
0 | 179 |
(NE_tac "b" 1), |
180 |
(hyp_arith_rew_tac prems) ]); NEEDS COMMUTATIVE MATCHING |
|
181 |
***************) |
|
182 |
||
183 |
(*right annihilation in product*) |
|
1294 | 184 |
qed_goal "mult_0_right" Arith.thy |
0 | 185 |
"a:N ==> a #* 0 = 0 : N" |
186 |
(fn prems=> |
|
187 |
[ (NE_tac "a" 1), |
|
188 |
(hyp_arith_rew_tac prems) ]); |
|
189 |
||
190 |
(*right successor law for multiplication*) |
|
1294 | 191 |
qed_goal "mult_succ_right" Arith.thy |
0 | 192 |
"[| a:N; b:N |] ==> a #* succ(b) = a #+ (a #* b) : N" |
193 |
(fn prems=> |
|
194 |
[ (NE_tac "a" 1), |
|
195 |
(*swap round the associative law of addition*) |
|
196 |
(hyp_arith_rew_tac (prems @ [add_assoc RS sym_elem])), |
|
197 |
(*leaves a goal involving a commutative law*) |
|
198 |
(REPEAT (assume_tac 1 ORELSE |
|
199 |
resolve_tac |
|
200 |
(prems@[add_commute,mult_typingL,add_typingL]@ |
|
1459 | 201 |
intrL_rls@[refl_elem]) 1)) ]); |
0 | 202 |
|
203 |
(*Commutative law for multiplication*) |
|
1294 | 204 |
qed_goal "mult_commute" Arith.thy |
0 | 205 |
"[| a:N; b:N |] ==> a #* b = b #* a : N" |
206 |
(fn prems=> |
|
207 |
[ (NE_tac "a" 1), |
|
208 |
(hyp_arith_rew_tac (prems @ [mult_0_right, mult_succ_right])) ]); |
|
209 |
||
210 |
(*addition distributes over multiplication*) |
|
1294 | 211 |
qed_goal "add_mult_distrib" Arith.thy |
0 | 212 |
"[| a:N; b:N; c:N |] ==> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" |
213 |
(fn prems=> |
|
214 |
[ (NE_tac "a" 1), |
|
215 |
(*swap round the associative law of addition*) |
|
216 |
(hyp_arith_rew_tac (prems @ [add_assoc RS sym_elem])) ]); |
|
217 |
||
218 |
||
219 |
(*Associative law for multiplication*) |
|
1294 | 220 |
qed_goal "mult_assoc" Arith.thy |
0 | 221 |
"[| a:N; b:N; c:N |] ==> (a #* b) #* c = a #* (b #* c) : N" |
222 |
(fn prems=> |
|
223 |
[ (NE_tac "a" 1), |
|
224 |
(hyp_arith_rew_tac (prems @ [add_mult_distrib])) ]); |
|
225 |
||
226 |
||
227 |
(************ |
|
228 |
Difference |
|
229 |
************ |
|
230 |
||
231 |
Difference on natural numbers, without negative numbers |
|
232 |
a - b = 0 iff a<=b a - b = succ(c) iff a>b *) |
|
233 |
||
1294 | 234 |
qed_goal "diff_self_eq_0" Arith.thy |
0 | 235 |
"a:N ==> a - a = 0 : N" |
236 |
(fn prems=> |
|
237 |
[ (NE_tac "a" 1), |
|
238 |
(hyp_arith_rew_tac prems) ]); |
|
239 |
||
240 |
||
241 |
(* [| c : N; 0 : N; c : N |] ==> c #+ 0 = c : N *) |
|
242 |
val add_0_right = addC0 RSN (3, add_commute RS trans_elem); |
|
243 |
||
244 |
(*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x. |
|
245 |
An example of induction over a quantified formula (a product). |
|
246 |
Uses rewriting with a quantified, implicative inductive hypothesis.*) |
|
247 |
val prems = |
|
248 |
goal Arith.thy |
|
249 |
"b:N ==> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)"; |
|
250 |
by (NE_tac "b" 1); |
|
251 |
(*strip one "universal quantifier" but not the "implication"*) |
|
252 |
by (resolve_tac intr_rls 3); |
|
253 |
(*case analysis on x in |
|
254 |
(succ(u) <= x) --> (succ(u)#+(x-succ(u)) = x) *) |
|
255 |
by (NE_tac "x" 4 THEN assume_tac 4); |
|
256 |
(*Prepare for simplification of types -- the antecedent succ(u)<=x *) |
|
