| author | mengj | 
| Wed, 19 Oct 2005 10:25:46 +0200 | |
| changeset 17907 | c20e4bddcb11 | 
| parent 17332 | 4910cf8c0cd2 | 
| child 19765 | dfe940911617 | 
| permissions | -rw-r--r-- | 
| 13958 | 1  | 
(* Title : HTranscendental.thy  | 
2  | 
Author : Jacques D. Fleuriot  | 
|
3  | 
Copyright : 2001 University of Edinburgh  | 
|
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
4  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
5  | 
Converted to Isar and polished by lcp  | 
| 13958 | 6  | 
*)  | 
7  | 
||
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
8  | 
header{*Nonstandard Extensions of Transcendental Functions*}
 | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
9  | 
|
| 15131 | 10  | 
theory HTranscendental  | 
| 15140 | 11  | 
imports Transcendental Integration  | 
| 15131 | 12  | 
begin  | 
| 13958 | 13  | 
|
| 15013 | 14  | 
text{*really belongs in Transcendental*}
 | 
15  | 
lemma sqrt_divide_self_eq:  | 
|
16  | 
assumes nneg: "0 \<le> x"  | 
|
17  | 
shows "sqrt x / x = inverse (sqrt x)"  | 
|
18  | 
proof cases  | 
|
19  | 
assume "x=0" thus ?thesis by simp  | 
|
20  | 
next  | 
|
21  | 
assume nz: "x\<noteq>0"  | 
|
22  | 
hence pos: "0<x" using nneg by arith  | 
|
23  | 
show ?thesis  | 
|
24  | 
proof (rule right_inverse_eq [THEN iffD1, THEN sym])  | 
|
25  | 
show "sqrt x / x \<noteq> 0" by (simp add: divide_inverse nneg nz)  | 
|
26  | 
show "inverse (sqrt x) / (sqrt x / x) = 1"  | 
|
27  | 
by (simp add: divide_inverse mult_assoc [symmetric]  | 
|
28  | 
power2_eq_square [symmetric] real_inv_sqrt_pow2 pos nz)  | 
|
29  | 
qed  | 
|
30  | 
qed  | 
|
31  | 
||
32  | 
||
| 13958 | 33  | 
constdefs  | 
34  | 
||
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
35  | 
exphr :: "real => hypreal"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
36  | 
    --{*define exponential function using standard part *}
 | 
| 13958 | 37  | 
"exphr x == st(sumhr (0, whn, %n. inverse(real (fact n)) * (x ^ n)))"  | 
38  | 
||
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
39  | 
sinhr :: "real => hypreal"  | 
| 13958 | 40  | 
"sinhr x == st(sumhr (0, whn, %n. (if even(n) then 0 else  | 
41  | 
((-1) ^ ((n - 1) div 2))/(real (fact n))) * (x ^ n)))"  | 
|
42  | 
||
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
43  | 
coshr :: "real => hypreal"  | 
| 13958 | 44  | 
"coshr x == st(sumhr (0, whn, %n. (if even(n) then  | 
45  | 
((-1) ^ (n div 2))/(real (fact n)) else 0) * x ^ n))"  | 
|
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
46  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
47  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
48  | 
subsection{*Nonstandard Extension of Square Root Function*}
 | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
49  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
50  | 
lemma STAR_sqrt_zero [simp]: "( *f* sqrt) 0 = 0"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
51  | 
by (simp add: starfun star_n_zero_num)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
52  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
53  | 
lemma STAR_sqrt_one [simp]: "( *f* sqrt) 1 = 1"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
54  | 
by (simp add: starfun star_n_one_num)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
55  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
56  | 
lemma hypreal_sqrt_pow2_iff: "(( *f* sqrt)(x) ^ 2 = x) = (0 \<le> x)"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
57  | 
apply (cases x)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
58  | 
apply (auto simp add: star_n_le star_n_zero_num starfun hrealpow star_n_eq_iff  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
59  | 
simp del: hpowr_Suc realpow_Suc)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
60  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
61  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
62  | 
lemma hypreal_sqrt_gt_zero_pow2: "!!x. 0 < x ==> ( *f* sqrt) (x) ^ 2 = x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
63  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
64  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
65  | 
lemma hypreal_sqrt_pow2_gt_zero: "0 < x ==> 0 < ( *f* sqrt) (x) ^ 2"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
66  | 
by (frule hypreal_sqrt_gt_zero_pow2, auto)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
67  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
68  | 
lemma hypreal_sqrt_not_zero: "0 < x ==> ( *f* sqrt) (x) \<noteq> 0"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
69  | 
apply (frule hypreal_sqrt_pow2_gt_zero)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
70  | 
apply (auto simp add: numeral_2_eq_2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
71  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
72  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
73  | 
lemma hypreal_inverse_sqrt_pow2:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
74  | 
"0 < x ==> inverse (( *f* sqrt)(x)) ^ 2 = inverse x"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
75  | 
apply (cut_tac n1 = 2 and a1 = "( *f* sqrt) x" in power_inverse [symmetric])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
76  | 
apply (auto dest: hypreal_sqrt_gt_zero_pow2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
77  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
78  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
79  | 
lemma hypreal_sqrt_mult_distrib:  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
80  | 
"!!x y. [|0 < x; 0 <y |] ==>  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
81  | 
( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
82  | 
apply transfer  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
83  | 
