| author | nipkow | 
| Mon, 18 May 2009 23:15:38 +0200 | |
| changeset 31197 | c1c163ec6c44 | 
| parent 30235 | 58d147683393 | 
| child 32443 | 16464c3f86bd | 
| permissions | -rw-r--r-- | 
| 12516 | 1  | 
(* Title: HOL/MicroJava/BV/Effect.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Gerwin Klein  | 
|
4  | 
Copyright 2000 Technische Universitaet Muenchen  | 
|
5  | 
*)  | 
|
6  | 
||
| 12911 | 7  | 
header {* \isaheader{Effect of Instructions on the State Type} *}
 | 
| 12516 | 8  | 
|
| 15481 | 9  | 
theory Effect  | 
10  | 
imports JVMType "../JVM/JVMExceptions"  | 
|
11  | 
begin  | 
|
12  | 
||
| 12516 | 13  | 
|
14  | 
types  | 
|
15  | 
succ_type = "(p_count \<times> state_type option) list"  | 
|
16  | 
||
17  | 
text {* Program counter of successor instructions: *}
 | 
|
18  | 
consts  | 
|
| 13006 | 19  | 
succs :: "instr \<Rightarrow> p_count \<Rightarrow> p_count list"  | 
| 12516 | 20  | 
primrec  | 
21  | 
"succs (Load idx) pc = [pc+1]"  | 
|
22  | 
"succs (Store idx) pc = [pc+1]"  | 
|
23  | 
"succs (LitPush v) pc = [pc+1]"  | 
|
24  | 
"succs (Getfield F C) pc = [pc+1]"  | 
|
25  | 
"succs (Putfield F C) pc = [pc+1]"  | 
|
26  | 
"succs (New C) pc = [pc+1]"  | 
|
27  | 
"succs (Checkcast C) pc = [pc+1]"  | 
|
28  | 
"succs Pop pc = [pc+1]"  | 
|
29  | 
"succs Dup pc = [pc+1]"  | 
|
30  | 
"succs Dup_x1 pc = [pc+1]"  | 
|
31  | 
"succs Dup_x2 pc = [pc+1]"  | 
|
32  | 
"succs Swap pc = [pc+1]"  | 
|
33  | 
"succs IAdd pc = [pc+1]"  | 
|
34  | 
"succs (Ifcmpeq b) pc = [pc+1, nat (int pc + b)]"  | 
|
35  | 
"succs (Goto b) pc = [nat (int pc + b)]"  | 
|
36  | 
"succs Return pc = [pc]"  | 
|
37  | 
"succs (Invoke C mn fpTs) pc = [pc+1]"  | 
|
38  | 
"succs Throw pc = [pc]"  | 
|
39  | 
||
40  | 
text "Effect of instruction on the state type:"  | 
|
41  | 
consts  | 
|
| 13006 | 42  | 
eff' :: "instr \<times> jvm_prog \<times> state_type \<Rightarrow> state_type"  | 
| 12516 | 43  | 
|
44  | 
recdef eff' "{}"
 | 
|
45  | 
"eff' (Load idx, G, (ST, LT)) = (ok_val (LT ! idx) # ST, LT)"  | 
|
46  | 
"eff' (Store idx, G, (ts#ST, LT)) = (ST, LT[idx:= OK ts])"  | 
|
47  | 
"eff' (LitPush v, G, (ST, LT)) = (the (typeof (\<lambda>v. None) v) # ST, LT)"  | 
|
48  | 
"eff' (Getfield F C, G, (oT#ST, LT)) = (snd (the (field (G,C) F)) # ST, LT)"  | 
|
49  | 
"eff' (Putfield F C, G, (vT#oT#ST, LT)) = (ST,LT)"  | 
|
50  | 
"eff' (New C, G, (ST,LT)) = (Class C # ST, LT)"  | 
|
51  | 
"eff' (Checkcast C, G, (RefT rt#ST,LT)) = (Class C # ST,LT)"  | 
|
52  | 
"eff' (Pop, G, (ts#ST,LT)) = (ST,LT)"  | 
|
53  | 
"eff' (Dup, G, (ts#ST,LT)) = (ts#ts#ST,LT)"  | 
|
54  | 
"eff' (Dup_x1, G, (ts1#ts2#ST,LT)) = (ts1#ts2#ts1#ST,LT)"  | 
|
55  | 
