| author | mengj | 
| Wed, 19 Oct 2005 10:25:46 +0200 | |
| changeset 17907 | c20e4bddcb11 | 
| parent 17429 | e8d6ed3aacfe | 
| child 19279 | 48b527d0331b | 
| permissions | -rw-r--r-- | 
| 10751 | 1  | 
(* Title : HSeries.thy  | 
2  | 
Author : Jacques D. Fleuriot  | 
|
3  | 
Copyright : 1998 University of Cambridge  | 
|
| 14413 | 4  | 
|
5  | 
Converted to Isar and polished by lcp  | 
|
| 10751 | 6  | 
*)  | 
7  | 
||
| 14413 | 8  | 
header{*Finite Summation and Infinite Series for Hyperreals*}
 | 
| 10751 | 9  | 
|
| 15131 | 10  | 
theory HSeries  | 
| 15140 | 11  | 
imports Series  | 
| 15131 | 12  | 
begin  | 
| 10751 | 13  | 
|
| 14413 | 14  | 
constdefs  | 
15  | 
sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
16  | 
"sumhr ==  | 
| 
17429
 
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
 
huffman 
parents: 
17318 
diff
changeset
 | 
17  | 
      %(M,N,f). starfun2 (%m n. setsum f {m..<n}) M N"
 | 
| 10751 | 18  | 
|
| 14413 | 19  | 
NSsums :: "[nat=>real,real] => bool" (infixr "NSsums" 80)  | 
| 15539 | 20  | 
   "f NSsums s  == (%n. setsum f {0..<n}) ----NS> s"
 | 
| 10751 | 21  | 
|
| 14413 | 22  | 
NSsummable :: "(nat=>real) => bool"  | 
23  | 
"NSsummable f == (\<exists>s. f NSsums s)"  | 
|
| 10751 | 24  | 
|
| 14413 | 25  | 
NSsuminf :: "(nat=>real) => real"  | 
| 10751 | 26  | 
"NSsuminf f == (@s. f NSsums s)"  | 
27  | 
||
| 14413 | 28  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
29  | 
lemma sumhr:  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
30  | 
"sumhr(star_n M, star_n N, f) =  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
31  | 
      star_n (%n. setsum f {M n..<N n})"
 | 
| 
17429
 
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
 
huffman 
parents: 
17318 
diff
changeset
 | 
32  | 
by (simp add: sumhr_def starfun2_star_n)  | 
| 14413 | 33  | 
|
34  | 
text{*Base case in definition of @{term sumr}*}
 | 
|
35  | 
lemma sumhr_zero [simp]: "sumhr (m,0,f) = 0"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
36  | 
apply (cases m)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
37  | 
apply (simp add: star_n_zero_num sumhr symmetric)  | 
| 14413 | 38  | 
done  | 
39  | 
||
40  | 
text{*Recursive case in definition of @{term sumr}*}
 | 
|
41  | 
lemma sumhr_if:  | 
|
42  | 
"sumhr(m,n+1,f) =  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
43  | 
(if n + 1 \<le> m then 0 else sumhr(m,n,f) + ( *f* f) n)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
44  | 
apply (cases m, cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
45  | 
apply (auto simp add: star_n_one_num sumhr star_n_add star_n_le starfun  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
46  | 
star_n_zero_num star_n_eq_iff, ultra+)  | 
| 14413 | 47  | 
done  | 
48  | 
||
49  | 
lemma sumhr_Suc_zero [simp]: "sumhr (n + 1, n, f) = 0"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
50  | 
apply (cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
51  | 
apply (simp add: star_n_one_num sumhr star_n_add star_n_zero_num)  | 
| 14413 | 52  | 
done  | 
53  | 
||
54  | 
lemma sumhr_eq_bounds [simp]: "sumhr (n,n,f) = 0"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
55  | 
apply (cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
56  | 
apply (simp add: sumhr star_n_zero_num)  | 
| 14413 | 57  | 
done  | 
58  | 
||
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
59  | 
lemma sumhr_Suc [simp]: "sumhr (m,m + 1,f) = ( *f* f) m"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
60  | 
apply (cases m)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
61  | 
apply (simp add: sumhr star_n_one_num star_n_add starfun)  | 
| 14413 | 62  | 
done  | 
63  | 
||
64  | 
lemma sumhr_add_lbound_zero [simp]: "sumhr(m+k,k,f) = 0"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
65  | 
apply (cases m, cases k)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
66  | 
apply (simp add: sumhr star_n_add star_n_zero_num)  | 
