doc-src/TutorialI/Misc/simp.thy
author nipkow
Fri, 15 Sep 2000 20:07:15 +0200
changeset 9993 c0f7fb6e538e
parent 9932 5b6305cab436
child 10171 59d6633835fa
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9932
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
     1
(*<*)
9922
wenzelm
parents:
diff changeset
     2
theory simp = Main:
9932
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
     3
(*>*)
9922
wenzelm
parents:
diff changeset
     4
9932
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
     5
subsubsection{*Simplification rules*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
     6
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
     7
text{*\indexbold{simplification rule}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
     8
To facilitate simplification, theorems can be declared to be simplification
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
     9
rules (with the help of the attribute @{text"[simp]"}\index{*simp
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    10
  (attribute)}), in which case proofs by simplification make use of these
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    11
rules automatically. In addition the constructs \isacommand{datatype} and
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    12
\isacommand{primrec} (and a few others) invisibly declare useful
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    13
simplification rules. Explicit definitions are \emph{not} declared
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    14
simplification rules automatically!
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    15
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    16
Not merely equations but pretty much any theorem can become a simplification
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    17
rule. The simplifier will try to make sense of it.  For example, a theorem
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    18
@{prop"~P"} is automatically turned into @{prop"P = False"}. The details
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    19
are explained in \S\ref{sec:SimpHow}.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    20
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    21
The simplification attribute of theorems can be turned on and off as follows:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    22
\begin{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    23
\isacommand{declare} \textit{theorem-name}@{text"[simp]"}\\
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    24
\isacommand{declare} \textit{theorem-name}@{text"[simp del]"}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    25
\end{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    26
As a rule of thumb, equations that really simplify (like @{prop"rev(rev xs) =
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    27
 xs"} and @{prop"xs @ [] = xs"}) should be made simplification
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    28
rules.  Those of a more specific nature (e.g.\ distributivity laws, which
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    29
alter the structure of terms considerably) should only be used selectively,
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    30
i.e.\ they should not be default simplification rules.  Conversely, it may
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    31
also happen that a simplification rule needs to be disabled in certain
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    32
proofs.  Frequent changes in the simplification status of a theorem may
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    33
indicate a badly designed theory.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    34
\begin{warn}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    35
  Simplification may not terminate, for example if both $f(x) = g(x)$ and
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    36
  $g(x) = f(x)$ are simplification rules. It is the user's responsibility not
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    37
  to include simplification rules that can lead to nontermination, either on
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    38
  their own or in combination with other simplification rules.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    39
\end{warn}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    40
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    41
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    42
subsubsection{*The simplification method*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    43
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    44
text{*\index{*simp (method)|bold}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    45
The general format of the simplification method is
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    46
\begin{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    47
@{text simp} \textit{list of modifiers}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    48
\end{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    49
where the list of \emph{modifiers} helps to fine tune the behaviour and may
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    50
be empty. Most if not all of the proofs seen so far could have been performed
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    51
with @{text simp} instead of \isa{auto}, except that @{text simp} attacks
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    52
only the first subgoal and may thus need to be repeated---use
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    53
\isaindex{simp_all} to simplify all subgoals.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    54
Note that @{text simp} fails if nothing changes.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    55
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    56
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    57
subsubsection{*Adding and deleting simplification rules*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    58
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    59
text{*
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    60
If a certain theorem is merely needed in a few proofs by simplification,
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    61
we do not need to make it a global simplification rule. Instead we can modify
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    62
the set of simplification rules used in a simplification step by adding rules
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    63
to it and/or deleting rules from it. The two modifiers for this are
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    64
\begin{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    65
@{text"add:"} \textit{list of theorem names}\\
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    66
@{text"del:"} \textit{list of theorem names}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    67
\end{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    68
In case you want to use only a specific list of theorems and ignore all
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    69
others:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    70
\begin{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    71
@{text"only:"} \textit{list of theorem names}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    72
\end{quote}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    73
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    74
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    75
subsubsection{*Assumptions*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    76
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    77
text{*\index{simplification!with/of assumptions}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    78
By default, assumptions are part of the simplification process: they are used
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    79
as simplification rules and are simplified themselves. For example:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    80
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    81
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    82
lemma "\\<lbrakk> xs @ zs = ys @ xs; [] @ xs = [] @ [] \\<rbrakk> \\<Longrightarrow> ys = zs";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    83
by simp;
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    84
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    85
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    86
The second assumption simplifies to @{term"xs = []"}, which in turn
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    87
simplifies the first assumption to @{term"zs = ys"}, thus reducing the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    88
conclusion to @{term"ys = ys"} and hence to @{term"True"}.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    89
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    90
In some cases this may be too much of a good thing and may lead to
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    91
nontermination:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    92
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    93
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    94
lemma "\\<forall>x. f x = g (f (g x)) \\<Longrightarrow> f [] = f [] @ []";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    95