"eff' (Dup_x2, G, (ts1#ts2#ts3#ST,LT)) = (ts1#ts2#ts3#ts1#ST,LT)"  | 
|
56  | 
"eff' (Swap, G, (ts1#ts2#ST,LT)) = (ts2#ts1#ST,LT)"  | 
|
57  | 
"eff' (IAdd, G, (PrimT Integer#PrimT Integer#ST,LT))  | 
|
58  | 
= (PrimT Integer#ST,LT)"  | 
|
59  | 
"eff' (Ifcmpeq b, G, (ts1#ts2#ST,LT)) = (ST,LT)"  | 
|
60  | 
"eff' (Goto b, G, s) = s"  | 
|
61  | 
-- "Return has no successor instruction in the same method"  | 
|
62  | 
"eff' (Return, G, s) = s"  | 
|
63  | 
-- "Throw always terminates abruptly"  | 
|
64  | 
"eff' (Throw, G, s) = s"  | 
|
65  | 
"eff' (Invoke C mn fpTs, G, (ST,LT)) = (let ST' = drop (length fpTs) ST  | 
|
66  | 
in (fst (snd (the (method (G,C) (mn,fpTs))))#(tl ST'),LT))"  | 
|
67  | 
||
68  | 
||
69  | 
consts  | 
|
70  | 
match_any :: "jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list"  | 
|
71  | 
primrec  | 
|
72  | 
"match_any G pc [] = []"  | 
|
73  | 
"match_any G pc (e#es) = (let (start_pc, end_pc, handler_pc, catch_type) = e;  | 
|
74  | 
es' = match_any G pc es  | 
|
75  | 
in  | 
|
76  | 
if start_pc <= pc \<and> pc < end_pc then catch_type#es' else es')"  | 
|
77  | 
||
| 12951 | 78  | 
consts  | 
| 13717 | 79  | 
match :: "jvm_prog \<Rightarrow> xcpt \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list"  | 
| 12951 | 80  | 
primrec  | 
81  | 
"match G X pc [] = []"  | 
|
82  | 
"match G X pc (e#es) =  | 
|
| 13717 | 83  | 
(if match_exception_entry G (Xcpt X) pc e then [Xcpt X] else match G X pc es)"  | 
| 12951 | 84  | 
|
85  | 
lemma match_some_entry:  | 
|
| 13717 | 86  | 
"match G X pc et = (if \<exists>e \<in> set et. match_exception_entry G (Xcpt X) pc e then [Xcpt X] else [])"  | 
| 12951 | 87  | 
by (induct et) auto  | 
| 12516 | 88  | 
|
89  | 
consts  | 
|
| 13006 | 90  | 
xcpt_names :: "instr \<times> jvm_prog \<times> p_count \<times> exception_table \<Rightarrow> cname list"  | 
| 12516 | 91  | 
recdef xcpt_names "{}"
 | 
| 13717 | 92  | 
"xcpt_names (Getfield F C, G, pc, et) = match G NullPointer pc et"  | 
93  | 
"xcpt_names (Putfield F C, G, pc, et) = match G NullPointer pc et"  | 
|
94  | 
"xcpt_names (New C, G, pc, et) = match G OutOfMemory pc et"  | 
|
95  | 
"xcpt_names (Checkcast C, G, pc, et) = match G ClassCast pc et"  | 
|
| 12516 | 96  | 
"xcpt_names (Throw, G, pc, et) = match_any G pc et"  | 
97  | 
"xcpt_names (Invoke C m p, G, pc, et) = match_any G pc et"  | 
|
98  | 
"xcpt_names (i, G, pc, et) = []"  | 
|
99  | 
||
100  | 
||
101  | 
constdefs  | 
|
102  | 
xcpt_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> state_type option \<Rightarrow> exception_table \<Rightarrow> succ_type"  | 
|
103  | 
"xcpt_eff i G pc s et ==  | 
|
104  | 