apply (auto intro: real_sqrt_mult_distrib)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
84  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
85  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
86  | 
lemma hypreal_sqrt_mult_distrib2:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
87  | 
"[|0\<le>x; 0\<le>y |] ==>  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
88  | 
( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
89  | 
by (auto intro: hypreal_sqrt_mult_distrib simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
90  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
91  | 
lemma hypreal_sqrt_approx_zero [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
92  | 
"0 < x ==> (( *f* sqrt)(x) @= 0) = (x @= 0)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
93  | 
apply (auto simp add: mem_infmal_iff [symmetric])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
94  | 
apply (rule hypreal_sqrt_gt_zero_pow2 [THEN subst])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
95  | 
apply (auto intro: Infinitesimal_mult  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
96  | 
dest!: hypreal_sqrt_gt_zero_pow2 [THEN ssubst]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
97  | 
simp add: numeral_2_eq_2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
98  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
99  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
100  | 
lemma hypreal_sqrt_approx_zero2 [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
101  | 
"0 \<le> x ==> (( *f* sqrt)(x) @= 0) = (x @= 0)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
102  | 
by (auto simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
103  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
104  | 
lemma hypreal_sqrt_sum_squares [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
105  | 
"(( *f* sqrt)(x*x + y*y + z*z) @= 0) = (x*x + y*y + z*z @= 0)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
106  | 
apply (rule hypreal_sqrt_approx_zero2)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
107  | 
apply (rule add_nonneg_nonneg)+  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
108  | 
apply (auto simp add: zero_le_square)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
109  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
110  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
111  | 
lemma hypreal_sqrt_sum_squares2 [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
112  | 
"(( *f* sqrt)(x*x + y*y) @= 0) = (x*x + y*y @= 0)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
113  | 
apply (rule hypreal_sqrt_approx_zero2)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
114  | 
apply (rule add_nonneg_nonneg)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
115  | 
apply (auto simp add: zero_le_square)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
116  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
117  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
118  | 
lemma hypreal_sqrt_gt_zero: "!!x. 0 < x ==> 0 < ( *f* sqrt)(x)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
119  | 
apply transfer  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
120  | 
apply (auto intro: real_sqrt_gt_zero)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
121  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
122  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
123  | 
lemma hypreal_sqrt_ge_zero: "0 \<le> x ==> 0 \<le> ( *f* sqrt)(x)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
124  | 
by (auto intro: hypreal_sqrt_gt_zero simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
125  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
126  | 
lemma hypreal_sqrt_hrabs [simp]: "!!x. ( *f* sqrt)(x ^ 2) = abs(x)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
127  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
128  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
129  | 
lemma hypreal_sqrt_hrabs2 [simp]: "!!x. ( *f* sqrt)(x*x) = abs(x)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
130  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
131  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
132  | 
lemma hypreal_sqrt_hyperpow_hrabs [simp]:  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
133  | 
"!!x. ( *f* sqrt)(x pow (hypnat_of_nat 2)) = abs(x)"  | 
| 
17332
 
4910cf8c0cd2
added theorem attributes transfer_intro, transfer_unfold, transfer_refold; simplified some proofs; some rearranging
 
huffman 
parents: 
17318 
diff
changeset
 | 
134  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
135  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
136  | 
lemma star_sqrt_HFinite: "\<lbrakk>x \<in> HFinite; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
137  | 
apply (rule HFinite_square_iff [THEN iffD1])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
138  | 
apply (simp only: hypreal_sqrt_mult_distrib2 [symmetric], simp)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
139  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
140  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
141  | 
lemma st_hypreal_sqrt:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
142  | 
"[| x \<in> HFinite; 0 \<le> x |] ==> st(( *f* sqrt) x) = ( *f* sqrt)(st x)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
143  | 
apply (rule power_inject_base [where n=1])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
144  | 
apply (auto intro!: st_zero_le hypreal_sqrt_ge_zero)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
145  | 
apply (rule st_mult [THEN subst])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
146  | 
apply (rule_tac [3] hypreal_sqrt_mult_distrib2 [THEN subst])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
