| author | blanchet | 
| Mon, 24 Nov 2014 12:35:13 +0100 | |
| changeset 59044 | c04eccae1de8 | 
| parent 59002 | 2c8b2fb54b88 | 
| child 60500 | 903bb1495239 | 
| permissions | -rw-r--r-- | 
| 37665 | 1 | (* Title: HOL/Library/Indicator_Function.thy | 
| 2 | Author: Johannes Hoelzl (TU Muenchen) | |
| 3 | *) | |
| 4 | ||
| 58881 | 5 | section {* Indicator Function *}
 | 
| 37665 | 6 | |
| 7 | theory Indicator_Function | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 8 | imports Complex_Main | 
| 37665 | 9 | begin | 
| 10 | ||
| 11 | definition "indicator S x = (if x \<in> S then 1 else 0)" | |
| 12 | ||
| 13 | lemma indicator_simps[simp]: | |
| 14 | "x \<in> S \<Longrightarrow> indicator S x = 1" | |
| 15 | "x \<notin> S \<Longrightarrow> indicator S x = 0" | |
| 16 | unfolding indicator_def by auto | |
| 17 | ||
| 45425 | 18 | lemma indicator_pos_le[intro, simp]: "(0::'a::linordered_semidom) \<le> indicator S x" | 
| 37665 | 19 | and indicator_le_1[intro, simp]: "indicator S x \<le> (1::'a::linordered_semidom)" | 
| 45425 | 20 | unfolding indicator_def by auto | 
| 21 | ||
| 22 | lemma indicator_abs_le_1: "\<bar>indicator S x\<bar> \<le> (1::'a::linordered_idom)" | |
| 37665 | 23 | unfolding indicator_def by auto | 
| 24 | ||
| 54408 | 25 | lemma indicator_eq_0_iff: "indicator A x = (0::_::zero_neq_one) \<longleftrightarrow> x \<notin> A" | 
| 26 | by (auto simp: indicator_def) | |
| 27 | ||
| 28 | lemma indicator_eq_1_iff: "indicator A x = (1::_::zero_neq_one) \<longleftrightarrow> x \<in> A" | |
| 29 | by (auto simp: indicator_def) | |
| 30 | ||
| 57446 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 31 | lemma split_indicator: "P (indicator S x) \<longleftrightarrow> ((x \<in> S \<longrightarrow> P 1) \<and> (x \<notin> S \<longrightarrow> P 0))" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 32 | unfolding indicator_def by auto | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 33 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 34 | lemma split_indicator_asm: "P (indicator S x) \<longleftrightarrow> (\<not> (x \<in> S \<and> \<not> P 1 \<or> x \<notin> S \<and> \<not> P 0))" | 
| 37665 | 35 | unfolding indicator_def by auto | 
| 36 | ||
| 45425 | 37 | lemma indicator_inter_arith: "indicator (A \<inter> B) x = indicator A x * (indicator B x::'a::semiring_1)" | 
| 38 | unfolding indicator_def by (auto simp: min_def max_def) | |
| 39 | ||
| 57446 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 40 | lemma indicator_union_arith: "indicator (A \<union> B) x = indicator A x + indicator B x - indicator A x * (indicator B x::'a::ring_1)" | 
| 45425 | 41 | unfolding indicator_def by (auto simp: min_def max_def) | 
| 42 | ||
| 43 | lemma indicator_inter_min: "indicator (A \<inter> B) x = min (indicator A x) (indicator B x::'a::linordered_semidom)" | |
| 37665 | 44 | and indicator_union_max: "indicator (A \<union> B) x = max (indicator A x) (indicator B x::'a::linordered_semidom)" | 
| 45425 | 45 | unfolding indicator_def by (auto simp: min_def max_def) | 
| 46 | ||
| 57446 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 47 | lemma indicator_disj_union: "A \<inter> B = {} \<Longrightarrow>  indicator (A \<union> B) x = (indicator A x + indicator B x::'a::linordered_semidom)"
 | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 48 | by (auto split: split_indicator) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 49 | |
| 45425 | 50 | lemma indicator_compl: "indicator (- A) x = 1 - (indicator A x::'a::ring_1)" | 
| 37665 | 51 | and indicator_diff: "indicator (A - B) x = indicator A x * (1 - indicator B x::'a::ring_1)" | 
| 52 | unfolding indicator_def by (auto simp: min_def max_def) | |
| 53 | ||
| 45425 | 54 | lemma indicator_times: "indicator (A \<times> B) x = indicator A (fst x) * (indicator B (snd x)::'a::semiring_1)" | 
| 37665 | 55 | unfolding indicator_def by (cases x) auto | 
| 56 | ||
| 45425 | 57 | lemma indicator_sum: "indicator (A <+> B) x = (case x of Inl x \<Rightarrow> indicator A x | Inr x \<Rightarrow> indicator B x)" | 
| 37665 | 58 | unfolding indicator_def by (cases x) auto | 
| 59 | ||
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
58881diff
changeset | 60 | lemma indicator_image: "inj f \<Longrightarrow> indicator (f ` X) (f x) = (indicator X x::_::zero_neq_one)" | 
| 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
58881diff
changeset | 61 | by (auto simp: indicator_def inj_on_def) | 
| 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
58881diff
changeset | 62 | |
| 37665 | 63 | lemma | 
| 64 | fixes f :: "'a \<Rightarrow> 'b::semiring_1" assumes "finite A" | |