map (\<lambda>C. (the (match_exception_table G C pc et), case s of None \<Rightarrow> None | Some s' \<Rightarrow> Some ([Class C], snd s')))  | 
|
105  | 
(xcpt_names (i,G,pc,et))"  | 
|
106  | 
||
107  | 
norm_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> state_type option \<Rightarrow> state_type option"  | 
|
| 
30235
 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 
nipkow 
parents: 
25362 
diff
changeset
 | 
108  | 
"norm_eff i G == Option.map (\<lambda>s. eff' (i,G,s))"  | 
| 12516 | 109  | 
|
| 13006 | 110  | 
eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> state_type option \<Rightarrow> succ_type"  | 
| 12516 | 111  | 
"eff i G pc et s == (map (\<lambda>pc'. (pc',norm_eff i G s)) (succs i pc)) @ (xcpt_eff i G pc s et)"  | 
112  | 
||
| 12772 | 113  | 
constdefs  | 
114  | 
isPrimT :: "ty \<Rightarrow> bool"  | 
|
115  | 
"isPrimT T == case T of PrimT T' \<Rightarrow> True | RefT T' \<Rightarrow> False"  | 
|
116  | 
||
117  | 
isRefT :: "ty \<Rightarrow> bool"  | 
|
118  | 
"isRefT T == case T of PrimT T' \<Rightarrow> False | RefT T' \<Rightarrow> True"  | 
|
119  | 
||
120  | 
lemma isPrimT [simp]:  | 
|
121  | 
"isPrimT T = (\<exists>T'. T = PrimT T')" by (simp add: isPrimT_def split: ty.splits)  | 
|
122  | 
||
123  | 
lemma isRefT [simp]:  | 
|
124  | 
"isRefT T = (\<exists>T'. T = RefT T')" by (simp add: isRefT_def split: ty.splits)  | 
|
125  | 
||
126  | 
||
127  | 
lemma "list_all2 P a b \<Longrightarrow> \<forall>(x,y) \<in> set (zip a b). P x y"  | 
|
128  | 
by (simp add: list_all2_def)  | 
|
129  | 
||
| 12516 | 130  | 
|
131  | 
text "Conditions under which eff is applicable:"  | 
|
132  | 
consts  | 
|
| 13006 | 133  | 
app' :: "instr \<times> jvm_prog \<times> p_count \<times> nat \<times> ty \<times> state_type \<Rightarrow> bool"  | 
| 12516 | 134  | 
|
135  | 
recdef app' "{}"
 | 
|
| 12974 | 136  | 
"app' (Load idx, G, pc, maxs, rT, s) =  | 
137  | 
(idx < length (snd s) \<and> (snd s) ! idx \<noteq> Err \<and> length (fst s) < maxs)"  | 
|
138  | 
"app' (Store idx, G, pc, maxs, rT, (ts#ST, LT)) =  | 
|
139  | 
(idx < length LT)"  | 
|
140  | 
"app' (LitPush v, G, pc, maxs, rT, s) =  | 
|
141  | 
(length (fst s) < maxs \<and> typeof (\<lambda>t. None) v \<noteq> None)"  | 
|
142  | 
"app' (Getfield F C, G, pc, maxs, rT, (oT#ST, LT)) =  | 
|
143  | 
(is_class G C \<and> field (G,C) F \<noteq> None \<and> fst (the (field (G,C) F)) = C \<and>  | 
|
144  | 
G \<turnstile> oT \<preceq> (Class C))"  | 
|
145  | 
"app' (Putfield F C, G, pc, maxs, rT, (vT#oT#ST, LT)) =  | 
|
146  | 
(is_class G C \<and> field (G,C) F \<noteq> None \<and> fst (the (field (G,C) F)) = C \<and>  | 
|
147  | 
G \<turnstile> oT \<preceq> (Class C) \<and> G \<turnstile> vT \<preceq> (snd (the (field (G,C) F))))"  | 