147  | 
apply (rule_tac [5] hypreal_sqrt_mult_distrib2 [THEN subst])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
148  | 
apply (auto simp add: st_hrabs st_zero_le star_sqrt_HFinite)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
149  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
150  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
151  | 
lemma hypreal_sqrt_sum_squares_ge1 [simp]: "!!x y. x \<le> ( *f* sqrt)(x ^ 2 + y ^ 2)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
152  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
153  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
154  | 
lemma HFinite_hypreal_sqrt:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
155  | 
"[| 0 \<le> x; x \<in> HFinite |] ==> ( *f* sqrt) x \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
156  | 
apply (auto simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
157  | 
apply (rule HFinite_square_iff [THEN iffD1])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
158  | 
apply (drule hypreal_sqrt_gt_zero_pow2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
159  | 
apply (simp add: numeral_2_eq_2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
160  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
161  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
162  | 
lemma HFinite_hypreal_sqrt_imp_HFinite:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
163  | 
"[| 0 \<le> x; ( *f* sqrt) x \<in> HFinite |] ==> x \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
164  | 
apply (auto simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
165  | 
apply (drule HFinite_square_iff [THEN iffD2])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
166  | 
apply (drule hypreal_sqrt_gt_zero_pow2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
167  | 
apply (simp add: numeral_2_eq_2 del: HFinite_square_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
168  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
169  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
170  | 
lemma HFinite_hypreal_sqrt_iff [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
171  | 
"0 \<le> x ==> (( *f* sqrt) x \<in> HFinite) = (x \<in> HFinite)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
172  | 
by (blast intro: HFinite_hypreal_sqrt HFinite_hypreal_sqrt_imp_HFinite)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
173  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
174  | 
lemma HFinite_sqrt_sum_squares [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
175  | 
"(( *f* sqrt)(x*x + y*y) \<in> HFinite) = (x*x + y*y \<in> HFinite)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
176  | 
apply (rule HFinite_hypreal_sqrt_iff)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
177  | 
apply (rule add_nonneg_nonneg)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
178  | 
apply (auto simp add: zero_le_square)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
179  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
180  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
181  | 
lemma Infinitesimal_hypreal_sqrt:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
182  | 
"[| 0 \<le> x; x \<in> Infinitesimal |] ==> ( *f* sqrt) x \<in> Infinitesimal"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
183  | 
apply (auto simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
184  | 
apply (rule Infinitesimal_square_iff [THEN iffD2])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
185  | 
apply (drule hypreal_sqrt_gt_zero_pow2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
186  | 
apply (simp add: numeral_2_eq_2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
187  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
188  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
189  | 
lemma Infinitesimal_hypreal_sqrt_imp_Infinitesimal:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
190  | 
"[| 0 \<le> x; ( *f* sqrt) x \<in> Infinitesimal |] ==> x \<in> Infinitesimal"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
191  | 
apply (auto simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
192  | 
apply (drule Infinitesimal_square_iff [THEN iffD1])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
193  | 
apply (drule hypreal_sqrt_gt_zero_pow2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
194  | 
apply (simp add: numeral_2_eq_2 del: Infinitesimal_square_iff [symmetric])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
195  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
196  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
197  | 
lemma Infinitesimal_hypreal_sqrt_iff [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
198  | 
"0 \<le> x ==> (( *f* sqrt) x \<in> Infinitesimal) = (x \<in> Infinitesimal)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
199  | 
by (blast intro: Infinitesimal_hypreal_sqrt_imp_Infinitesimal Infinitesimal_hypreal_sqrt)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
200  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
201  | 
lemma Infinitesimal_sqrt_sum_squares [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
202  | 
"(( *f* sqrt)(x*x + y*y) \<in> Infinitesimal) = (x*x + y*y \<in> Infinitesimal)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
203  | 
apply (rule Infinitesimal_hypreal_sqrt_iff)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
204  | 
apply (rule add_nonneg_nonneg)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
205  | 
apply (auto simp add: zero_le_square)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
206  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
207  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
208  | 
