| author | wenzelm | 
| Thu, 05 Jan 2017 12:23:25 +0100 | |
| changeset 64799 | c0c648911f1a | 
| parent 61398 | 6794de675568 | 
| child 69587 | 53982d5ec0bb | 
| permissions | -rw-r--r-- | 
| 9284 | 1 | (* Title: ZF/Resid/Substitution.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
24893diff
changeset | 2 | Author: Ole Rasmussen, University of Cambridge | 
| 1048 | 3 | *) | 
| 4 | ||
| 16417 | 5 | theory Substitution imports Redex begin | 
| 1048 | 6 | |
| 6046 | 7 | (** The clumsy _aux functions are required because other arguments vary | 
| 8 | in the recursive calls ***) | |
| 9 | ||
| 24892 | 10 | consts | 
| 11 | lift_aux :: "i=>i" | |
| 6046 | 12 | primrec | 
| 12593 | 13 | "lift_aux(Var(i)) = (\<lambda>k \<in> nat. if i<k then Var(i) else Var(succ(i)))" | 
| 6046 | 14 | |
| 12593 | 15 | "lift_aux(Fun(t)) = (\<lambda>k \<in> nat. Fun(lift_aux(t) ` succ(k)))" | 
| 6046 | 16 | |
| 12593 | 17 | "lift_aux(App(b,f,a)) = (\<lambda>k \<in> nat. App(b, lift_aux(f)`k, lift_aux(a)`k))" | 
| 6046 | 18 | |
| 24893 | 19 | definition | 
| 20 | lift_rec :: "[i,i]=> i" where | |
| 24892 | 21 | "lift_rec(r,k) == lift_aux(r)`k" | 
| 1048 | 22 | |
| 24892 | 23 | abbreviation | 
| 24 | lift :: "i=>i" where | |
| 25 | "lift(r) == lift_rec(r,0)" | |
| 26 | ||
| 27 | ||
| 28 | consts | |
| 29 | subst_aux :: "i=>i" | |
| 6046 | 30 | primrec | 
| 31 | "subst_aux(Var(i)) = | |
| 24892 | 32 | (\<lambda>r \<in> redexes. \<lambda>k \<in> nat. if k<i then Var(i #- 1) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
24893diff
changeset | 33 | else if k=i then r else Var(i))" | 
| 6046 | 34 | "subst_aux(Fun(t)) = | 
| 12593 | 35 | (\<lambda>r \<in> redexes. \<lambda>k \<in> nat. Fun(subst_aux(t) ` lift(r) ` succ(k)))" | 
| 6046 | 36 | |
| 24892 | 37 | "subst_aux(App(b,f,a)) = | 
| 12593 | 38 | (\<lambda>r \<in> redexes. \<lambda>k \<in> nat. App(b, subst_aux(f)`r`k, subst_aux(a)`r`k))" | 
| 39 | ||
| 24893 | 40 | definition | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
24893diff
changeset | 41 | subst_rec :: "[i,i,i]=> i" (**NOTE THE ARGUMENT ORDER BELOW**) where | 
| 24892 | 42 | "subst_rec(u,r,k) == subst_aux(r)`u`k" | 
| 43 | ||
| 44 | abbreviation | |
| 45 | subst :: "[i,i]=>i" (infixl "'/" 70) where | |
| 46 | "u/v == subst_rec(u,v,0)" | |
| 47 | ||
| 48 | ||
| 12593 | 49 | |
| 50 | (* ------------------------------------------------------------------------- *) | |
| 51 | (* Arithmetic extensions *) | |
| 52 | (* ------------------------------------------------------------------------- *) | |
| 53 | ||
| 54 | lemma gt_not_eq: "p < n ==> n\<noteq>p" | |
| 55 | by blast | |
| 56 | ||
| 46823 | 57 | lemma succ_pred [rule_format, simp]: "j \<in> nat ==> i < j \<longrightarrow> succ(j #- 1) = j" | 
| 12593 | 58 | by (induct_tac "j", auto) | 
| 59 | ||
| 60 | lemma lt_pred: "[|succ(x)<n; n \<in> nat|] ==> x < n #- 1 " | |
| 61 | apply (rule succ_leE) | |
| 62 | apply (simp add: succ_pred) | |
| 63 | done | |
| 64 | ||
| 65 | lemma gt_pred: "[|n < succ(x); p<n; n \<in> nat|] ==> n #- 1 < x " | |
| 66 | apply (rule succ_leE) | |
| 67 | apply (simp add: succ_pred) | |
| 68 | done | |
| 69 | ||
| 70 | ||
| 71 | declare not_lt_iff_le [simp] if_P [simp] if_not_P [simp] | |
| 72 | ||
| 73 | ||
| 74 | (* ------------------------------------------------------------------------- *) | |
| 75 | (* lift_rec equality rules *) | |
| 76 | (* ------------------------------------------------------------------------- *) | |