1459 | 257 |
by (rtac replace_type 5); |
258 |
by (rtac replace_type 4); |
|
0 | 259 |
by (arith_rew_tac prems); |
260 |
(*Solves first 0 goal, simplifies others. Two sugbgoals remain. |
|
261 |
Both follow by rewriting, (2) using quantified induction hyp*) |
|
262 |
by (intr_tac[]); (*strips remaining PRODs*) |
|
263 |
by (hyp_arith_rew_tac (prems@[add_0_right])); |
|
264 |
by (assume_tac 1); |
|
1294 | 265 |
qed "add_diff_inverse_lemma"; |
0 | 266 |
|
267 |
||
268 |
(*Version of above with premise b-a=0 i.e. a >= b. |
|
269 |
Using ProdE does not work -- for ?B(?a) is ambiguous. |
|
270 |
Instead, add_diff_inverse_lemma states the desired induction scheme; |
|
271 |
the use of RS below instantiates Vars in ProdE automatically. *) |
|
272 |
val prems = |
|
273 |
goal Arith.thy "[| a:N; b:N; b-a = 0 : N |] ==> b #+ (a-b) = a : N"; |
|
1459 | 274 |
by (rtac EqE 1); |
0 | 275 |
by (resolve_tac [ add_diff_inverse_lemma RS ProdE RS ProdE ] 1); |
276 |
by (REPEAT (resolve_tac (prems@[EqI]) 1)); |
|
1294 | 277 |
qed "add_diff_inverse"; |
0 | 278 |
|
279 |
||
280 |
(******************** |
|
281 |
Absolute difference |
|
282 |
********************) |
|
283 |
||
284 |
(*typing of absolute difference: short and long versions*) |
|
285 |
||
1294 | 286 |
qed_goalw "absdiff_typing" Arith.thy arith_defs |
0 | 287 |
"[| a:N; b:N |] ==> a |-| b : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
288 |
(fn prems=> [ (typechk_tac prems) ]); |
0 | 289 |
|
1294 | 290 |
qed_goalw "absdiff_typingL" Arith.thy arith_defs |
0 | 291 |
"[| a=c:N; b=d:N |] ==> a |-| b = c |-| d : N" |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
292 |
(fn prems=> [ (equal_tac prems) ]); |
0 | 293 |
|
1294 | 294 |
qed_goalw "absdiff_self_eq_0" Arith.thy [absdiff_def] |
0 | 295 |
"a:N ==> a |-| a = 0 : N" |
296 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
297 |
[ (arith_rew_tac (prems@[diff_self_eq_0])) ]); |
0 | 298 |
|
1294 | 299 |
qed_goalw "absdiffC0" Arith.thy [absdiff_def] |
0 | 300 |
"a:N ==> 0 |-| a = a : N" |
301 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
302 |
[ (hyp_arith_rew_tac prems) ]); |
0 | 303 |
|
304 |
||
1294 | 305 |
qed_goalw "absdiff_succ_succ" Arith.thy [absdiff_def] |
0 | 306 |
"[| a:N; b:N |] ==> succ(a) |-| succ(b) = a |-| b : N" |
307 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
308 |
[ (hyp_arith_rew_tac prems) ]); |
0 | 309 |
|
310 |
(*Note how easy using commutative laws can be? ...not always... *) |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
311 |
val prems = goalw Arith.thy [absdiff_def] |
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
312 |
"[| a:N; b:N |] ==> a |-| b = b |-| a : N"; |
1459 | 313 |
by (rtac add_commute 1); |
0 | 314 |
by (typechk_tac ([diff_typing]@prems)); |
1294 | 315 |
qed "absdiff_commute"; |
0 | 316 |
|
317 |
(*If a+b=0 then a=0. Surprisingly tedious*) |
|
318 |
val prems = |
|
319 |
goal Arith.thy "[| a:N; b:N |] ==> ?c : PROD u: Eq(N,a#+b,0) . Eq(N,a,0)"; |
|
320 |
by (NE_tac "a" 1); |
|
1459 | 321 |
by (rtac replace_type 3); |
0 | 322 |
by (arith_rew_tac prems); |
323 |
by (intr_tac[]); (*strips remaining PRODs*) |
|
324 |
