| author | huffman | 
| Tue, 26 May 2009 11:02:59 -0700 | |
| changeset 31259 | c1b981b71dba | 
| parent 30663 | 0b6aff7451b2 | 
| child 32338 | e73eb2db4727 | 
| permissions | -rw-r--r-- | 
| 28098 | 1 | (* Title: HOL/Nat_Int_Bij.thy | 
| 2 | Author: Stefan Richter, Tobias Nipkow | |
| 3 | *) | |
| 4 | ||
| 5 | header{* Bijections $\mathbb{N}\to\mathbb{N}^2$ and $\mathbb{N}\to\mathbb{Z}$*}
 | |
| 6 | ||
| 7 | theory Nat_Int_Bij | |
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
29888diff
changeset | 8 | imports Main | 
| 28098 | 9 | begin | 
| 10 | ||
| 11 | subsection{*  A bijection between @{text "\<nat>"} and @{text "\<nat>\<twosuperior>"} *}
 | |
| 12 | ||
| 13 | text{* Definition and proofs are from \cite[page 85]{Oberschelp:1993}. *}
 | |
| 14 | ||
| 15 | definition nat2_to_nat:: "(nat * nat) \<Rightarrow> nat" where | |
| 16 | "nat2_to_nat pair = (let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n)" | |
| 17 | definition nat_to_nat2:: "nat \<Rightarrow> (nat * nat)" where | |
| 18 | "nat_to_nat2 = inv nat2_to_nat" | |
| 19 | ||
| 20 | lemma dvd2_a_x_suc_a: "2 dvd a * (Suc a)" | |
| 21 | proof (cases "2 dvd a") | |
| 22 | case True | |
| 23 | then show ?thesis by (rule dvd_mult2) | |
| 24 | next | |
| 25 | case False | |
| 26 | then have "Suc (a mod 2) = 2" by (simp add: dvd_eq_mod_eq_0) | |
| 27 | then have "Suc a mod 2 = 0" by (simp add: mod_Suc) | |
| 28 | then have "2 dvd Suc a" by (simp only:dvd_eq_mod_eq_0) | |
| 29 | then show ?thesis by (rule dvd_mult) | |
| 30 | qed | |
| 31 | ||
| 32 | lemma | |
| 33 | assumes eq: "nat2_to_nat (u,v) = nat2_to_nat (x,y)" | |
| 34 | shows nat2_to_nat_help: "u+v \<le> x+y" | |
| 35 | proof (rule classical) | |
| 36 | assume "\<not> ?thesis" | |
| 37 | then have contrapos: "x+y < u+v" | |
| 38 | by simp | |
| 39 | have "nat2_to_nat (x,y) < (x+y) * Suc (x+y) div 2 + Suc (x + y)" | |
| 40 | by (unfold nat2_to_nat_def) (simp add: Let_def) | |
| 41 | also have "\<dots> = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2" | |
| 42 | by (simp only: div_mult_self1_is_m) | |
| 43 | also have "\<dots> = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2 | |
| 44 | + ((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2" | |
| 45 | proof - | |
| 46 | have "2 dvd (x+y)*Suc(x+y)" | |
| 47 | by (rule dvd2_a_x_suc_a) | |
| 48 | then have "(x+y)*Suc(x+y) mod 2 = 0" | |
| 49 | by (simp only: dvd_eq_mod_eq_0) | |
| 50 | also | |
| 51 | have "2 * Suc(x+y) mod 2 = 0" | |
| 52 | by (rule mod_mult_self1_is_0) | |
| 53 | ultimately have | |
| 54 | "((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2 = 0" | |
| 55 | by simp | |