| 77 | lemma lift_rec_Var: | |
| 78 | "n \<in> nat ==> lift_rec(Var(i),n) = (if i<n then Var(i) else Var(succ(i)))" | |
| 79 | by (simp add: lift_rec_def) | |
| 80 | ||
| 81 | lemma lift_rec_le [simp]: | |
| 82 | "[|i \<in> nat; k\<le>i|] ==> lift_rec(Var(i),k) = Var(succ(i))" | |
| 83 | by (simp add: lift_rec_def le_in_nat) | |
| 84 | ||
| 85 | lemma lift_rec_gt [simp]: "[| k \<in> nat; i<k |] ==> lift_rec(Var(i),k) = Var(i)" | |
| 86 | by (simp add: lift_rec_def) | |
| 87 | ||
| 88 | lemma lift_rec_Fun [simp]: | |
| 89 | "k \<in> nat ==> lift_rec(Fun(t),k) = Fun(lift_rec(t,succ(k)))" | |
| 90 | by (simp add: lift_rec_def) | |
| 91 | ||
| 92 | lemma lift_rec_App [simp]: | |
| 93 | "k \<in> nat ==> lift_rec(App(b,f,a),k) = App(b,lift_rec(f,k),lift_rec(a,k))" | |
| 94 | by (simp add: lift_rec_def) | |
| 95 | ||
| 96 | ||
| 97 | (* ------------------------------------------------------------------------- *) | |
| 98 | (* substitution quality rules *) | |
| 99 | (* ------------------------------------------------------------------------- *) | |
| 100 | ||
| 101 | lemma subst_Var: | |
| 24892 | 102 | "[|k \<in> nat; u \<in> redexes|] | 
| 103 | ==> subst_rec(u,Var(i),k) = | |
| 12593 | 104 | (if k<i then Var(i #- 1) else if k=i then u else Var(i))" | 
| 105 | by (simp add: subst_rec_def gt_not_eq leI) | |
| 106 | ||
| 107 | ||
| 108 | lemma subst_eq [simp]: | |
| 109 | "[|n \<in> nat; u \<in> redexes|] ==> subst_rec(u,Var(n),n) = u" | |
| 110 | by (simp add: subst_rec_def) | |
| 111 | ||
| 112 | lemma subst_gt [simp]: | |
| 113 | "[|u \<in> redexes; p \<in> nat; p<n|] ==> subst_rec(u,Var(n),p) = Var(n #- 1)" | |
| 114 | by (simp add: subst_rec_def) | |
| 115 | ||
| 116 | lemma subst_lt [simp]: | |
| 117 | "[|u \<in> redexes; p \<in> nat; n<p|] ==> subst_rec(u,Var(n),p) = Var(n)" | |
| 118 | by (simp add: subst_rec_def gt_not_eq leI lt_nat_in_nat) | |
| 119 | ||
| 120 | lemma subst_Fun [simp]: | |
| 121 | "[|p \<in> nat; u \<in> redexes|] | |
| 122 | ==> subst_rec(u,Fun(t),p) = Fun(subst_rec(lift(u),t,succ(p))) " | |
| 123 | by (simp add: subst_rec_def) | |
| 124 | ||
| 125 | lemma subst_App [simp]: | |
| 126 | "[|p \<in> nat; u \<in> redexes|] | |
| 127 | ==> subst_rec(u,App(b,f,a),p) = App(b,subst_rec(u,f,p),subst_rec(u,a,p))" | |
| 128 | by (simp add: subst_rec_def) | |
| 129 | ||
| 130 | ||
| 131 | lemma lift_rec_type [rule_format, simp]: | |
| 132 | "u \<in> redexes ==> \<forall>k \<in> nat. lift_rec(u,k) \<in> redexes" | |
| 133 | apply (erule redexes.induct) | |
| 134 | apply (simp_all add: lift_rec_Var lift_rec_Fun lift_rec_App) | |
| 135 | done | |
| 136 | ||
| 137 | lemma subst_type [rule_format, simp]: | |
| 138 | "v \<in> redexes ==> \<forall>n \<in> nat. \<forall>u \<in> redexes. subst_rec(u,v,n) \<in> redexes" | |
| 139 | apply (erule redexes.induct) | |
| 140 | apply (simp_all add: subst_Var lift_rec_type) | |
| 141 | done | |
| 142 | ||
| 143 | ||
| 144 | (* ------------------------------------------------------------------------- *) | |
| 145 | (* lift and substitution proofs *) | |
| 146 | (* ------------------------------------------------------------------------- *) | |
| 147 | ||
| 148 | (*The i\<in>nat is redundant*) | |
| 149 | lemma lift_lift_rec [rule_format]: | |
| 24892 | 150 | "u \<in> redexes | 
| 46823 | 151 | ==> \<forall>n \<in> nat. \<forall>i \<in> nat. i\<le>n \<longrightarrow> | 
