| author | paulson <lp15@cam.ac.uk> | 
| Tue, 16 Jan 2024 13:40:09 +0000 | |
| changeset 79492 | c1b0f64eb865 | 
| parent 76290 | 64d29ebb7d3d | 
| child 82630 | 2bb4a8d0111d | 
| permissions | -rw-r--r-- | 
| 37936 | 1 | (* Title: HOL/Auth/Shared.thy | 
| 1934 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1996 University of Cambridge | |
| 4 | ||
| 5 | Theory of Shared Keys (common to all symmetric-key protocols) | |
| 6 | ||
| 3512 
9dcb4daa15e8
Moving common declarations and proofs from theories "Shared"
 paulson parents: 
3472diff
changeset | 7 | Shared, long-term keys; initial states of agents | 
| 1934 | 8 | *) | 
| 9 | ||
| 32631 | 10 | theory Shared | 
| 11 | imports Event All_Symmetric | |
| 12 | begin | |
| 1934 | 13 | |
| 14 | consts | |
| 67613 | 15 | shrK :: "agent \<Rightarrow> key" (*symmetric keys*) | 
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 16 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 17 | specification (shrK) | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 18 | inj_shrK: "inj shrK" | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63648diff
changeset | 19 | \<comment> \<open>No two agents have the same long-term key\<close> | 
| 55416 | 20 | apply (rule exI [of _ "case_agent 0 (\<lambda>n. n + 2) 1"]) | 
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 21 | apply (simp add: inj_on_def split: agent.split) | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 22 | done | 
| 1967 | 23 | |
| 61830 | 24 | text\<open>Server knows all long-term keys; other agents know only their own\<close> | 
| 39246 | 25 | |
| 26 | overloading | |
| 27 | initState \<equiv> initState | |
| 28 | begin | |
| 29 | ||
| 30 | primrec initState where | |
| 11104 | 31 | initState_Server: "initState Server = Key ` range shrK" | 
| 39246 | 32 | | initState_Friend:  "initState (Friend i) = {Key (shrK (Friend i))}"
 | 
| 33 | | initState_Spy: "initState Spy = Key`shrK`bad" | |
| 34 | ||
| 35 | end | |
| 2032 | 36 | |
| 1934 | 37 | |
| 61830 | 38 | subsection\<open>Basic properties of shrK\<close> | 
| 13926 | 39 | |
| 40 | (*Injectiveness: Agents' long-term keys are distinct.*) | |
| 18749 
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
 paulson parents: 
17744diff
changeset | 41 | lemmas shrK_injective = inj_shrK [THEN inj_eq] | 
| 
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
 paulson parents: 
17744diff
changeset | 42 | declare shrK_injective [iff] | 
| 13926 | 43 | |
| 44 | lemma invKey_K [simp]: "invKey K = K" | |
| 45 | apply (insert isSym_keys) | |
| 46 | apply (simp add: symKeys_def) | |
| 47 | done | |
| 48 | ||
| 49 | ||
| 50 | lemma analz_Decrypt' [dest]: | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 51 | "\<lbrakk>Crypt K X \<in> analz H; Key K \<in> analz H\<rbrakk> \<Longrightarrow> X \<in> analz H" | 
| 13926 | 52 | by auto | 
| 53 | ||
| 61830 | 54 | text\<open>Now cancel the \<open>dest\<close> attribute given to | 
| 55 | \<open>analz.Decrypt\<close> in its declaration.\<close> | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 56 | declare analz.Decrypt [rule del] | 
| 13926 | 57 | |
| 69597 | 58 | text\<open>Rewrites should not refer to \<^term>\<open>initState(Friend i)\<close> because | 
| 61830 | 59 | that expression is not in normal form.\<close> | 
| 13926 | 60 | |
| 61 | lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
 | |
| 76290 
64d29ebb7d3d
Mostly, removing the unfold method
 paulson <lp15@cam.ac.uk> parents: 
76287diff
changeset | 62 | unfolding keysFor_def | 
| 13926 | 63 | apply (induct_tac "C", auto) | 
| 64 | done | |
| 65 | ||
| 66 | (*Specialized to shared-key model: no @{term invKey}*)
 | |