by (resolve_tac [ zero_ne_succ RS FE ] 2); |
|
325 |
by (etac (EqE RS sym_elem) 3); |
|
326 |
by (typechk_tac ([add_typing] @prems)); |
|
1294 | 327 |
qed "add_eq0_lemma"; |
0 | 328 |
|
329 |
(*Version of above with the premise a+b=0. |
|
330 |
Again, resolution instantiates variables in ProdE *) |
|
331 |
val prems = |
|
332 |
goal Arith.thy "[| a:N; b:N; a #+ b = 0 : N |] ==> a = 0 : N"; |
|
1459 | 333 |
by (rtac EqE 1); |
0 | 334 |
by (resolve_tac [add_eq0_lemma RS ProdE] 1); |
1459 | 335 |
by (rtac EqI 3); |
0 | 336 |
by (ALLGOALS (resolve_tac prems)); |
1294 | 337 |
qed "add_eq0"; |
0 | 338 |
|
339 |
(*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *) |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
340 |
val prems = goalw Arith.thy [absdiff_def] |
0 | 341 |
"[| a:N; b:N; a |-| b = 0 : N |] ==> \ |
342 |
\ ?a : SUM v: Eq(N, a-b, 0) . Eq(N, b-a, 0)"; |
|
343 |
by (intr_tac[]); |
|
344 |
by eqintr_tac; |
|
1459 | 345 |
by (rtac add_eq0 2); |
346 |
by (rtac add_eq0 1); |
|
0 | 347 |
by (resolve_tac [add_commute RS trans_elem] 6); |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
348 |
by (typechk_tac (diff_typing::prems)); |
1294 | 349 |
qed "absdiff_eq0_lem"; |
0 | 350 |
|
351 |
(*if a |-| b = 0 then a = b |
|
352 |
proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*) |
|
353 |
val prems = |
|
354 |
goal Arith.thy "[| a |-| b = 0 : N; a:N; b:N |] ==> a = b : N"; |
|
1459 | 355 |
by (rtac EqE 1); |
0 | 356 |
by (resolve_tac [absdiff_eq0_lem RS SumE] 1); |
357 |
by (TRYALL (resolve_tac prems)); |
|
358 |
by eqintr_tac; |
|
359 |
by (resolve_tac [add_diff_inverse RS sym_elem RS trans_elem] 1); |
|
1459 | 360 |
by (rtac EqE 3 THEN assume_tac 3); |
0 | 361 |
by (hyp_arith_rew_tac (prems@[add_0_right])); |
1294 | 362 |
qed "absdiff_eq0"; |
0 | 363 |
|
364 |
(*********************** |
|
365 |
Remainder and Quotient |
|
366 |
***********************) |
|
367 |
||
368 |
(*typing of remainder: short and long versions*) |
|
369 |
||
1294 | 370 |
qed_goalw "mod_typing" Arith.thy [mod_def] |
0 | 371 |
"[| a:N; b:N |] ==> a mod b : N" |
372 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
373 |
[ (typechk_tac (absdiff_typing::prems)) ]); |
0 | 374 |
|
1294 | 375 |
qed_goalw "mod_typingL" Arith.thy [mod_def] |
0 | 376 |
"[| a=c:N; b=d:N |] ==> a mod b = c mod d : N" |
377 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
378 |
[ (equal_tac (prems@[absdiff_typingL])) ]); |
0 | 379 |
|
380 |
||
381 |
(*computation for mod : 0 and successor cases*) |
|
382 |
||
1294 | 383 |
qed_goalw "modC0" Arith.thy [mod_def] "b:N ==> 0 mod b = 0 : N" |
0 | 384 |
(fn prems=> |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
385 |
[ (rew_tac(absdiff_typing::prems)) ]); |
0 | 386 |
|
1294 | 387 |
qed_goalw "modC_succ" Arith.thy [mod_def] |
3837 | 388 |
"[| a:N; b:N |] ==> succ(a) mod b = rec(succ(a mod b) |-| b, 0, %x y. succ(a mod b)) : N" |
0 | 389 |
(fn prems=> |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
390 |
[ (rew_tac(absdiff_typing::prems)) ]); |
0 | 391 |
|
392 |
||
393 |
(*typing of quotient: short and long versions*) |
|
394 |
||
1294 | 395 |
qed_goalw "div_typing" Arith.thy [div_def] "[| a:N; b:N |] ==> a div b : N" |