|
148  | 
"app' (New C, G, pc, maxs, rT, s) =  | 
|
149  | 
(is_class G C \<and> length (fst s) < maxs)"  | 
|
150  | 
"app' (Checkcast C, G, pc, maxs, rT, (RefT rt#ST,LT)) =  | 
|
151  | 
(is_class G C)"  | 
|
152  | 
"app' (Pop, G, pc, maxs, rT, (ts#ST,LT)) =  | 
|
153  | 
True"  | 
|
154  | 
"app' (Dup, G, pc, maxs, rT, (ts#ST,LT)) =  | 
|
155  | 
(1+length ST < maxs)"  | 
|
156  | 
"app' (Dup_x1, G, pc, maxs, rT, (ts1#ts2#ST,LT)) =  | 
|
157  | 
(2+length ST < maxs)"  | 
|
158  | 
"app' (Dup_x2, G, pc, maxs, rT, (ts1#ts2#ts3#ST,LT)) =  | 
|
159  | 
(3+length ST < maxs)"  | 
|
160  | 
"app' (Swap, G, pc, maxs, rT, (ts1#ts2#ST,LT)) =  | 
|
161  | 
True"  | 
|
162  | 
"app' (IAdd, G, pc, maxs, rT, (PrimT Integer#PrimT Integer#ST,LT)) =  | 
|
163  | 
True"  | 
|
164  | 
"app' (Ifcmpeq b, G, pc, maxs, rT, (ts#ts'#ST,LT)) =  | 
|
165  | 
(0 \<le> int pc + b \<and> (isPrimT ts \<and> ts' = ts \<or> isRefT ts \<and> isRefT ts'))"  | 
|
166  | 
"app' (Goto b, G, pc, maxs, rT, s) =  | 
|
167  | 
(0 \<le> int pc + b)"  | 
|
168  | 
"app' (Return, G, pc, maxs, rT, (T#ST,LT)) =  | 
|
169  | 
(G \<turnstile> T \<preceq> rT)"  | 
|
170  | 
"app' (Throw, G, pc, maxs, rT, (T#ST,LT)) =  | 
|
171  | 
isRefT T"  | 
|
172  | 
"app' (Invoke C mn fpTs, G, pc, maxs, rT, s) =  | 
|
173  | 
(length fpTs < length (fst s) \<and>  | 
|
174  | 
(let apTs = rev (take (length fpTs) (fst s));  | 
|
175  | 
X = hd (drop (length fpTs) (fst s))  | 
|
176  | 
in  | 
|
177  | 
G \<turnstile> X \<preceq> Class C \<and> is_class G C \<and> method (G,C) (mn,fpTs) \<noteq> None \<and>  | 
|
178  | 
list_all2 (\<lambda>x y. G \<turnstile> x \<preceq> y) apTs fpTs))"  | 
|
| 12772 | 179  | 
|
| 12974 | 180  | 
"app' (i,G, pc,maxs,rT,s) = False"  | 
| 12516 | 181  | 
|
182  | 
constdefs  | 
|
183  | 
xcpt_app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> bool"  | 
|
184  | 
"xcpt_app i G pc et \<equiv> \<forall>C\<in>set(xcpt_names (i,G,pc,et)). is_class G C"  | 
|
185  | 
||
| 13006 | 186  | 
app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> state_type option \<Rightarrow> bool"  | 
187  | 
"app i G maxs rT pc et s == case s of None \<Rightarrow> True | Some t \<Rightarrow> app' (i,G,pc,maxs,rT,t) \<and> xcpt_app i G pc et"  | 
|
| 12516 | 188  | 
|
189  | 
||
| 13066 | 190  | 
lemma match_any_match_table:  | 
191  | 
"C \<in> set (match_any G pc et) \<Longrightarrow> match_exception_table G C pc et \<noteq> None"  | 
|
192  | 
apply (induct et)  | 
|
193  | 
apply simp  | 
|
194  | 
apply simp  | 
|
195  | 
apply clarify  | 
|
196  | 
apply (simp split: split_if_asm)  | 
|
197  | 
apply (auto simp add: match_exception_entry_def)  | 
|
198  | 
