|
11479
|
1 |
(* Title: HOL/UNITY/UNITYMisc.ML
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Sidi O Ehmety, Computer Laboratory
|
|
|
4 |
Copyright 2001 University of Cambridge
|
|
|
5 |
|
|
|
6 |
Some miscellaneous and add-hoc set theory concepts.
|
|
|
7 |
|
|
|
8 |
*)
|
|
|
9 |
|
|
|
10 |
Goalw [measure_def, less_than_def]
|
|
|
11 |
"less_than(A) = {<x,y>:A*A. x<y}";
|
|
|
12 |
by Auto_tac;
|
|
|
13 |
qed "less_than_equals";
|
|
|
14 |
|
|
|
15 |
Goalw [less_than_def] "wf(less_than(A))";
|
|
|
16 |
by (rtac wf_measure 1);
|
|
|
17 |
qed "wf_less_than";
|
|
|
18 |
|
|
|
19 |
Goalw [less_than_def, measure_def]
|
|
|
20 |
"less_than(A)<= A*A";
|
|
|
21 |
by Auto_tac;
|
|
|
22 |
qed "less_than_subset";
|
|
|
23 |
|
|
|
24 |
Goalw [less_than_def, measure_def]
|
|
|
25 |
"<x,y>:less_than(A) <-> (x:A & y:A & x<y)";
|
|
|
26 |
by Auto_tac;
|
|
|
27 |
qed "less_than_iff";
|
|
|
28 |
|
|
|
29 |
Goalw [lessThan_def]
|
|
|
30 |
"i:lessThan(k,A) <-> i:A & i<k";
|
|
|
31 |
by Auto_tac;
|
|
|
32 |
qed "lessThan_iff";
|
|
|
33 |
|
|
|
34 |
Goalw [greaterThan_def]
|
|
|
35 |
"i:greaterThan(k,A) <-> i:A & k<i";
|
|
|
36 |
by Auto_tac;
|
|
|
37 |
qed "greaterThan_iff";
|
|
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
|
41 |
(** Needed for WF reasoning in WFair.ML **)
|
|
|
42 |
|
|
|
43 |
Goal "k:A ==>less_than(A)``{k} = greaterThan(k, A)";
|
|
|
44 |
by (rtac equalityI 1);
|
|
|
45 |
by (auto_tac (claset(), simpset() addsimps
|
|
|
46 |
[less_than_iff,greaterThan_iff]));
|
|
|
47 |
qed "Image_less_than";
|
|
|
48 |
|
|
|
49 |
Goal "k:A ==> less_than(A)-`` {k} = lessThan(k, A)";
|
|
|
50 |
by (rtac equalityI 1);
|
|
|
51 |
by (auto_tac (claset(), simpset() addsimps
|
|
|
52 |
[less_than_iff,lessThan_iff]));
|
|
|
53 |
qed "Image_inverse_less_than";
|
|
|
54 |
|
|
|
55 |
Addsimps [Image_less_than, Image_inverse_less_than];
|
|
|
56 |
|
|
|
57 |
|
|
|
58 |
(** Ad-hoc set-theory rules **)
|
|
|
59 |
|
|
|
60 |
Goal "(C Int A) Un (C Int B) = C Int (A Un B)";
|
|
|
61 |
by (Blast_tac 1);
|
|
|
62 |
qed "Int_Un_distrib2";
|
|
|
63 |
|
|
|
64 |
Goal "C Int (A - B) = (C Int A) - (C Int B)";
|
|
|
65 |
by (Blast_tac 1);
|
|
|
66 |
qed "Diff_Int_distrib";
|
|
|
67 |
|
|
|
68 |
Goal "(A - B) Int C = (A Int C) - (B Int C)";
|
|
|
69 |
by (Blast_tac 1);
|
|
|
70 |
qed "Diff_Int_distrib2";
|
|
|
71 |
|
|
|
72 |
Goal "A Un (A Un B) = A Un B";