lemma HInfinite_hypreal_sqrt:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
209  | 
"[| 0 \<le> x; x \<in> HInfinite |] ==> ( *f* sqrt) x \<in> HInfinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
210  | 
apply (auto simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
211  | 
apply (rule HInfinite_square_iff [THEN iffD1])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
212  | 
apply (drule hypreal_sqrt_gt_zero_pow2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
213  | 
apply (simp add: numeral_2_eq_2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
214  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
215  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
216  | 
lemma HInfinite_hypreal_sqrt_imp_HInfinite:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
217  | 
"[| 0 \<le> x; ( *f* sqrt) x \<in> HInfinite |] ==> x \<in> HInfinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
218  | 
apply (auto simp add: order_le_less)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
219  | 
apply (drule HInfinite_square_iff [THEN iffD2])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
220  | 
apply (drule hypreal_sqrt_gt_zero_pow2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
221  | 
apply (simp add: numeral_2_eq_2 del: HInfinite_square_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
222  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
223  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
224  | 
lemma HInfinite_hypreal_sqrt_iff [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
225  | 
"0 \<le> x ==> (( *f* sqrt) x \<in> HInfinite) = (x \<in> HInfinite)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
226  | 
by (blast intro: HInfinite_hypreal_sqrt HInfinite_hypreal_sqrt_imp_HInfinite)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
227  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
228  | 
lemma HInfinite_sqrt_sum_squares [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
229  | 
"(( *f* sqrt)(x*x + y*y) \<in> HInfinite) = (x*x + y*y \<in> HInfinite)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
230  | 
apply (rule HInfinite_hypreal_sqrt_iff)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
231  | 
apply (rule add_nonneg_nonneg)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
232  | 
apply (auto simp add: zero_le_square)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
233  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
234  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
235  | 
lemma HFinite_exp [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
236  | 
"sumhr (0, whn, %n. inverse (real (fact n)) * x ^ n) \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
237  | 
by (auto intro!: NSBseq_HFinite_hypreal NSconvergent_NSBseq  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
238  | 
simp add: starfunNat_sumr [symmetric] starfun hypnat_omega_def  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
239  | 
convergent_NSconvergent_iff [symmetric]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
240  | 
summable_convergent_sumr_iff [symmetric] summable_exp)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
241  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
242  | 
lemma exphr_zero [simp]: "exphr 0 = 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
243  | 
apply (simp add: exphr_def sumhr_split_add  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
244  | 
[OF hypnat_one_less_hypnat_omega, symmetric])  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
245  | 
apply (simp add: sumhr star_n_zero_num starfun star_n_one_num star_n_add  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
246  | 
hypnat_omega_def  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
247  | 
del: OrderedGroup.add_0)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
248  | 
apply (simp add: star_n_one_num [symmetric])  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
249  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
250  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
251  | 
lemma coshr_zero [simp]: "coshr 0 = 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
252  | 
apply (simp add: coshr_def sumhr_split_add  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
253  | 
[OF hypnat_one_less_hypnat_omega, symmetric])  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
254  | 
apply (simp add: sumhr star_n_zero_num star_n_one_num hypnat_omega_def)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
255  | 
apply (simp add: star_n_one_num [symmetric] star_n_zero_num [symmetric])  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
256  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
257  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
258  | 
lemma STAR_exp_zero_approx_one [simp]: "( *f* exp) 0 @= 1"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
259  | 
by (simp add: star_n_zero_num star_n_one_num starfun)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
260  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
261  | 
lemma STAR_exp_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* exp) x @= 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
262  | 
apply (case_tac "x = 0")  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
263  | 
apply (cut_tac [2] x = 0 in DERIV_exp)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
264  | 
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
265  | 
apply (drule_tac x = x in bspec, auto)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
266  | 
apply (drule_tac c = x in approx_mult1)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
267  | 
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
268  | 
simp add: mult_assoc)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