| 12593 | 152 | (lift_rec(lift_rec(u,i),succ(n)) = lift_rec(lift_rec(u,n),i))" | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 153 | apply (erule redexes.induct, auto) | 
| 12593 | 154 | apply (case_tac "n < i") | 
| 155 | apply (frule lt_trans2, assumption) | |
| 156 | apply (simp_all add: lift_rec_Var leI) | |
| 157 | done | |
| 158 | ||
| 159 | lemma lift_lift: | |
| 24892 | 160 | "[|u \<in> redexes; n \<in> nat|] | 
| 12593 | 161 | ==> lift_rec(lift(u),succ(n)) = lift(lift_rec(u,n))" | 
| 162 | by (simp add: lift_lift_rec) | |
| 163 | ||
| 164 | lemma lt_not_m1_lt: "\<lbrakk>m < n; n \<in> nat; m \<in> nat\<rbrakk>\<Longrightarrow> ~ n #- 1 < m" | |
| 165 | by (erule natE, auto) | |
| 166 | ||
| 167 | lemma lift_rec_subst_rec [rule_format]: | |
| 24892 | 168 | "v \<in> redexes ==> | 
| 46823 | 169 | \<forall>n \<in> nat. \<forall>m \<in> nat. \<forall>u \<in> redexes. n\<le>m\<longrightarrow> | 
| 24892 | 170 | lift_rec(subst_rec(u,v,n),m) = | 
| 12593 | 171 | subst_rec(lift_rec(u,m),lift_rec(v,succ(m)),n)" | 
| 172 | apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift) | |
| 173 | apply safe | |
| 24892 | 174 | apply (rename_tac n n' m u) | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 175 | apply (case_tac "n < n'") | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 176 | apply (frule_tac j = n' in lt_trans2, assumption) | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 177 | apply (simp add: leI, simp) | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 178 | apply (erule_tac j=n in leE) | 
| 12593 | 179 | apply (auto simp add: lift_rec_Var subst_Var leI lt_not_m1_lt) | 
| 180 | done | |
| 181 | ||
| 182 | ||
| 183 | lemma lift_subst: | |
| 24892 | 184 | "[|v \<in> redexes; u \<in> redexes; n \<in> nat|] | 
| 12593 | 185 | ==> lift_rec(u/v,n) = lift_rec(u,n)/lift_rec(v,succ(n))" | 
| 186 | by (simp add: lift_rec_subst_rec) | |
| 187 | ||
| 188 | ||
| 189 | lemma lift_rec_subst_rec_lt [rule_format]: | |
| 24892 | 190 | "v \<in> redexes ==> | 
| 46823 | 191 | \<forall>n \<in> nat. \<forall>m \<in> nat. \<forall>u \<in> redexes. m\<le>n\<longrightarrow> | 
| 24892 | 192 | lift_rec(subst_rec(u,v,n),m) = | 
| 12593 | 193 | subst_rec(lift_rec(u,m),lift_rec(v,m),succ(n))" | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 194 | apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift) | 
| 12593 | 195 | apply safe | 
| 24892 | 196 | apply (rename_tac n n' m u) | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 197 | apply (case_tac "n < n'") | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 198 | apply (case_tac "n < m") | 
| 12593 | 199 | apply (simp_all add: leI) | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 200 | apply (erule_tac i=n' in leE) | 
| 12593 | 201 | apply (frule lt_trans1, assumption) | 
| 202 | apply (simp_all add: succ_pred leI gt_pred) | |
| 203 | done | |
| 204 | ||
| 205 | ||
| 206 | lemma subst_rec_lift_rec [rule_format]: | |
| 24892 | 207 | "u \<in> redexes ==> | 
| 12593 | 208 | \<forall>n \<in> nat. \<forall>v \<in> redexes. subst_rec(v,lift_rec(u,n),n) = u" | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 209 | apply (erule redexes.induct, auto) | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 210 | apply (case_tac "n < na", auto) | 
| 12593 | 211 | done | 
| 212 | ||
| 213 | lemma subst_rec_subst_rec [rule_format]: | |
| 24892 | 214 | "v \<in> redexes ==> | 
| 46823 | 215 | \<forall>m \<in> nat. \<forall>n \<in> nat. \<forall>u \<in> redexes. \<forall>w \<in> redexes. m\<le>n \<longrightarrow> | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