done  | 
|
199  | 
||
200  | 
lemma match_X_match_table:  | 
|
201  | 
"C \<in> set (match G X pc et) \<Longrightarrow> match_exception_table G C pc et \<noteq> None"  | 
|
202  | 
apply (induct et)  | 
|
203  | 
apply simp  | 
|
204  | 
apply (simp split: split_if_asm)  | 
|
205  | 
done  | 
|
206  | 
||
207  | 
lemma xcpt_names_in_et:  | 
|
208  | 
"C \<in> set (xcpt_names (i,G,pc,et)) \<Longrightarrow>  | 
|
209  | 
\<exists>e \<in> set et. the (match_exception_table G C pc et) = fst (snd (snd e))"  | 
|
210  | 
apply (cases i)  | 
|
| 18576 | 211  | 
apply (auto dest!: match_any_match_table match_X_match_table  | 
| 13066 | 212  | 
dest: match_exception_table_in_et)  | 
213  | 
done  | 
|
214  | 
||
215  | 
||
| 13006 | 216  | 
lemma 1: "2 < length a \<Longrightarrow> (\<exists>l l' l'' ls. a = l#l'#l''#ls)"  | 
| 12516 | 217  | 
proof (cases a)  | 
218  | 
fix x xs assume "a = x#xs" "2 < length a"  | 
|
219  | 
thus ?thesis by - (cases xs, simp, cases "tl xs", auto)  | 
|
220  | 
qed auto  | 
|
221  | 
||
| 13006 | 222  | 
lemma 2: "\<not>(2 < length a) \<Longrightarrow> a = [] \<or> (\<exists> l. a = [l]) \<or> (\<exists> l l'. a = [l,l'])"  | 
| 12516 | 223  | 
proof -;  | 
224  | 
assume "\<not>(2 < length a)"  | 
|
225  | 
hence "length a < (Suc (Suc (Suc 0)))" by simp  | 
|
226  | 
hence * : "length a = 0 \<or> length a = Suc 0 \<or> length a = Suc (Suc 0)"  | 
|
227  | 
by (auto simp add: less_Suc_eq)  | 
|
228  | 
||
229  | 
  { 
 | 
|
230  | 
fix x  | 
|
231  | 
assume "length x = Suc 0"  | 
|
232  | 
hence "\<exists> l. x = [l]" by - (cases x, auto)  | 
|
233  | 
} note 0 = this  | 
|
234  | 
||
| 13006 | 235  | 
have "length a = Suc (Suc 0) \<Longrightarrow> \<exists>l l'. a = [l,l']" by (cases a, auto dest: 0)  | 
| 12516 | 236  | 
with * show ?thesis by (auto dest: 0)  | 
237  | 
qed  | 
|
238  | 
||
239  | 
lemmas [simp] = app_def xcpt_app_def  | 
|
240  | 
||
241  | 
text {* 
 | 
|
242  | 
\medskip  | 
|
243  | 
simp rules for @{term app}
 | 
|
244  | 
*}  | 
|
245  | 
lemma appNone[simp]: "app i G maxs rT pc et None = True" by simp  | 
|
246  | 
||
247  | 
||
248  | 
lemma appLoad[simp]:  | 
|
249  | 
"(app (Load idx) G maxs rT pc et (Some s)) = (\<exists>ST LT. s = (ST,LT) \<and> idx < length LT \<and> LT!idx \<noteq> Err \<and> length ST < maxs)"  | 
|
250  | 
by (cases s, simp)  | 
|
251  | 
||
252  | 
lemma appStore[simp]:  | 
|
253  | 
"(app (Store idx) G maxs rT pc et (Some s)) = (\<exists>ts ST LT. s = (ts#ST,LT) \<and> idx < length LT)"  | 
|
254  | 
by (cases s, cases "2 < length (fst s)", auto dest: 1 2)  | 
|
255  | 
||
256  | 
lemma appLitPush[simp]:  | 
|
257  | 