269  | 
apply (rule approx_add_right_cancel [where d="-1"])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
270  | 
apply (rule approx_sym [THEN [2] approx_trans2])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
271  | 
apply (auto simp add: mem_infmal_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
272  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
273  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
274  | 
lemma STAR_exp_epsilon [simp]: "( *f* exp) epsilon @= 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
275  | 
by (auto intro: STAR_exp_Infinitesimal)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
276  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
277  | 
lemma STAR_exp_add: "!!x y. ( *f* exp)(x + y) = ( *f* exp) x * ( *f* exp) y"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
278  | 
by (transfer, rule exp_add)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
279  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
280  | 
lemma exphr_hypreal_of_real_exp_eq: "exphr x = hypreal_of_real (exp x)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
281  | 
apply (simp add: exphr_def)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
282  | 
apply (rule st_hypreal_of_real [THEN subst])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
283  | 
apply (rule approx_st_eq, auto)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
284  | 
apply (rule approx_minus_iff [THEN iffD2])  | 
| 17299 | 285  | 
apply (simp only: mem_infmal_iff [symmetric])  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
286  | 
apply (auto simp add: mem_infmal_iff [symmetric] star_of_def star_n_zero_num hypnat_omega_def sumhr star_n_minus star_n_add)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
287  | 
apply (rule NSLIMSEQ_zero_Infinitesimal_hypreal)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
288  | 
apply (insert exp_converges [of x])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
289  | 
apply (simp add: sums_def)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
290  | 
apply (drule LIMSEQ_const [THEN [2] LIMSEQ_add, where b = "- exp x"])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
291  | 
apply (simp add: LIMSEQ_NSLIMSEQ_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
292  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
293  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
294  | 
lemma starfun_exp_ge_add_one_self [simp]: "!!x. 0 \<le> x ==> (1 + x) \<le> ( *f* exp) x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
295  | 
by (transfer, rule exp_ge_add_one_self_aux)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
296  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
297  | 
(* exp (oo) is infinite *)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
298  | 
lemma starfun_exp_HInfinite:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
299  | 
"[| x \<in> HInfinite; 0 \<le> x |] ==> ( *f* exp) x \<in> HInfinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
300  | 
apply (frule starfun_exp_ge_add_one_self)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
301  | 
apply (rule HInfinite_ge_HInfinite, assumption)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
302  | 
apply (rule order_trans [of _ "1+x"], auto)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
303  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
304  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
305  | 
lemma starfun_exp_minus: "!!x. ( *f* exp) (-x) = inverse(( *f* exp) x)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
306  | 
by (transfer, rule exp_minus)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
307  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
308  | 
(* exp (-oo) is infinitesimal *)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
309  | 
lemma starfun_exp_Infinitesimal:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
310  | 
"[| x \<in> HInfinite; x \<le> 0 |] ==> ( *f* exp) x \<in> Infinitesimal"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
311  | 
apply (subgoal_tac "\<exists>y. x = - y")  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
312  | 
apply (rule_tac [2] x = "- x" in exI)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
313  | 
apply (auto intro!: HInfinite_inverse_Infinitesimal starfun_exp_HInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
314  | 
simp add: starfun_exp_minus HInfinite_minus_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
315  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
316  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
317  | 
lemma starfun_exp_gt_one [simp]: "!!x. 0 < x ==> 1 < ( *f* exp) x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
318  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
319  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
320  | 
(* needs derivative of inverse function  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
321  | 
TRY a NS one today!!!  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
322  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
323  | 
Goal "x @= 1 ==> ( *f* ln) x @= 1"  | 
| 17298 | 324  | 
by (res_inst_tac [("z","x")] eq_Abs_star 1);
 | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
325  | 
by (auto_tac (claset(),simpset() addsimps [hypreal_one_def]));  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
326  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
327  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
328  | 
Goalw [nsderiv_def] "0r < x ==> NSDERIV ln x :> inverse x";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
329  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
330  | 
*)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