|
|
|
73 |
by (Blast_tac 1);
|
|
|
74 |
qed "double_Un";
|
|
|
75 |
|
|
|
76 |
Goal "A Un (B Un C) = B Un (A Un C)";
|
|
|
77 |
by (Blast_tac 1);
|
|
|
78 |
qed "Un_assoc2";
|
|
|
79 |
|
|
|
80 |
|
|
|
81 |
val Un_ac = [Un_assoc, double_Un, Un_commute, Un_assoc2, Un_absorb];
|
|
|
82 |
|
|
|
83 |
Goal "A Un B = Union({A, B})";
|
|
|
84 |
by (Blast_tac 1);
|
|
|
85 |
qed "Un_eq_Union";
|
|
|
86 |
|
|
|
87 |
Goal "(UN x:A. {x}) = A";
|
|
|
88 |
by (Blast_tac 1);
|
|
|
89 |
qed "UN_singleton";
|
|
|
90 |
|
|
|
91 |
|
|
|
92 |
Goal "Union(B) Int A = (UN b:B. b Int A)";
|
|
|
93 |
by Auto_tac;
|
|
|
94 |
qed "Int_Union_Union";
|
|
|
95 |
|
|
|
96 |
Goal "A Int Union(B) = (UN b:B. A Int b)";
|
|
|
97 |
by Auto_tac;
|
|
|
98 |
qed "Int_Union_Union2";
|
|
|
99 |
|
|
|
100 |
(** Intersection **)
|
|
|
101 |
Goal "A Int (A Int B) = A Int B";
|
|
|
102 |
by (Blast_tac 1);
|
|
|
103 |
qed "double_Int";
|
|
|
104 |
|
|
|
105 |
Goal "A Int (B Int C) = B Int (A Int C)";
|
|
|
106 |
by (Blast_tac 1);
|
|
|
107 |
qed "Int_assoc2";
|
|
|
108 |
|
|
|
109 |
val Int_ac = [Int_assoc, double_Int, Int_commute, Int_assoc2];
|
|
|
110 |
|
|
|
111 |
Goal "A Int B = 0 ==> A - B = A";
|
|
|
112 |
by (Blast_tac 1);
|
|
|
113 |
qed "Diff_triv";
|
|
|
114 |
|
|
|
115 |
Goal "A Int B - C = A Int (B - C)";
|
|
|
116 |
by (Blast_tac 1);
|
|
|
117 |
qed "Int_Diff";
|
|
|
118 |
|
|
|
119 |
Goal "f -``B = (UN y:B. f-``{y})";
|
|
|
120 |
by (Blast_tac 1);
|
|
|
121 |
qed "vimage_eq_UN";
|
|
|
122 |
|
|
|
123 |
Goal "A Un B - (A - B) = B";
|
|
|
124 |
by (Blast_tac 1);
|
|
|
125 |
qed "Un_Diff_Diff";
|
|
|
126 |
AddIffs [Un_Diff_Diff];
|
|
|
127 |
|
|
|
128 |
(*** INT simps ***)
|
|
|
129 |
|
|
|
130 |
Goal
|
|
|
131 |
"i:I ==> (INT i:I. A(i)) Un B = (INT i:I. A(i) Un B)";
|
|
|
132 |
by Auto_tac;
|
|
|
133 |
qed "INT_Un_distrib";
|
|
|
134 |
|
|
|
135 |
Goal
|
|
|
136 |
"!!C. c: C ==> (INT x:C. cons(a, B(x))) = cons(a, (INT x:C. B(x)))";
|
|
|
137 |
by Auto_tac;
|
|
|
138 |
qed "INT_cons";
|
|
|
139 |
|
|
|
140 |
Goal
|
|
|
141 |
"i:I ==> (INT i:I. A(i)) Int B = (INT i:I. A(i) Int B)";
|
|
|
142 |
by Auto_tac;
|
|
|
143 |
qed "INT_Int_distrib2";
|
|
|
144 |
|
|
|
145 |
Goal
|
|
|
146 |
"i:I ==> B Int (INT i:I. A(i)) = (INT i:I. B Int A(i))";
|
|
|
147 |
by Auto_tac;
|
|
|
148 |
qed "Int_INT_distrib";
|
|
|
149 |
|
|
|
150 |
val INT_simps = [Un_INT_distrib, Un_INT_distrib2,