"(app (LitPush v) G maxs rT pc et (Some s)) = (\<exists>ST LT. s = (ST,LT) \<and> length ST < maxs \<and> typeof (\<lambda>v. None) v \<noteq> None)"  | 
|
258  | 
by (cases s, simp)  | 
|
259  | 
||
260  | 
lemma appGetField[simp]:  | 
|
261  | 
"(app (Getfield F C) G maxs rT pc et (Some s)) =  | 
|
262  | 
(\<exists> oT vT ST LT. s = (oT#ST, LT) \<and> is_class G C \<and>  | 
|
| 13717 | 263  | 
field (G,C) F = Some (C,vT) \<and> G \<turnstile> oT \<preceq> (Class C) \<and> (\<forall>x \<in> set (match G NullPointer pc et). is_class G x))"  | 
| 12516 | 264  | 
by (cases s, cases "2 <length (fst s)", auto dest!: 1 2)  | 
265  | 
||
266  | 
lemma appPutField[simp]:  | 
|
267  | 
"(app (Putfield F C) G maxs rT pc et (Some s)) =  | 
|
268  | 
(\<exists> vT vT' oT ST LT. s = (vT#oT#ST, LT) \<and> is_class G C \<and>  | 
|
| 12951 | 269  | 
field (G,C) F = Some (C, vT') \<and> G \<turnstile> oT \<preceq> (Class C) \<and> G \<turnstile> vT \<preceq> vT' \<and>  | 
| 13717 | 270  | 
(\<forall>x \<in> set (match G NullPointer pc et). is_class G x))"  | 
| 12516 | 271  | 
by (cases s, cases "2 <length (fst s)", auto dest!: 1 2)  | 
272  | 
||
273  | 
lemma appNew[simp]:  | 
|
274  | 
"(app (New C) G maxs rT pc et (Some s)) =  | 
|
| 12951 | 275  | 
(\<exists>ST LT. s=(ST,LT) \<and> is_class G C \<and> length ST < maxs \<and>  | 
| 13717 | 276  | 
(\<forall>x \<in> set (match G OutOfMemory pc et). is_class G x))"  | 
| 12516 | 277  | 
by (cases s, simp)  | 
278  | 
||
279  | 
lemma appCheckcast[simp]:  | 
|
280  | 
"(app (Checkcast C) G maxs rT pc et (Some s)) =  | 
|
| 12951 | 281  | 
(\<exists>rT ST LT. s = (RefT rT#ST,LT) \<and> is_class G C \<and>  | 
| 13717 | 282  | 
(\<forall>x \<in> set (match G ClassCast pc et). is_class G x))"  | 
| 12516 | 283  | 
by (cases s, cases "fst s", simp add: app_def) (cases "hd (fst s)", auto)  | 
284  | 
||
285  | 
lemma appPop[simp]:  | 
|
286  | 
"(app Pop G maxs rT pc et (Some s)) = (\<exists>ts ST LT. s = (ts#ST,LT))"  | 
|
287  | 
by (cases s, cases "2 <length (fst s)", auto dest: 1 2)  | 
|
288  | 
||
289  | 
||
290  | 
lemma appDup[simp]:  | 
|
291  | 
"(app Dup G maxs rT pc et (Some s)) = (\<exists>ts ST LT. s = (ts#ST,LT) \<and> 1+length ST < maxs)"  | 
|
292  | 
by (cases s, cases "2 <length (fst s)", auto dest: 1 2)  | 
|
293  | 
||
294  | 
||
295  | 
lemma appDup_x1[simp]:  | 
|
296  | 
"(app Dup_x1 G maxs rT pc et (Some s)) = (\<exists>ts1 ts2 ST LT. s = (ts1#ts2#ST,LT) \<and> 2+length ST < maxs)"  | 
|
297  | 
by (cases s, cases "2 <length (fst s)", auto dest: 1 2)  | 
|
298  | 
||
299  | 
||
300  | 
lemma appDup_x2[simp]:  | 
|
301  | 
"(app Dup_x2 G maxs rT pc et (Some s)) = (\<exists>ts1 ts2 ts3 ST LT. s = (ts1#ts2#ts3#ST,LT) \<and> 3+length ST < maxs)"  | 
|