331  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
332  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
333  | 
lemma starfun_ln_exp [simp]: "!!x. ( *f* ln) (( *f* exp) x) = x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
334  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
335  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
336  | 
lemma starfun_exp_ln_iff [simp]: "!!x. (( *f* exp)(( *f* ln) x) = x) = (0 < x)"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
337  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
338  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
339  | 
lemma starfun_exp_ln_eq: "( *f* exp) u = x ==> ( *f* ln) x = u"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
340  | 
by auto  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
341  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
342  | 
lemma starfun_ln_less_self [simp]: "!!x. 0 < x ==> ( *f* ln) x < x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
343  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
344  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
345  | 
lemma starfun_ln_ge_zero [simp]: "!!x. 1 \<le> x ==> 0 \<le> ( *f* ln) x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
346  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
347  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
348  | 
lemma starfun_ln_gt_zero [simp]: "!!x .1 < x ==> 0 < ( *f* ln) x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
349  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
350  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
351  | 
lemma starfun_ln_not_eq_zero [simp]: "!!x. [| 0 < x; x \<noteq> 1 |] ==> ( *f* ln) x \<noteq> 0"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
352  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
353  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
354  | 
lemma starfun_ln_HFinite: "[| x \<in> HFinite; 1 \<le> x |] ==> ( *f* ln) x \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
355  | 
apply (rule HFinite_bounded)  | 
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
356  | 
apply assumption  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
357  | 
apply (simp_all add: starfun_ln_less_self order_less_imp_le)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
358  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
359  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
360  | 
lemma starfun_ln_inverse: "!!x. 0 < x ==> ( *f* ln) (inverse x) = -( *f* ln) x"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
361  | 
by (transfer, rule ln_inverse)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
362  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
363  | 
lemma starfun_exp_HFinite: "x \<in> HFinite ==> ( *f* exp) x \<in> HFinite"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
364  | 
apply (cases x)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
365  | 
apply (auto simp add: starfun HFinite_FreeUltrafilterNat_iff)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
366  | 
apply (rule bexI [OF _ Rep_star_star_n], auto)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
367  | 
apply (rule_tac x = "exp u" in exI)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
368  | 
apply (ultra, arith)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
369  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
370  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
371  | 
lemma starfun_exp_add_HFinite_Infinitesimal_approx:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
372  | 
"[|x \<in> Infinitesimal; z \<in> HFinite |] ==> ( *f* exp) (z + x) @= ( *f* exp) z"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
373  | 
apply (simp add: STAR_exp_add)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
374  | 
apply (frule STAR_exp_Infinitesimal)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
375  | 
apply (drule approx_mult2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
376  | 
apply (auto intro: starfun_exp_HFinite)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
377  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
378  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
379  | 
(* using previous result to get to result *)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
380  | 
lemma starfun_ln_HInfinite:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
381  | 
"[| x \<in> HInfinite; 0 < x |] ==> ( *f* ln) x \<in> HInfinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
382  | 
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
383  | 
apply (drule starfun_exp_HFinite)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
384  | 
apply (simp add: starfun_exp_ln_iff [THEN iffD2] HFinite_HInfinite_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
385  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
386  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
387  | 
lemma starfun_exp_HInfinite_Infinitesimal_disj:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
388  | 
"x \<in> HInfinite ==> ( *f* exp) x \<in> HInfinite | ( *f* exp) x \<in> Infinitesimal"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
389  | 
apply (insert linorder_linear [of x 0])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
390  | 
apply (auto intro: starfun_exp_HInfinite starfun_exp_Infinitesimal)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
391  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
392  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
393  | 
(* check out this proof!!! *)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
394  | 
lemma starfun_ln_HFinite_not_Infinitesimal:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
395  | 