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    96
txt{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    97
cannot be solved by an unmodified application of @{text"simp"} because the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    98
simplification rule @{term"f x = g (f (g x))"} extracted from the assumption
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
    99
does not terminate. Isabelle notices certain simple forms of
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   100
nontermination but not this one. The problem can be circumvented by
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   101
explicitly telling the simplifier to ignore the assumptions:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   102
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   103
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   104
by(simp (no_asm));
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   105
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   106
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   107
There are three options that influence the treatment of assumptions:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   108
\begin{description}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   109
\item[@{text"(no_asm)"}]\indexbold{*no_asm}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   110
 means that assumptions are completely ignored.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   111
\item[@{text"(no_asm_simp)"}]\indexbold{*no_asm_simp}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   112
 means that the assumptions are not simplified but
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   113
  are used in the simplification of the conclusion.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   114
\item[@{text"(no_asm_use)"}]\indexbold{*no_asm_use}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   115
 means that the assumptions are simplified but are not
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   116
  used in the simplification of each other or the conclusion.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   117
\end{description}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   118
Neither @{text"(no_asm_simp)"} nor @{text"(no_asm_use)"} allow to simplify
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   119
the above problematic subgoal.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   120
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   121
Note that only one of the above options is allowed, and it must precede all
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   122
other arguments.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   123
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   124
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   125
subsubsection{*Rewriting with definitions*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   126
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   127
text{*\index{simplification!with definitions}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   128
Constant definitions (\S\ref{sec:ConstDefinitions}) can
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   129
be used as simplification rules, but by default they are not.  Hence the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   130
simplifier does not expand them automatically, just as it should be:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   131
definitions are introduced for the purpose of abbreviating complex
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   132
concepts. Of course we need to expand the definitions initially to derive
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   133
enough lemmas that characterize the concept sufficiently for us to forget the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   134
original definition. For example, given
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   135
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   136
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   137
constdefs exor :: "bool \\<Rightarrow> bool \\<Rightarrow> bool"
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   138
         "exor A B \\<equiv> (A \\<and> \\<not>B) \\<or> (\\<not>A \\<and> B)";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   139
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   140
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   141
we may want to prove
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   142
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   143
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   144
lemma "exor A (\\<not>A)";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   145
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   146
txt{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   147
Typically, the opening move consists in \emph{unfolding} the definition(s), which we need to
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   148
get started, but nothing else:\indexbold{*unfold}\indexbold{definition!unfolding}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   149
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   150
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   151
apply(simp only:exor_def);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   152
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   153
txt{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   154
In this particular case, the resulting goal
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   155
\begin{isabelle}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   156
~1.~A~{\isasymand}~{\isasymnot}~{\isasymnot}~A~{\isasymor}~{\isasymnot}~A~{\isasymand}~{\isasymnot}~A%
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   157
\end{isabelle}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   158
can be proved by simplification. Thus we could have proved the lemma outright
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   159
*}(*<*)oops;lemma "exor A (\\<not>A)";(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   160
by(simp add: exor_def)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   161
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   162
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   163
Of course we can also unfold definitions in the middle of a proof.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   164
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   165
You should normally not turn a definition permanently into a simplification
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   166
rule because this defeats the whole purpose of an abbreviation.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   167
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   168
\begin{warn}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   169
  If you have defined $f\,x\,y~\isasymequiv~t$ then you can only expand
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   170
  occurrences of $f$ with at least two arguments. Thus it is safer to define
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   171
  $f$~\isasymequiv~\isasymlambda$x\,y.\;t$.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   172
\end{warn}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   173
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   174
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   175
subsubsection{*Simplifying let-expressions*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   176
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   177
text{*\index{simplification!of let-expressions}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   178
Proving a goal containing \isaindex{let}-expressions almost invariably
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   179
requires the @{text"let"}-con\-structs to be expanded at some point. Since
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   180
@{text"let"}-@{text"in"} is just syntactic sugar for a predefined constant
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   181
(called @{term"Let"}), expanding @{text"let"}-constructs means rewriting with
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   182
@{thm[source]Let_def}:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   183
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   184
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   185
lemma "(let xs = [] in xs@ys@xs) = ys";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   186
by(simp add: Let_def);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   187
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   188
text{*
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   189
If, in a particular context, there is no danger of a combinatorial explosion
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   190
of nested @{text"let"}s one could even simlify with @{thm[source]Let_def} by
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   191
default:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   192
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   193
declare Let_def [simp]
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   194
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   195
subsubsection{*Conditional equations*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   196
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   197