| 14413 | 67  | 
done  | 
68  | 
||
69  | 
lemma sumhr_add: "sumhr (m,n,f) + sumhr(m,n,g) = sumhr(m,n,%i. f i + g i)"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
70  | 
apply (cases m, cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
71  | 
apply (simp add: sumhr star_n_add setsum_addf)  | 
| 14413 | 72  | 
done  | 
73  | 
||
74  | 
lemma sumhr_mult: "hypreal_of_real r * sumhr(m,n,f) = sumhr(m,n,%n. r * f n)"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
75  | 
apply (cases m, cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
76  | 
apply (simp add: sumhr star_of_def star_n_mult setsum_mult)  | 
| 14413 | 77  | 
done  | 
78  | 
||
79  | 
lemma sumhr_split_add: "n < p ==> sumhr(0,n,f) + sumhr(n,p,f) = sumhr(0,p,f)"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
80  | 
apply (cases n, cases p)  | 
| 14413 | 81  | 
apply (auto elim!: FreeUltrafilterNat_subset simp  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
82  | 
add: star_n_zero_num sumhr star_n_add star_n_less setsum_add_nat_ivl star_n_eq_iff)  | 
| 14413 | 83  | 
done  | 
84  | 
||
85  | 
lemma sumhr_split_diff: "n<p ==> sumhr(0,p,f) - sumhr(0,n,f) = sumhr(n,p,f)"  | 
|
86  | 
by (drule_tac f1 = f in sumhr_split_add [symmetric], simp)  | 
|
87  | 
||
88  | 
lemma sumhr_hrabs: "abs(sumhr(m,n,f)) \<le> sumhr(m,n,%i. abs(f i))"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
89  | 
apply (cases n, cases m)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
90  | 
apply (simp add: sumhr star_n_le star_n_abs setsum_abs)  | 
| 14413 | 91  | 
done  | 
92  | 
||
93  | 
text{* other general version also needed *}
 | 
|
94  | 
lemma sumhr_fun_hypnat_eq:  | 
|
95  | 
"(\<forall>r. m \<le> r & r < n --> f r = g r) -->  | 
|
96  | 
sumhr(hypnat_of_nat m, hypnat_of_nat n, f) =  | 
|
97  | 
sumhr(hypnat_of_nat m, hypnat_of_nat n, g)"  | 
|
| 15536 | 98  | 
by (fastsimp simp add: sumhr hypnat_of_nat_eq intro:setsum_cong)  | 
99  | 
||
| 14413 | 100  | 
|
| 15047 | 101  | 
lemma sumhr_const:  | 
102  | 
"sumhr(0, n, %i. r) = hypreal_of_hypnat n * hypreal_of_real r"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
103  | 
apply (cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
104  | 
apply (simp add: sumhr star_n_zero_num hypreal_of_hypnat  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
105  | 
star_of_def star_n_mult real_of_nat_def)  | 
| 14413 | 106  | 
done  | 
107  | 
||
108  | 
lemma sumhr_less_bounds_zero [simp]: "n < m ==> sumhr(m,n,f) = 0"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
109  | 
apply (cases m, cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
110  | 
apply (auto elim: FreeUltrafilterNat_subset  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
111  | 
simp add: sumhr star_n_less star_n_zero_num star_n_eq_iff)  | 
| 14413 | 112  | 
done  | 
113  | 
||
114  | 
lemma sumhr_minus: "sumhr(m, n, %i. - f i) = - sumhr(m, n, f)"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
115  | 
apply (cases m, cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
116  | 
apply (simp add: sumhr star_n_minus setsum_negf)  | 
| 14413 | 117  | 
done  | 
118  | 
||
119  | 
lemma sumhr_shift_bounds:  | 
|
120  | 
"sumhr(m+hypnat_of_nat k,n+hypnat_of_nat k,f) = sumhr(m,n,%i. f(i + k))"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
121  | 
apply (cases m, cases n)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
122  | 
apply (simp add: sumhr star_n_add setsum_shift_bounds_nat_ivl hypnat_of_nat_eq)  | 
| 14413 | 123  | 
done  | 
124  | 
||
125  | 
||
126  | 
subsection{*Nonstandard Sums*}
 | 
|
127  | 
||
128  | 
text{*Infinite sums are obtained by summing to some infinite hypernatural
 | 
|
129  | 
 (such as @{term whn})*}
 | 
|
130  | 
lemma sumhr_hypreal_of_hypnat_omega:  | 
|
131  | 
"sumhr(0,whn,%i. 1) = hypreal_of_hypnat whn"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
132  | 