0 | 396 |
(fn prems=> |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
397 |
[ (typechk_tac ([absdiff_typing,mod_typing]@prems)) ]); |
0 | 398 |
|
1294 | 399 |
qed_goalw "div_typingL" Arith.thy [div_def] |
0 | 400 |
"[| a=c:N; b=d:N |] ==> a div b = c div d : N" |
401 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
402 |
[ (equal_tac (prems @ [absdiff_typingL, mod_typingL])) ]); |
0 | 403 |
|
404 |
val div_typing_rls = [mod_typing, div_typing, absdiff_typing]; |
|
405 |
||
406 |
||
407 |
(*computation for quotient: 0 and successor cases*) |
|
408 |
||
1294 | 409 |
qed_goalw "divC0" Arith.thy [div_def] "b:N ==> 0 div b = 0 : N" |
0 | 410 |
(fn prems=> |
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
411 |
[ (rew_tac([mod_typing, absdiff_typing] @ prems)) ]); |
0 | 412 |
|
413 |
val divC_succ = |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
414 |
prove_goalw Arith.thy [div_def] "[| a:N; b:N |] ==> succ(a) div b = \ |
0 | 415 |
\ rec(succ(a) mod b, succ(a div b), %x y. a div b) : N" |
416 |
(fn prems=> |
|
354
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
lcp
parents:
0
diff
changeset
|
417 |
[ (rew_tac([mod_typing]@prems)) ]); |
0 | 418 |
|
419 |
||
420 |
(*Version of above with same condition as the mod one*) |
|
1294 | 421 |
qed_goal "divC_succ2" Arith.thy |
0 | 422 |
"[| a:N; b:N |] ==> \ |
423 |
\ succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), %x y. a div b) : N" |
|
424 |
(fn prems=> |
|
425 |
[ (resolve_tac [ divC_succ RS trans_elem ] 1), |
|
426 |
(rew_tac(div_typing_rls @ prems @ [modC_succ])), |
|
427 |
(NE_tac "succ(a mod b)|-|b" 1), |
|
428 |
(rew_tac ([mod_typing, div_typing, absdiff_typing] @prems)) ]); |
|
429 |
||
430 |
(*for case analysis on whether a number is 0 or a successor*) |
|
1294 | 431 |
qed_goal "iszero_decidable" Arith.thy |
3837 | 432 |
"a:N ==> rec(a, inl(eq), %ka kb. inr(<ka, eq>)) : \ |
1459 | 433 |
\ Eq(N,a,0) + (SUM x:N. Eq(N,a, succ(x)))" |
0 | 434 |
(fn prems=> |
435 |
[ (NE_tac "a" 1), |
|
1459 | 436 |
(rtac PlusI_inr 3), |
437 |
(rtac PlusI_inl 2), |
|
0 | 438 |
eqintr_tac, |
439 |
(equal_tac prems) ]); |
|
440 |
||
441 |
(*Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0 *) |
|
442 |
val prems = |
|
443 |
goal Arith.thy "[| a:N; b:N |] ==> a mod b #+ (a div b) #* b = a : N"; |
|
444 |
by (NE_tac "a" 1); |
|
445 |
by (arith_rew_tac (div_typing_rls@prems@[modC0,modC_succ,divC0,divC_succ2])); |
|
1459 | 446 |
by (rtac EqE 1); |
0 | 447 |
(*case analysis on succ(u mod b)|-|b *) |
448 |
by (res_inst_tac [("a1", "succ(u mod b) |-| b")] |
|
449 |
(iszero_decidable RS PlusE) 1); |
|
450 |
by (etac SumE 3); |
|
451 |
by (hyp_arith_rew_tac (prems @ div_typing_rls @ |
|
1459 | 452 |
[modC0,modC_succ, divC0, divC_succ2])); |
0 | 453 |
(*Replace one occurence of b by succ(u mod b). Clumsy!*) |
454 |
by (resolve_tac [ add_typingL RS trans_elem ] 1); |
|
455 |
by (eresolve_tac [EqE RS absdiff_eq0 RS sym_elem] 1); |
|
1459 | 456 |
by (rtac refl_elem 3); |
0 | 457 |
by (hyp_arith_rew_tac (prems @ div_typing_rls)); |
1294 | 458 |
qed "mod_div_equality"; |
0 | 459 |
|
460 |
writeln"Reached end of file."; |