text{*
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   198
So far all examples of rewrite rules were equations. The simplifier also
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   199
accepts \emph{conditional} equations, for example
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   200
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   201
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   202
lemma hd_Cons_tl[simp]: "xs \\<noteq> []  \\<Longrightarrow>  hd xs # tl xs = xs";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   203
by(case_tac xs, simp, simp);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   204
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   205
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   206
Note the use of ``\ttindexboldpos{,}{$Isar}'' to string together a
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   207
sequence of methods. Assuming that the simplification rule
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   208
@{term"(rev xs = []) = (xs = [])"}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   209
is present as well,
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   210
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   211
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   212
lemma "xs \\<noteq> [] \\<Longrightarrow> hd(rev xs) # tl(rev xs) = rev xs";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   213
(*<*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   214
by(simp);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   215
(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   216
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   217
is proved by plain simplification:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   218
the conditional equation @{thm[source]hd_Cons_tl} above
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   219
can simplify @{term"hd(rev xs) # tl(rev xs)"} to @{term"rev xs"}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   220
because the corresponding precondition @{term"rev xs ~= []"}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   221
simplifies to @{term"xs ~= []"}, which is exactly the local
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   222
assumption of the subgoal.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   223
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   224
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   225
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   226
subsubsection{*Automatic case splits*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   227
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   228
text{*\indexbold{case splits}\index{*split|(}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   229
Goals containing @{text"if"}-expressions are usually proved by case
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   230
distinction on the condition of the @{text"if"}. For example the goal
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   231
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   232
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   233
lemma "\\<forall>xs. if xs = [] then rev xs = [] else rev xs \\<noteq> []";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   234
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   235
txt{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   236
can be split into
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   237
\begin{isabelle}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   238
~1.~{\isasymforall}xs.~(xs~=~[]~{\isasymlongrightarrow}~rev~xs~=~[])~{\isasymand}~(xs~{\isasymnoteq}~[]~{\isasymlongrightarrow}~rev~xs~{\isasymnoteq}~[])
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   239
\end{isabelle}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   240
by a degenerate form of simplification
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   241
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   242
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   243
apply(simp only: split: split_if);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   244
(*<*)oops;(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   245
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   246
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   247
where no simplification rules are included (@{text"only:"} is followed by the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   248
empty list of theorems) but the rule \isaindexbold{split_if} for
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   249
splitting @{text"if"}s is added (via the modifier @{text"split:"}). Because
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   250
case-splitting on @{text"if"}s is almost always the right proof strategy, the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   251
simplifier performs it automatically. Try \isacommand{apply}@{text"(simp)"}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   252
on the initial goal above.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   253
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   254
This splitting idea generalizes from @{text"if"} to \isaindex{case}:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   255
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   256
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   257
lemma "(case xs of [] \\<Rightarrow> zs | y#ys \\<Rightarrow> y#(ys@zs)) = xs@zs";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   258
txt{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   259
becomes
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   260
\begin{isabelle}\makeatother
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   261
~1.~(xs~=~[]~{\isasymlongrightarrow}~zs~=~xs~@~zs)~{\isasymand}\isanewline
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   262
~~~~({\isasymforall}a~list.~xs~=~a~\#~list~{\isasymlongrightarrow}~a~\#~list~@~zs~=~xs~@~zs)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   263
\end{isabelle}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   264
by typing
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   265
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   266
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   267
apply(simp only: split: list.split);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   268
(*<*)oops;(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   269
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   270
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   271
In contrast to @{text"if"}-expressions, the simplifier does not split
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   272
@{text"case"}-expressions by default because this can lead to nontermination
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   273
in case of recursive datatypes. Again, if the @{text"only:"} modifier is
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   274
dropped, the above goal is solved,
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   275
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   276
(*<*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   277
lemma "(case xs of [] \\<Rightarrow> zs | y#ys \\<Rightarrow> y#(ys@zs)) = xs@zs";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   278
(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   279
by(simp split: list.split);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   280
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   281
text{*\noindent%
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   282
which \isacommand{apply}@{text"(simp)"} alone will not do.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   283
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   284
In general, every datatype $t$ comes with a theorem
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   285
$t$@{text".split"} which can be declared to be a \bfindex{split rule} either
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   286
locally as above, or by giving it the @{text"split"} attribute globally:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   287
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   288
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   289
declare list.split [split]
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   290
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   291
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   292
The @{text"split"} attribute can be removed with the @{text"del"} modifier,
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   293
either locally
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   294
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   295
(*<*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   296
lemma "dummy=dummy";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   297
(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   298
apply(simp split del: split_if);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   299
(*<*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   300
oops;
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   301
(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   302
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   303
or globally:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   304
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   305
declare list.split [split del]