by (simp add: hypnat_omega_def star_n_zero_num sumhr hypreal_of_hypnat  | 
| 15047 | 133  | 
real_of_nat_def)  | 
| 14413 | 134  | 
|
135  | 
lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, %i. 1) = omega - 1"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
136  | 
by (simp add: hypnat_omega_def star_n_zero_num omega_def star_n_one_num  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
137  | 
sumhr star_n_diff real_of_nat_def)  | 
| 14413 | 138  | 
|
139  | 
lemma sumhr_minus_one_realpow_zero [simp]:  | 
|
140  | 
"sumhr(0, whn + whn, %i. (-1) ^ (i+1)) = 0"  | 
|
141  | 
by (simp del: realpow_Suc  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
142  | 
add: sumhr star_n_add nat_mult_2 [symmetric] star_n_zero_num  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
143  | 
star_n_zero_num hypnat_omega_def)  | 
| 14413 | 144  | 
|
145  | 
lemma sumhr_interval_const:  | 
|
146  | 
"(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na  | 
|
147  | 
==> sumhr(hypnat_of_nat m,hypnat_of_nat na,f) =  | 
|
148  | 
(hypreal_of_nat (na - m) * hypreal_of_real r)"  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
149  | 
by(simp add: sumhr hypreal_of_nat_eq hypnat_of_nat_eq  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
150  | 
real_of_nat_def star_of_def star_n_mult cong: setsum_ivl_cong)  | 
| 14413 | 151  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
152  | 
lemma starfunNat_sumr: "( *f* (%n. setsum f {0..<n})) N = sumhr(0,N,f)"
 | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
153  | 
apply (cases N)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
154  | 
apply (simp add: star_n_zero_num starfun sumhr)  | 
| 14413 | 155  | 
done  | 
156  | 
||
157  | 
lemma sumhr_hrabs_approx [simp]: "sumhr(0, M, f) @= sumhr(0, N, f)  | 
|
158  | 
==> abs (sumhr(M, N, f)) @= 0"  | 
|
159  | 
apply (cut_tac x = M and y = N in linorder_less_linear)  | 
|
160  | 
apply (auto simp add: approx_refl)  | 
|
161  | 
apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]])  | 
|
162  | 
apply (auto dest: approx_hrabs  | 
|
163  | 
simp add: sumhr_split_diff diff_minus [symmetric])  | 
|
164  | 
done  | 
|
165  | 
||
166  | 
(*----------------------------------------------------------------  | 
|
167  | 
infinite sums: Standard and NS theorems  | 
|
168  | 
----------------------------------------------------------------*)  | 
|
169  | 
lemma sums_NSsums_iff: "(f sums l) = (f NSsums l)"  | 
|
170  | 
by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff)  | 
|
171  | 
||
172  | 
lemma summable_NSsummable_iff: "(summable f) = (NSsummable f)"  | 
|
173  | 
by (simp add: summable_def NSsummable_def sums_NSsums_iff)  | 
|
174  | 
||
175  | 
lemma suminf_NSsuminf_iff: "(suminf f) = (NSsuminf f)"  | 
|
176  | 
by (simp add: suminf_def NSsuminf_def sums_NSsums_iff)  | 
|
177  | 
||
178  | 
lemma NSsums_NSsummable: "f NSsums l ==> NSsummable f"  | 
|
179  | 
by (simp add: NSsums_def NSsummable_def, blast)  | 
|
180  | 
||
181  | 
lemma NSsummable_NSsums: "NSsummable f ==> f NSsums (NSsuminf f)"  | 
|
182  | 
apply (simp add: NSsummable_def NSsuminf_def)  | 
|
183  | 
apply (blast intro: someI2)  | 
|
184  | 
done  | 
|
185  | 
||
186  | 
lemma NSsums_unique: "f NSsums s ==> (s = NSsuminf f)"  | 
|
187  | 
by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique)  | 
|
188  | 
||
| 15539 | 189  | 
lemma NSseries_zero:  | 
190  | 
  "\<forall>m. n \<le> Suc m --> f(m) = 0 ==> f NSsums (setsum f {0..<n})"
 | 
|
| 14413 | 191  | 
by (simp add: sums_NSsums_iff [symmetric] series_zero)  | 
192  | 
||
193  | 
lemma NSsummable_NSCauchy:  | 
|
194  | 
"NSsummable f =  | 
|
195  | 
(\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. abs (sumhr(M,N,f)) @= 0)"  | 
|
196  | 
apply (auto simp add: summable_NSsummable_iff [symmetric]  | 
|
197  | 
summable_convergent_sumr_iff convergent_NSconvergent_iff  | 
|
198  | 
NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr)  | 