24893diff
changeset | 216 | subst_rec(subst_rec(w,u,n),subst_rec(lift_rec(w,m),v,succ(n)),m) = | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
24893diff
changeset | 217 | subst_rec(w,subst_rec(u,v,m),n)" | 
| 12593 | 218 | apply (erule redexes.induct) | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 219 | apply (simp_all add: lift_lift [symmetric] lift_rec_subst_rec_lt, safe) | 
| 24892 | 220 | apply (rename_tac n' u w) | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 221 | apply (case_tac "n \<le> succ(n') ") | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 222 | apply (erule_tac i = n in leE) | 
| 12593 | 223 | apply (simp_all add: succ_pred subst_rec_lift_rec leI) | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 224 | apply (case_tac "n < m") | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 225 | apply (frule lt_trans2, assumption, simp add: gt_pred) | 
| 12593 | 226 | apply simp | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 227 | apply (erule_tac j = n in leE, simp add: gt_pred) | 
| 12593 | 228 | apply (simp add: subst_rec_lift_rec) | 
| 229 | (*final case*) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 230 | apply (frule nat_into_Ord [THEN le_refl, THEN lt_trans], assumption) | 
| 12593 | 231 | apply (erule leE) | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12593diff
changeset | 232 | apply (frule succ_leI [THEN lt_trans], assumption) | 
| 24892 | 233 | apply (frule_tac i = m in nat_into_Ord [THEN le_refl, THEN lt_trans], | 
| 12593 | 234 | assumption) | 
| 235 | apply (simp_all add: succ_pred lt_pred) | |
| 236 | done | |
| 237 | ||
| 238 | ||
| 239 | lemma substitution: | |
| 240 | "[|v \<in> redexes; u \<in> redexes; w \<in> redexes; n \<in> nat|] | |
| 241 | ==> subst_rec(w,u,n)/subst_rec(lift(w),v,succ(n)) = subst_rec(w,u/v,n)" | |
| 242 | by (simp add: subst_rec_subst_rec) | |
| 243 | ||
| 244 | ||
| 245 | (* ------------------------------------------------------------------------- *) | |
| 246 | (* Preservation lemmas *) | |
| 247 | (* Substitution preserves comp and regular *) | |
| 248 | (* ------------------------------------------------------------------------- *) | |
| 249 | ||
| 250 | ||
| 251 | lemma lift_rec_preserve_comp [rule_format, simp]: | |
| 61398 | 252 | "u \<sim> v ==> \<forall>m \<in> nat. lift_rec(u,m) \<sim> lift_rec(v,m)" | 
| 12593 | 253 | by (erule Scomp.induct, simp_all add: comp_refl) | 
| 254 | ||
| 255 | lemma subst_rec_preserve_comp [rule_format, simp]: | |
| 61398 | 256 | "u2 \<sim> v2 ==> \<forall>m \<in> nat. \<forall>u1 \<in> redexes. \<forall>v1 \<in> redexes. | 
| 257 | u1 \<sim> v1\<longrightarrow> subst_rec(u1,u2,m) \<sim> subst_rec(v1,v2,m)" | |
| 24892 | 258 | by (erule Scomp.induct, | 
| 12593 | 259 | simp_all add: subst_Var lift_rec_preserve_comp comp_refl) | 
| 260 | ||
| 261 | lemma lift_rec_preserve_reg [simp]: | |
| 262 | "regular(u) ==> \<forall>m \<in> nat. regular(lift_rec(u,m))" | |
| 263 | by (erule Sreg.induct, simp_all add: lift_rec_Var) | |
| 264 | ||
| 265 | lemma subst_rec_preserve_reg [simp]: | |
| 24892 | 266 | "regular(v) ==> | 
| 46823 | 267 | \<forall>m \<in> nat. \<forall>u \<in> redexes. regular(u)\<longrightarrow>regular(subst_rec(u,v,m))" | 
| 12593 | 268 | by (erule Sreg.induct, simp_all add: subst_Var lift_rec_preserve_reg) | 
| 1048 | 269 | |
| 270 | end |