|
|
|
151 |
INT_constant, INT_Int_distrib, Diff_INT,
|
|
|
152 |
INT_Un_distrib,INT_cons, INT_Int_distrib2, Int_INT_distrib, Inter_0];
|
|
|
153 |
|
|
|
154 |
|
|
|
155 |
(*** UN ***)
|
|
|
156 |
Goal
|
|
|
157 |
"!!C. c: C ==> cons(a, (UN x:C. B(x))) = (UN x:C. cons(a, B(x)))";
|
|
|
158 |
by Auto_tac;
|
|
|
159 |
qed "UN_cons";
|
|
|
160 |
|
|
|
161 |
Goal
|
|
|
162 |
"!!C. c: C ==> B Un (UN x:C. A(x)) = (UN x:C. B Un A(x))";
|
|
|
163 |
by Auto_tac;
|
|
|
164 |
qed "Un_UN_distrib";
|
|
|
165 |
|
|
|
166 |
Goal
|
|
|
167 |
"!!C. c: C ==> (UN x:C. B(x)) Un A = (UN x:C. B(x) Un A)";
|
|
|
168 |
by Auto_tac;
|
|
|
169 |
qed "UN_Un_distrib2";
|
|
|
170 |
|
|
|
171 |
Goal "(UN x:C. B(x)) Int A = (UN x:C. B(x) Int A)";
|
|
|
172 |
by Auto_tac;
|
|
|
173 |
qed "UN_Int_distrib";
|
|
|
174 |
|
|
|
175 |
val UN_simps = [UN_cons, Un_UN_distrib, UN_Un_distrib2, UN_Un_distrib, UN_Int_distrib, UN_0];
|
|
|
176 |
|
|
|
177 |
(** Needed in State theory for the current definition of variables
|
|
|
178 |
where they are indexed by lists **)
|
|
|
179 |
|
|
|
180 |
Goal "i:list(nat) ==> i:univ(0)";
|
|
|
181 |
by (dres_inst_tac [("B", "0")] list_into_univ 1);
|
|
|
182 |
by (blast_tac (claset() addIs [nat_into_univ]) 1);
|
|
|
183 |
by (assume_tac 1);
|
|
|
184 |
qed "list_nat_into_univ";
|
|
|
185 |
|
|
|
186 |
(** To be moved to Update theory **)
|
|
|
187 |
|
|
|
188 |
Goalw [update_def]
|
|
|
189 |
"[| f:Pi(A,B); x:A; y:B(x) |] ==> f(x:=y):Pi(A, B)";
|
|
|
190 |
by (asm_simp_tac (simpset() addsimps [domain_of_fun, cons_absorb,
|
|
|
191 |
apply_funtype, lam_type]) 1);
|
|
|
192 |
qed "update_type2";
|
|
|
193 |
|
|
|
194 |
(** Simplication rules for Collect; To be moved elsewhere **)
|
|
|
195 |
Goal "{x:A. P(x)} Int A = {x:A. P(x)}";
|
|
|
196 |
by Auto_tac;
|
|
|
197 |
qed "Collect_Int2";
|
|
|
198 |
|
|
|
199 |
Goal "A Int {x:A. P(x)} = {x:A. P(x)}";
|
|
|
200 |
by Auto_tac;
|
|
|
201 |
qed "Collect_Int3";
|
|
|
202 |
|
|
|
203 |
AddIffs [Collect_Int2, Collect_Int3];
|
|
|
204 |
|
|
|
205 |
|
|
|
206 |
Goal "{x:A. P(x) | Q(x)} = Collect(A, P) Un Collect(A, Q)";
|
|
|
207 |
by Auto_tac;
|
|
|
208 |
qed "Collect_disj_eq";
|
|
|
209 |
|
|
|
210 |
Goal "{x:A. P(x) & Q(x)} = Collect(A, P) Int Collect(A, Q)";
|
|
|
211 |
by Auto_tac;
|
|
|
212 |
qed "Collect_conj_eq";
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
|