| 67 | lemma keysFor_parts_insert: | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 68 | "\<lbrakk>K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H)\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 69 | \<Longrightarrow> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39247diff
changeset | 70 | by (metis invKey_K keysFor_parts_insert) | 
| 13926 | 71 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 72 | lemma Crypt_imp_keysFor: "Crypt K X \<in> H \<Longrightarrow> K \<in> keysFor H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39247diff
changeset | 73 | by (metis Crypt_imp_invKey_keysFor invKey_K) | 
| 13926 | 74 | |
| 75 | ||
| 61830 | 76 | subsection\<open>Function "knows"\<close> | 
| 13926 | 77 | |
| 78 | (*Spy sees shared keys of agents!*) | |
| 67613 | 79 | lemma Spy_knows_Spy_bad [intro!]: "A \<in> bad \<Longrightarrow> Key (shrK A) \<in> knows Spy evs" | 
| 13926 | 80 | apply (induct_tac "evs") | 
| 63648 | 81 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split) | 
| 13926 | 82 | done | 
| 83 | ||
| 84 | (*For case analysis on whether or not an agent is compromised*) | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 85 | lemma Crypt_Spy_analz_bad: "\<lbrakk>Crypt (shrK A) X \<in> analz (knows Spy evs); A \<in> bad\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 86 | \<Longrightarrow> X \<in> analz (knows Spy evs)" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39247diff
changeset | 87 | by (metis Spy_knows_Spy_bad analz.Inj analz_Decrypt') | 
| 13926 | 88 | |
| 89 | ||
| 90 | (** Fresh keys never clash with long-term shared keys **) | |
| 91 | ||
| 92 | (*Agents see their own shared keys!*) | |
| 93 | lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState A" | |
| 94 | by (induct_tac "A", auto) | |
| 95 | ||
| 96 | lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs" | |
| 97 | by (rule initState_into_used, blast) | |
| 98 | ||
| 99 | (*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys | |
| 100 | from long-term shared keys*) | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 101 | lemma Key_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range shrK" | 
| 13926 | 102 | by blast | 
| 103 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 104 | lemma shrK_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> shrK B \<noteq> K" | 
| 13926 | 105 | by blast | 
| 106 | ||
| 17744 | 107 | lemmas shrK_sym_neq = shrK_neq [THEN not_sym] | 
| 108 | declare shrK_sym_neq [simp] | |
| 13926 | 109 | |
| 110 | ||
| 61830 | 111 | subsection\<open>Fresh nonces\<close> | 
| 13926 | 112 | |
| 113 | lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState B)" | |
| 114 | by (induct_tac "B", auto) | |
| 115 | ||
| 116 | lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []" | |
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39247diff
changeset | 117 | by (simp add: used_Nil) | 
| 13926 | 118 | |
| 119 | ||
| 61830 | 120 | subsection\<open>Supply fresh nonces for possibility theorems.\<close> | 
| 13926 | 121 | |
| 122 | (*In any trace, there is an upper bound N on the greatest nonce in use.*) | |
| 67613 | 123 | lemma Nonce_supply_lemma: "\<exists>N. \<forall>n. N \<le> n \<longrightarrow> Nonce n \<notin> used evs" | 
| 13926 | 124 | apply (induct_tac "evs") | 
| 125 | apply (rule_tac x = 0 in exI) | |
| 63648 | 126 | apply (simp_all (no_asm_simp) add: used_Cons split: event.split) | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39247diff
changeset | 127 | apply (metis le_sup_iff msg_Nonce_supply) | 
| 13926 | 128 | done | 
| 129 | ||
| 130 | lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs" | |
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39247diff
changeset | 131 | by (metis Nonce_supply_lemma order_eq_iff) | 
| 13926 | 132 | |