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   306
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   307
text{*
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   308
The above split rules intentionally only affect the conclusion of a
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   309
subgoal.  If you want to split an @{text"if"} or @{text"case"}-expression in
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   310
the assumptions, you have to apply @{thm[source]split_if_asm} or
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   311
$t$@{text".split_asm"}:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   312
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   313
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   314
lemma "if xs = [] then ys ~= [] else ys = [] ==> xs @ ys ~= []"
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   315
apply(simp only: split: split_if_asm);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   316
(*<*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   317
by(simp_all)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   318
(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   319
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   320
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   321
In contrast to splitting the conclusion, this actually creates two
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   322
separate subgoals (which are solved by @{text"simp_all"}):
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   323
\begin{isabelle}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   324
\ \isadigit{1}{\isachardot}\ {\isasymlbrakk}\mbox{xs}\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}{\isacharsemicolon}\ \mbox{ys}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharat}\ \mbox{ys}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\isanewline
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   325
\ \isadigit{2}{\isachardot}\ {\isasymlbrakk}\mbox{xs}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}{\isacharsemicolon}\ \mbox{ys}\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{xs}\ {\isacharat}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   326
\end{isabelle}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   327
If you need to split both in the assumptions and the conclusion,
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   328
use $t$@{text".splits"} which subsumes $t$@{text".split"} and
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   329
$t$@{text".split_asm"}. Analogously, there is @{thm[source]if_splits}.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   330
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   331
\begin{warn}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   332
  The simplifier merely simplifies the condition of an \isa{if} but not the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   333
  \isa{then} or \isa{else} parts. The latter are simplified only after the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   334
  condition reduces to \isa{True} or \isa{False}, or after splitting. The
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   335
  same is true for \isaindex{case}-expressions: only the selector is
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   336
  simplified at first, until either the expression reduces to one of the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   337
  cases or it is split.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   338
\end{warn}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   339
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   340
\index{*split|)}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   341
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   342
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   343
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   344
subsubsection{*Arithmetic*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   345
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   346
text{*\index{arithmetic}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   347
The simplifier routinely solves a small class of linear arithmetic formulae
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   348
(over type \isa{nat} and other numeric types): it only takes into account
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   349
assumptions and conclusions that are (possibly negated) (in)equalities
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   350
(@{text"="}, \isasymle, @{text"<"}) and it only knows about addition. Thus
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   351
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   352
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   353
lemma "\\<lbrakk> \\<not> m < n; m < n+1 \\<rbrakk> \\<Longrightarrow> m = n"
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   354
(*<*)by(auto)(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   355
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   356
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   357
is proved by simplification, whereas the only slightly more complex
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   358
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   359
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   360
lemma "\\<not> m < n \\<and> m < n+1 \\<Longrightarrow> m = n";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   361
(*<*)by(arith)(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   362
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   363
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   364
is not proved by simplification and requires @{text arith}.
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   365
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   366
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   367
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   368
subsubsection{*Tracing*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   369
text{*\indexbold{tracing the simplifier}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   370
Using the simplifier effectively may take a bit of experimentation.  Set the
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   371
\isaindexbold{trace_simp} \rmindex{flag} to get a better idea of what is going
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   372
on:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   373
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   374
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   375
ML "set trace_simp";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   376
lemma "rev [a] = []";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   377
apply(simp);
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   378
(*<*)oops(*>*)
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   379
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   380
text{*\noindent
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   381
produces the trace
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   382
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   383
\begin{ttbox}\makeatother
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   384
Applying instance of rewrite rule:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   385
rev (?x1 \# ?xs1) == rev ?xs1 @ [?x1]
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   386
Rewriting:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   387
rev [x] == rev [] @ [x]
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   388
Applying instance of rewrite rule:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   389
rev [] == []
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   390
Rewriting:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   391
rev [] == []
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   392
Applying instance of rewrite rule:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   393
[] @ ?y == ?y
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   394
Rewriting:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   395
[] @ [x] == [x]
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   396
Applying instance of rewrite rule:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   397
?x3 \# ?t3 = ?t3 == False
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   398
Rewriting:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   399
[x] = [] == False
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   400
\end{ttbox}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   401
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   402
In more complicated cases, the trace can be quite lenghty, especially since
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   403
invocations of the simplifier are often nested (e.g.\ when solving conditions
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   404
of rewrite rules). Thus it is advisable to reset it:
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   405
*}
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   406
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   407
ML "reset trace_simp";
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   408
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   409
(*<*)
9922
wenzelm
parents:
diff changeset
   410
end
9932
5b6305cab436 *** empty log message ***
nipkow
parents: 9922
diff changeset
   411
(*>*)