302  | 
by (cases s, cases "2 <length (fst s)", auto dest: 1 2)  | 
|
303  | 
||
304  | 
||
305  | 
lemma appSwap[simp]:  | 
|
306  | 
"app Swap G maxs rT pc et (Some s) = (\<exists>ts1 ts2 ST LT. s = (ts1#ts2#ST,LT))"  | 
|
| 25362 | 307  | 
by (cases s, cases "2 <length (fst s)") (auto dest: 1 2)  | 
| 12516 | 308  | 
|
309  | 
||
310  | 
lemma appIAdd[simp]:  | 
|
311  | 
"app IAdd G maxs rT pc et (Some s) = (\<exists> ST LT. s = (PrimT Integer#PrimT Integer#ST,LT))"  | 
|
312  | 
(is "?app s = ?P s")  | 
|
| 25362 | 313  | 
proof (cases s)  | 
314  | 
case (Pair a b)  | 
|
| 12516 | 315  | 
have "?app (a,b) = ?P (a,b)"  | 
| 25362 | 316  | 
proof (cases a)  | 
| 12516 | 317  | 
fix t ts assume a: "a = t#ts"  | 
318  | 
show ?thesis  | 
|
319  | 
proof (cases t)  | 
|
320  | 
fix p assume p: "t = PrimT p"  | 
|
321  | 
show ?thesis  | 
|
322  | 
proof (cases p)  | 
|
323  | 
assume ip: "p = Integer"  | 
|
324  | 
show ?thesis  | 
|
325  | 
proof (cases ts)  | 
|
326  | 
fix t' ts' assume t': "ts = t' # ts'"  | 
|
327  | 
show ?thesis  | 
|
328  | 
proof (cases t')  | 
|
329  | 
fix p' assume "t' = PrimT p'"  | 
|
330  | 
with t' ip p a  | 
|
| 25362 | 331  | 
show ?thesis by (cases p') auto  | 
| 12516 | 332  | 
qed (auto simp add: a p ip t')  | 
333  | 
qed (auto simp add: a p ip)  | 
|
334  | 
qed (auto simp add: a p)  | 
|
335  | 
qed (auto simp add: a)  | 
|
336  | 
qed auto  | 
|
337  | 
with Pair show ?thesis by simp  | 
|
338  | 
qed  | 
|
339  | 
||
340  | 
||
341  | 
lemma appIfcmpeq[simp]:  | 
|
| 12974 | 342  | 
"app (Ifcmpeq b) G maxs rT pc et (Some s) =  | 
343  | 
(\<exists>ts1 ts2 ST LT. s = (ts1#ts2#ST,LT) \<and> 0 \<le> int pc + b \<and>  | 
|
344  | 
((\<exists> p. ts1 = PrimT p \<and> ts2 = PrimT p) \<or> (\<exists>r r'. ts1 = RefT r \<and> ts2 = RefT r')))"  | 
|
| 12772 | 345  | 
by (cases s, cases "2 <length (fst s)", auto dest!: 1 2)  | 
| 12516 | 346  | 
|
347  | 
lemma appReturn[simp]:  | 
|
348  | 
"app Return G maxs rT pc et (Some s) = (\<exists>T ST LT. s = (T#ST,LT) \<and> (G \<turnstile> T \<preceq> rT))"  | 
|
349  | 
by (cases s, cases "2 <length (fst s)", auto dest: 1 2)  | 
|
350  | 
||
351  | 
lemma appGoto[simp]:  | 
|
| 12974 | 352  | 
"app (Goto b) G maxs rT pc et (Some s) = (0 \<le> int pc + b)"  | 
| 12516 | 353  | 
by simp  | 
354  | 
||
355  | 
lemma appThrow[simp]:  | 
|
356  | 
"app Throw G maxs rT pc et (Some s) =  | 
|
357  | 
(\<exists>T ST LT r. s=(T#ST,LT) \<and> T = RefT r \<and> (\<forall>C \<in> set (match_any G pc et). is_class G C))"  | 
|
358  | 
by (cases s, cases "2 < length (fst s)", auto dest: 1 2)  | 
|
359  | 
||
360  | 
lemma appInvoke[simp]:  | 
|
361  | 