| 67613 | 133 | lemma Nonce_supply2: "\<exists>N N'. Nonce N \<notin> used evs \<and> Nonce N' \<notin> used evs' \<and> N \<noteq> N'" | 
| 13926 | 134 | apply (cut_tac evs = evs in Nonce_supply_lemma) | 
| 135 | apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify) | |
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39247diff
changeset | 136 | apply (metis Suc_n_not_le_n nat_le_linear) | 
| 13926 | 137 | done | 
| 138 | ||
| 67613 | 139 | lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs \<and> Nonce N' \<notin> used evs' \<and> | 
| 140 | Nonce N'' \<notin> used evs'' \<and> N \<noteq> N' \<and> N' \<noteq> N'' \<and> N \<noteq> N''" | |
| 13926 | 141 | apply (cut_tac evs = evs in Nonce_supply_lemma) | 
| 142 | apply (cut_tac evs = "evs'" in Nonce_supply_lemma) | |
| 143 | apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify) | |
| 144 | apply (rule_tac x = N in exI) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 145 | apply (rule_tac x = "Suc (N+Na)" in exI) | 
| 13926 | 146 | apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI) | 
| 147 | apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le) | |
| 148 | done | |
| 149 | ||
| 67613 | 150 | lemma Nonce_supply: "Nonce (SOME N. Nonce N \<notin> used evs) \<notin> used evs" | 
| 13926 | 151 | apply (rule Nonce_supply_lemma [THEN exE]) | 
| 152 | apply (rule someI, blast) | |
| 153 | done | |
| 154 | ||
| 61830 | 155 | text\<open>Unlike the corresponding property of nonces, we cannot prove | 
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 156 | \<^term>\<open>finite KK \<Longrightarrow> \<exists>K. K \<notin> KK \<and> Key K \<notin> used evs\<close>. | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 157 | We have infinitely many agents and there is nothing to stop their | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 158 | long-term keys from exhausting all the natural numbers. Instead, | 
| 61830 | 159 | possibility theorems must assume the existence of a few keys.\<close> | 
| 13926 | 160 | |
| 161 | ||
| 69597 | 162 | subsection\<open>Specialized Rewriting for Theorems About \<^term>\<open>analz\<close> and Image\<close> | 
| 13926 | 163 | |
| 67613 | 164 | lemma subset_Compl_range: "A \<subseteq> - (range shrK) \<Longrightarrow> shrK x \<notin> A" | 
| 13926 | 165 | by blast | 
| 166 | ||
| 167 | lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H"
 | |
| 168 | by blast | |
| 169 | ||
| 13956 | 170 | lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C" | 
| 13926 | 171 | by blast | 
| 172 | ||
| 173 | (** Reverse the normal simplification of "image" to build up (not break down) | |
| 174 | the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to | |
| 175 | erase occurrences of forwarded message components (X). **) | |
| 176 | ||
| 177 | lemmas analz_image_freshK_simps = | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63648diff
changeset | 178 | simp_thms mem_simps \<comment> \<open>these two allow its use with \<open>only:\<close>\<close> | 
| 13926 | 179 | disj_comms | 
| 180 | image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset | |
| 181 | analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD] | |
| 182 | insert_Key_singleton subset_Compl_range | |
| 183 | Key_not_used insert_Key_image Un_assoc [THEN sym] | |
| 184 | ||
| 185 | (*Lemma for the trivial direction of the if-and-only-if*) | |
| 186 | lemma analz_image_freshK_lemma: | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 187 | "(Key K \<in> analz (Key`nE \<union> H)) \<longrightarrow> (K \<in> nE | Key K \<in> analz H) \<Longrightarrow> | 
| 13926 | 188 | (Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)" | 
| 189 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 190 | ||
| 24122 | 191 | |