| 65 | shows setsum_mult_indicator[simp]: "(\<Sum>x \<in> A. f x * indicator B x) = (\<Sum>x \<in> A \<inter> B. f x)" | |
| 66 | and setsum_indicator_mult[simp]: "(\<Sum>x \<in> A. indicator B x * f x) = (\<Sum>x \<in> A \<inter> B. f x)" | |
| 67 | unfolding indicator_def | |
| 57418 | 68 | using assms by (auto intro!: setsum.mono_neutral_cong_right split: split_if_asm) | 
| 37665 | 69 | |
| 70 | lemma setsum_indicator_eq_card: | |
| 71 | assumes "finite A" | |
| 72 | shows "(SUM x : A. indicator B x) = card (A Int B)" | |
| 73 | using setsum_mult_indicator[OF assms, of "%x. 1::nat"] | |
| 74 | unfolding card_eq_setsum by simp | |
| 75 | ||
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 76 | lemma setsum_indicator_scaleR[simp]: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 77 | "finite A \<Longrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 78 |     (\<Sum>x \<in> A. indicator (B x) (g x) *\<^sub>R f x) = (\<Sum>x \<in> {x\<in>A. g x \<in> B x}. f x::'a::real_vector)"
 | 
| 57418 | 79 | using assms by (auto intro!: setsum.mono_neutral_cong_right split: split_if_asm simp: indicator_def) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 80 | |
| 57446 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 81 | lemma LIMSEQ_indicator_incseq: | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 82 | assumes "incseq A" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 83 |   shows "(\<lambda>i. indicator (A i) x :: 'a :: {topological_space, one, zero}) ----> indicator (\<Union>i. A i) x"
 | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 84 | proof cases | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 85 | assume "\<exists>i. x \<in> A i" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 86 | then obtain i where "x \<in> A i" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 87 | by auto | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 88 | then have | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 89 | "\<And>n. (indicator (A (n + i)) x :: 'a) = 1" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 90 | "(indicator (\<Union> i. A i) x :: 'a) = 1" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 91 | using incseqD[OF `incseq A`, of i "n + i" for n] `x \<in> A i` by (auto simp: indicator_def) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 92 | then show ?thesis | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57447diff
changeset | 93 | by (rule_tac LIMSEQ_offset[of _ i]) simp | 
| 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57447diff
changeset | 94 | qed (auto simp: indicator_def) | 
| 57446 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 95 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 96 | lemma LIMSEQ_indicator_UN: | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 97 |   "(\<lambda>k. indicator (\<Union> i<k. A i) x :: 'a :: {topological_space, one, zero}) ----> indicator (\<Union>i. A i) x"
 | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 98 | proof - | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 99 | have "(\<lambda>k. indicator (\<Union> i<k. A i) x::'a) ----> indicator (\<Union>k. \<Union> i<k. A i) x" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 100 | by (intro LIMSEQ_indicator_incseq) (auto simp: incseq_def intro: less_le_trans) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 101 | also have "(\<Union>k. \<Union> i<k. A i) = (\<Union>i. A i)" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 102 | by auto | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 103 | finally show ?thesis . | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 104 | qed | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 105 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 106 | lemma LIMSEQ_indicator_decseq: | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 107 | assumes "decseq A" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 108 |   shows "(\<lambda>i. indicator (A i) x :: 'a :: {topological_space, one, zero}) ----> indicator (\<Inter>i. A i) x"
 | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 109 | proof cases | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 110 | assume "\<exists>i. x \<notin> A i" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 111 | then obtain i where "x \<notin> A i" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 112 | by auto | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 113 | then have | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 114 | "\<And>n. (indicator (A (n + i)) x :: 'a) = 0" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 115 | "(indicator (\<Inter>i. A i) x :: 'a) = 0" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 116 | using decseqD[OF `decseq A`, of i "n + i" for n] `x \<notin> A i` by (auto simp: indicator_def) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 117 | then show ?thesis | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57447diff