"app (Invoke C mn fpTs) G maxs rT pc et (Some s) = (\<exists>apTs X ST LT mD' rT' b'.  | 
|
362  | 
s = ((rev apTs) @ (X # ST), LT) \<and> length apTs = length fpTs \<and> is_class G C \<and>  | 
|
363  | 
G \<turnstile> X \<preceq> Class C \<and> (\<forall>(aT,fT)\<in>set(zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and>  | 
|
364  | 
method (G,C) (mn,fpTs) = Some (mD', rT', b') \<and>  | 
|
365  | 
(\<forall>C \<in> set (match_any G pc et). is_class G C))" (is "?app s = ?P s")  | 
|
| 25362 | 366  | 
proof (cases s)  | 
| 12772 | 367  | 
note list_all2_def [simp]  | 
| 25362 | 368  | 
case (Pair a b)  | 
| 13006 | 369  | 
have "?app (a,b) \<Longrightarrow> ?P (a,b)"  | 
| 12516 | 370  | 
proof -  | 
371  | 
assume app: "?app (a,b)"  | 
|
372  | 
hence "a = (rev (rev (take (length fpTs) a))) @ (drop (length fpTs) a) \<and>  | 
|
373  | 
length fpTs < length a" (is "?a \<and> ?l")  | 
|
374  | 
by (auto simp add: app_def)  | 
|
375  | 
hence "?a \<and> 0 < length (drop (length fpTs) a)" (is "?a \<and> ?l")  | 
|
376  | 
by auto  | 
|
377  | 
hence "?a \<and> ?l \<and> length (rev (take (length fpTs) a)) = length fpTs"  | 
|
378  | 
by (auto simp add: min_def)  | 
|
379  | 
hence "\<exists>apTs ST. a = rev apTs @ ST \<and> length apTs = length fpTs \<and> 0 < length ST"  | 
|
380  | 
by blast  | 
|
381  | 
hence "\<exists>apTs ST. a = rev apTs @ ST \<and> length apTs = length fpTs \<and> ST \<noteq> []"  | 
|
382  | 
by blast  | 
|
383  | 
hence "\<exists>apTs ST. a = rev apTs @ ST \<and> length apTs = length fpTs \<and>  | 
|
384  | 
(\<exists>X ST'. ST = X#ST')"  | 
|
385  | 
by (simp add: neq_Nil_conv)  | 
|
386  | 
hence "\<exists>apTs X ST. a = rev apTs @ X # ST \<and> length apTs = length fpTs"  | 
|
387  | 
by blast  | 
|
388  | 
with app  | 
|
389  | 
show ?thesis by (unfold app_def, clarsimp) blast  | 
|
390  | 
qed  | 
|
391  | 
with Pair  | 
|
| 12772 | 392  | 
have "?app s \<Longrightarrow> ?P s" by (simp only:)  | 
| 12516 | 393  | 
moreover  | 
| 12772 | 394  | 
have "?P s \<Longrightarrow> ?app s" by (unfold app_def) (clarsimp simp add: min_def)  | 
| 12516 | 395  | 
ultimately  | 
| 12772 | 396  | 
show ?thesis by (rule iffI)  | 
| 12516 | 397  | 
qed  | 
398  | 
||
399  | 
lemma effNone:  | 
|
400  | 
"(pc', s') \<in> set (eff i G pc et None) \<Longrightarrow> s' = None"  | 
|
401  | 
by (auto simp add: eff_def xcpt_eff_def norm_eff_def)  | 
|
402  | 
||
| 12772 | 403  | 
|
404  | 
lemma xcpt_app_lemma [code]:  | 
|
405  | 
"xcpt_app i G pc et = list_all (is_class G) (xcpt_names (i, G, pc, et))"  | 
|
| 17088 | 406  | 
by (simp add: list_all_iff)  | 
| 12772 | 407  | 
|
| 12516 | 408  | 
lemmas [simp del] = app_def xcpt_app_def  | 
409  | 
||
410  | 
end  |