|
199  | 
apply (cut_tac x = M and y = N in linorder_less_linear)  | 
|
200  | 
apply (auto simp add: approx_refl)  | 
|
201  | 
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])  | 
|
202  | 
apply (rule_tac [2] approx_minus_iff [THEN iffD2])  | 
|
203  | 
apply (auto dest: approx_hrabs_zero_cancel  | 
|
204  | 
simp add: sumhr_split_diff diff_minus [symmetric])  | 
|
205  | 
done  | 
|
206  | 
||
207  | 
||
208  | 
text{*Terms of a convergent series tend to zero*}
 | 
|
209  | 
lemma NSsummable_NSLIMSEQ_zero: "NSsummable f ==> f ----NS> 0"  | 
|
210  | 
apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy)  | 
|
211  | 
apply (drule bspec, auto)  | 
|
212  | 
apply (drule_tac x = "N + 1 " in bspec)  | 
|
213  | 
apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel)  | 
|
214  | 
done  | 
|
215  | 
||
216  | 
text{* Easy to prove stsandard case now *}
 | 
|
217  | 
lemma summable_LIMSEQ_zero: "summable f ==> f ----> 0"  | 
|
218  | 
by (simp add: summable_NSsummable_iff LIMSEQ_NSLIMSEQ_iff NSsummable_NSLIMSEQ_zero)  | 
|
219  | 
||
220  | 
text{*Nonstandard comparison test*}
 | 
|
221  | 
lemma NSsummable_comparison_test:  | 
|
222  | 
"[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |] ==> NSsummable f"  | 
|
223  | 
by (auto intro: summable_comparison_test  | 
|
224  | 
simp add: summable_NSsummable_iff [symmetric])  | 
|
225  | 
||
226  | 
lemma NSsummable_rabs_comparison_test:  | 
|
227  | 
"[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |]  | 
|
228  | 
==> NSsummable (%k. abs (f k))"  | 
|
229  | 
apply (rule NSsummable_comparison_test)  | 
|
| 15543 | 230  | 
apply (auto)  | 
| 14413 | 231  | 
done  | 
232  | 
||
233  | 
ML  | 
|
234  | 
{*
 | 
|
235  | 
val sumhr = thm "sumhr";  | 
|
236  | 
val sumhr_zero = thm "sumhr_zero";  | 
|
237  | 
val sumhr_if = thm "sumhr_if";  | 
|
238  | 
val sumhr_Suc_zero = thm "sumhr_Suc_zero";  | 
|
239  | 
val sumhr_eq_bounds = thm "sumhr_eq_bounds";  | 
|
240  | 
val sumhr_Suc = thm "sumhr_Suc";  | 
|
241  | 
val sumhr_add_lbound_zero = thm "sumhr_add_lbound_zero";  | 
|
242  | 
val sumhr_add = thm "sumhr_add";  | 
|
243  | 
val sumhr_mult = thm "sumhr_mult";  | 
|
244  | 
val sumhr_split_add = thm "sumhr_split_add";  | 
|
245  | 
val sumhr_split_diff = thm "sumhr_split_diff";  | 
|
246  | 
val sumhr_hrabs = thm "sumhr_hrabs";  | 
|
247  | 
val sumhr_fun_hypnat_eq = thm "sumhr_fun_hypnat_eq";  | 
|
248  | 
val sumhr_less_bounds_zero = thm "sumhr_less_bounds_zero";  | 
|
249  | 
val sumhr_minus = thm "sumhr_minus";  | 
|
250  | 
val sumhr_shift_bounds = thm "sumhr_shift_bounds";  | 
|
251  | 
val sumhr_hypreal_of_hypnat_omega = thm "sumhr_hypreal_of_hypnat_omega";  | 
|
252  | 
val sumhr_hypreal_omega_minus_one = thm "sumhr_hypreal_omega_minus_one";  | 
|
253  | 
val sumhr_minus_one_realpow_zero = thm "sumhr_minus_one_realpow_zero";  | 
|
254  | 
val sumhr_interval_const = thm "sumhr_interval_const";  | 
|
255  | 
val starfunNat_sumr = thm "starfunNat_sumr";  | 
|
256  | 
val sumhr_hrabs_approx = thm "sumhr_hrabs_approx";  | 
|
257  | 
val sums_NSsums_iff = thm "sums_NSsums_iff";  | 
|
258  | 
val summable_NSsummable_iff = thm "summable_NSsummable_iff";  | 
|
259  | 
val suminf_NSsuminf_iff = thm "suminf_NSsuminf_iff";  | 
|
260  | 
val NSsums_NSsummable = thm "NSsums_NSsummable";  | 
|
261  | 
val NSsummable_NSsums = thm "NSsummable_NSsums";  | 
|
262  | 
val NSsums_unique = thm "NSsums_unique";  | 
|
263  | 
val NSseries_zero = thm "NSseries_zero";  | 
|
264  | 
val NSsummable_NSCauchy = thm "NSsummable_NSCauchy";  | 
|
265  | 
val NSsummable_NSLIMSEQ_zero = thm "NSsummable_NSLIMSEQ_zero";  | 
|
266  | 
val summable_LIMSEQ_zero = thm "summable_LIMSEQ_zero";  | 
|
267  | 
val NSsummable_comparison_test = thm "NSsummable_comparison_test";  | 
|
268  | 
val NSsummable_rabs_comparison_test = thm "NSsummable_rabs_comparison_test";  | 
|
269  | 
*}  | 
|
270  | 
||
| 10751 | 271  | 
end  |