| 56 | then show ?thesis | |
| 57 | by simp | |
| 58 | qed | |
| 59 | also have "\<dots> = ((x+y)*Suc(x+y) + 2*Suc(x+y)) div 2" | |
| 60 | by (rule div_add1_eq [symmetric]) | |
| 61 | also have "\<dots> = ((x+y+2)*Suc(x+y)) div 2" | |
| 62 | by (simp only: add_mult_distrib [symmetric]) | |
| 63 | also from contrapos have "\<dots> \<le> ((Suc(u+v))*(u+v)) div 2" | |
| 64 | by (simp only: mult_le_mono div_le_mono) | |
| 65 | also have "\<dots> \<le> nat2_to_nat (u,v)" | |
| 66 | by (unfold nat2_to_nat_def) (simp add: Let_def) | |
| 67 | finally show ?thesis | |
| 68 | by (simp only: eq) | |
| 69 | qed | |
| 70 | ||
| 71 | theorem nat2_to_nat_inj: "inj nat2_to_nat" | |
| 72 | proof - | |
| 73 |   {
 | |
| 74 | fix u v x y | |
| 75 | assume eq1: "nat2_to_nat (u,v) = nat2_to_nat (x,y)" | |
| 76 | then have "u+v \<le> x+y" by (rule nat2_to_nat_help) | |
| 77 | also from eq1 [symmetric] have "x+y \<le> u+v" | |
| 78 | by (rule nat2_to_nat_help) | |
| 79 | finally have eq2: "u+v = x+y" . | |
| 80 | with eq1 have ux: "u=x" | |
| 81 | by (simp add: nat2_to_nat_def Let_def) | |
| 82 | with eq2 have vy: "v=y" by simp | |
| 83 | with ux have "(u,v) = (x,y)" by simp | |
| 84 | } | |
| 85 | then have "\<And>x y. nat2_to_nat x = nat2_to_nat y \<Longrightarrow> x=y" by fast | |
| 86 | then show ?thesis unfolding inj_on_def by simp | |
| 87 | qed | |
| 88 | ||
| 89 | lemma nat_to_nat2_surj: "surj nat_to_nat2" | |
| 90 | by (simp only: nat_to_nat2_def nat2_to_nat_inj inj_imp_surj_inv) | |
| 91 | ||
| 92 | ||
| 93 | lemma gauss_sum_nat_upto: "2 * (\<Sum>i\<le>n::nat. i) = n * (n + 1)" | |
| 94 | using gauss_sum[where 'a = nat] | |
| 95 | by (simp add:atLeast0AtMost setsum_shift_lb_Suc0_0 numeral_2_eq_2) | |
| 96 | ||
| 97 | lemma nat2_to_nat_surj: "surj nat2_to_nat" | |
| 98 | proof (unfold surj_def) | |
| 99 |   {
 | |
| 100 | fix z::nat | |
| 101 |     def r \<equiv> "Max {r. (\<Sum>i\<le>r. i) \<le> z}" 
 | |
| 102 | def x \<equiv> "z - (\<Sum>i\<le>r. i)" | |
| 103 | ||
| 104 |     hence "finite  {r. (\<Sum>i\<le>r. i) \<le> z}"
 | |
| 105 | by (simp add: lessThan_Suc_atMost[symmetric] lessThan_Suc finite_less_ub) | |
| 106 |     also have "0 \<in> {r. (\<Sum>i\<le>r. i) \<le> z}"  by simp
 | |
| 107 |     hence "{r::nat. (\<Sum>i\<le>r. i) \<le> z} \<noteq> {}"  by fast
 | |
| 108 |     ultimately have a: "r \<in> {r. (\<Sum>i\<le>r. i) \<le> z} \<and> (\<forall>s \<in> {r. (\<Sum>i\<le>r. i) \<le> z}. s \<le> r)"
 | |
| 109 | by (simp add: r_def del:mem_Collect_eq) | |
| 110 |     {
 | |
| 111 | assume "r<x" | |
| 112 | hence "r+1\<le>x" by simp | |
| 113 | hence "(\<Sum>i\<le>r. i)+(r+1)\<le>z" using x_def by arith | |