changeset | 118 | by (rule_tac LIMSEQ_offset[of _ i]) simp | 
| 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57447diff
changeset | 119 | qed (auto simp: indicator_def) | 
| 57446 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 120 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 121 | lemma LIMSEQ_indicator_INT: | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 122 |   "(\<lambda>k. indicator (\<Inter>i<k. A i) x :: 'a :: {topological_space, one, zero}) ----> indicator (\<Inter>i. A i) x"
 | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 123 | proof - | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 124 | have "(\<lambda>k. indicator (\<Inter>i<k. A i) x::'a) ----> indicator (\<Inter>k. \<Inter>i<k. A i) x" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 125 | by (intro LIMSEQ_indicator_decseq) (auto simp: decseq_def intro: less_le_trans) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 126 | also have "(\<Inter>k. \<Inter> i<k. A i) = (\<Inter>i. A i)" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 127 | by auto | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 128 | finally show ?thesis . | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 129 | qed | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 130 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 131 | lemma indicator_add: | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 132 |   "A \<inter> B = {} \<Longrightarrow> (indicator A x::_::monoid_add) + indicator B x = indicator (A \<union> B) x"
 | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 133 | unfolding indicator_def by auto | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 134 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 135 | lemma of_real_indicator: "of_real (indicator A x) = indicator A x" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 136 | by (simp split: split_indicator) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 137 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 138 | lemma real_of_nat_indicator: "real (indicator A x :: nat) = indicator A x" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 139 | by (simp split: split_indicator) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 140 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 141 | lemma abs_indicator: "\<bar>indicator A x :: 'a::linordered_idom\<bar> = indicator A x" | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 142 | by (simp split: split_indicator) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 143 | |
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 144 | lemma mult_indicator_subset: | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 145 |   "A \<subseteq> B \<Longrightarrow> indicator A x * indicator B x = (indicator A x :: 'a::{comm_semiring_1})"
 | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 146 | by (auto split: split_indicator simp: fun_eq_iff) | 
| 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 147 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 148 | lemma indicator_sums: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 149 |   assumes "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 150 | shows "(\<lambda>i. indicator (A i) x::real) sums indicator (\<Union>i. A i) x" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 151 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 152 | assume "\<exists>i. x \<in> A i" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 153 | then obtain i where i: "x \<in> A i" .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 154 |   with assms have "(\<lambda>i. indicator (A i) x::real) sums (\<Sum>i\<in>{i}. indicator (A i) x)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 155 | by (intro sums_finite) (auto split: split_indicator) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 156 |   also have "(\<Sum>i\<in>{i}. indicator (A i) x) = indicator (\<Union>i. A i) x"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 157 | using i by (auto split: split_indicator) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 158 | finally show ?thesis . | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 159 | qed simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57446diff
changeset | 160 | |
| 57446 
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
 hoelzl parents: 
57418diff
changeset | 161 | end |