| 61830 | 192 | subsection\<open>Tactics for possibility theorems\<close> | 
| 24122 | 193 | |
| 13926 | 194 | ML | 
| 61830 | 195 | \<open> | 
| 24122 | 196 | structure Shared = | 
| 197 | struct | |
| 198 | ||
| 199 | (*Omitting used_Says makes the tactic much faster: it leaves expressions | |
| 200 | such as Nonce ?N \<notin> used evs that match Nonce_supply*) | |
| 201 | fun possibility_tac ctxt = | |
| 202 | (REPEAT | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41693diff
changeset | 203 | (ALLGOALS (simp_tac (ctxt | 
| 24122 | 204 |           delsimps [@{thm used_Says}, @{thm used_Notes}, @{thm used_Gets}] 
 | 
| 205 | setSolver safe_solver)) | |
| 206 | THEN | |
| 207 | REPEAT_FIRST (eq_assume_tac ORELSE' | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
55416diff
changeset | 208 |                    resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}])))
 | 
| 13926 | 209 | |
| 24122 | 210 | (*For harder protocols (such as Recur) where we have to set up some | 
| 211 | nonces and keys initially*) | |
| 212 | fun basic_possibility_tac ctxt = | |
| 213 | REPEAT | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41693diff
changeset | 214 | (ALLGOALS (asm_simp_tac (ctxt setSolver safe_solver)) | 
| 24122 | 215 | THEN | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
55416diff
changeset | 216 | REPEAT_FIRST (resolve_tac ctxt [refl, conjI])) | 
| 24122 | 217 | |
| 218 | ||
| 219 | val analz_image_freshK_ss = | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41693diff
changeset | 220 | simpset_of | 
| 69597 | 221 | (\<^context> delsimps [image_insert, image_Un] | 
| 24122 | 222 |       delsimps [@{thm imp_disjL}]    (*reduces blow-up*)
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41693diff
changeset | 223 |       addsimps @{thms analz_image_freshK_simps})
 | 
| 24122 | 224 | |
| 225 | end | |
| 61830 | 226 | \<close> | 
| 13926 | 227 | |
| 228 | ||
| 11104 | 229 | |
| 230 | (*Lets blast_tac perform this step without needing the simplifier*) | |
| 231 | lemma invKey_shrK_iff [iff]: | |
| 11270 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11230diff
changeset | 232 | "(Key (invKey K) \<in> X) = (Key K \<in> X)" | 
| 13507 | 233 | by auto | 
| 11104 | 234 | |
| 235 | (*Specialized methods*) | |
| 236 | ||
| 61830 | 237 | method_setup analz_freshK = \<open> | 
| 30549 | 238 | Scan.succeed (fn ctxt => | 
| 30510 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 wenzelm parents: 
24122diff
changeset | 239 | (SIMPLE_METHOD | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
55416diff
changeset | 240 | (EVERY [REPEAT_FIRST (resolve_tac ctxt [allI, ballI, impI]), | 
| 60754 | 241 |           REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemma}),
 | 
| 61830 | 242 | ALLGOALS (asm_simp_tac (put_simpset Shared.analz_image_freshK_ss ctxt))])))\<close> | 
| 11104 | 243 | "for proving the Session Key Compromise theorem" | 
| 244 | ||
| 61830 | 245 | method_setup possibility = \<open> | 
| 246 | Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.possibility_tac ctxt))\<close> | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 247 | "for proving possibility theorems" | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 248 | |
| 61830 | 249 | method_setup basic_possibility = \<open> | 
| 250 | Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.basic_possibility_tac ctxt))\<close> | |
| 11104 | 251 | "for proving possibility theorems" | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 252 | |
| 67613 | 253 | lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)" | 
| 53428 | 254 | by (cases e) (auto simp: knows_Cons) | 
| 12415 
74977582a585
Slightly generalized the agents' knowledge theorems
 paulson parents: 
11270diff
changeset | 255 | |
| 1934 | 256 | end |