| 114 |       hence "(r+1) \<in>  {r. (\<Sum>i\<le>r. i) \<le> z}"  by simp
 | |
| 115 | with a have "(r+1)\<le>r" by simp | |
| 116 | } | |
| 117 | hence b: "x\<le>r" by force | |
| 118 | ||
| 119 | def y \<equiv> "r-x" | |
| 120 | have "2*z=2*(\<Sum>i\<le>r. i)+2*x" using x_def a by simp arith | |
| 121 | also have "\<dots> = r * (r+1) + 2*x" using gauss_sum_nat_upto by simp | |
| 122 | also have "\<dots> = (x+y)*(x+y+1)+2*x" using y_def b by simp | |
| 123 |     also { have "2 dvd ((x+y)*(x+y+1))"	using dvd2_a_x_suc_a by simp }
 | |
| 124 | hence "\<dots> = 2 * nat2_to_nat(x,y)" | |
| 125 | using nat2_to_nat_def by (simp add: Let_def dvd_mult_div_cancel) | |
| 126 | finally have "z=nat2_to_nat (x, y)" by simp | |
| 127 | } | |
| 128 | thus "\<forall>y. \<exists>x. y = nat2_to_nat x" by fast | |
| 129 | qed | |
| 130 | ||
| 131 | ||
| 132 | subsection{*  A bijection between @{text "\<nat>"} and @{text "\<int>"} *}
 | |
| 133 | ||
| 134 | definition nat_to_int_bij :: "nat \<Rightarrow> int" where | |
| 135 | "nat_to_int_bij n = (if 2 dvd n then int(n div 2) else -int(Suc n div 2))" | |
| 136 | ||
| 137 | definition int_to_nat_bij :: "int \<Rightarrow> nat" where | |
| 138 | "int_to_nat_bij i = (if 0<=i then 2*nat(i) else 2*nat(-i) - 1)" | |
| 139 | ||
| 140 | lemma i2n_n2i_id: "int_to_nat_bij (nat_to_int_bij n) = n" | |
| 141 | by (simp add: int_to_nat_bij_def nat_to_int_bij_def) presburger | |
| 142 | ||
| 143 | lemma n2i_i2n_id: "nat_to_int_bij(int_to_nat_bij i) = i" | |
| 144 | proof - | |
| 145 | have "ALL m n::nat. m>0 \<longrightarrow> 2 * m - Suc 0 \<noteq> 2 * n" by presburger | |
| 146 | thus ?thesis | |
| 147 | by(simp add: nat_to_int_bij_def int_to_nat_bij_def, simp add:dvd_def) | |
| 148 | qed | |
| 149 | ||
| 150 | lemma inv_nat_to_int_bij: "inv nat_to_int_bij = int_to_nat_bij" | |
| 151 | by (simp add: i2n_n2i_id inv_equality n2i_i2n_id) | |
| 152 | ||
| 153 | lemma inv_int_to_nat_bij: "inv int_to_nat_bij = nat_to_int_bij" | |
| 154 | by (simp add: i2n_n2i_id inv_equality n2i_i2n_id) | |
| 155 | ||
| 156 | lemma surj_nat_to_int_bij: "surj nat_to_int_bij" | |
| 157 | by (blast intro: n2i_i2n_id surjI) | |
| 158 | ||
| 159 | lemma surj_int_to_nat_bij: "surj int_to_nat_bij" | |
| 160 | by (blast intro: i2n_n2i_id surjI) | |
| 161 | ||
| 162 | lemma inj_nat_to_int_bij: "inj nat_to_int_bij" | |
| 163 | by(simp add:inv_int_to_nat_bij[symmetric] surj_int_to_nat_bij surj_imp_inj_inv) | |
| 164 | ||
| 165 | lemma inj_int_to_nat_bij: "inj int_to_nat_bij" | |
| 166 | by(simp add:inv_nat_to_int_bij[symmetric] surj_nat_to_int_bij surj_imp_inj_inv) | |
| 167 | ||
| 168 | ||
| 169 | end |