"[| x \<in> HFinite - Infinitesimal; 0 < x |] ==> ( *f* ln) x \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
396  | 
apply (rule ccontr, drule HInfinite_HFinite_iff [THEN iffD2])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
397  | 
apply (drule starfun_exp_HInfinite_Infinitesimal_disj)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
398  | 
apply (simp add: starfun_exp_ln_iff [symmetric] HInfinite_HFinite_iff  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
399  | 
del: starfun_exp_ln_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
400  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
401  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
402  | 
(* we do proof by considering ln of 1/x *)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
403  | 
lemma starfun_ln_Infinitesimal_HInfinite:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
404  | 
"[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* ln) x \<in> HInfinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
405  | 
apply (drule Infinitesimal_inverse_HInfinite)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
406  | 
apply (frule positive_imp_inverse_positive)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
407  | 
apply (drule_tac [2] starfun_ln_HInfinite)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
408  | 
apply (auto simp add: starfun_ln_inverse HInfinite_minus_iff)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
409  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
410  | 
|
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
411  | 
lemma starfun_ln_less_zero: "!!x. [| 0 < x; x < 1 |] ==> ( *f* ln) x < 0"  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
412  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
413  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
414  | 
lemma starfun_ln_Infinitesimal_less_zero:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
415  | 
"[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* ln) x < 0"  | 
| 15229 | 416  | 
by (auto intro!: starfun_ln_less_zero simp add: Infinitesimal_def)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
417  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
418  | 
lemma starfun_ln_HInfinite_gt_zero:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
419  | 
"[| x \<in> HInfinite; 0 < x |] ==> 0 < ( *f* ln) x"  | 
| 15229 | 420  | 
by (auto intro!: starfun_ln_gt_zero simp add: HInfinite_def)  | 
421  | 
||
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
422  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
423  | 
(*  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
424  | 
Goalw [NSLIM_def] "(%h. ((x powr h) - 1) / h) -- 0 --NS> ln x"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
425  | 
*)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
426  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
427  | 
lemma HFinite_sin [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
428  | 
"sumhr (0, whn, %n. (if even(n) then 0 else  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
429  | 
((- 1) ^ ((n - 1) div 2))/(real (fact n))) * x ^ n)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
430  | 
\<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
431  | 
apply (auto intro!: NSBseq_HFinite_hypreal NSconvergent_NSBseq  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
432  | 
simp add: starfunNat_sumr [symmetric] starfun hypnat_omega_def  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
433  | 
convergent_NSconvergent_iff [symmetric]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
434  | 
summable_convergent_sumr_iff [symmetric])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
435  | 
apply (simp only: One_nat_def summable_sin)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
436  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
437  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
438  | 
lemma STAR_sin_zero [simp]: "( *f* sin) 0 = 0"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
439  | 
by (transfer, simp)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
440  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
441  | 
lemma STAR_sin_Infinitesimal [simp]: "x \<in> Infinitesimal ==> ( *f* sin) x @= x"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
442  | 
apply (case_tac "x = 0")  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
443  | 
apply (cut_tac [2] x = 0 in DERIV_sin)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
444  | 
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
445  | 
apply (drule bspec [where x = x], auto)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
446  | 
apply (drule approx_mult1 [where c = x])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
447  | 
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
448  | 
simp add: mult_assoc)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
449  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
450  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
451  | 
lemma HFinite_cos [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
452  | 
"sumhr (0, whn, %n. (if even(n) then  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
453  | 
((- 1) ^ (n div 2))/(real (fact n)) else  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
454  | 
0) * x ^ n) \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
455  | 
by (auto intro!: NSBseq_HFinite_hypreal NSconvergent_NSBseq  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
456  | 
simp add: starfunNat_sumr [symmetric] starfun hypnat_omega_def  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
457  | 
convergent_NSconvergent_iff [symmetric]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
458  | 
summable_convergent_sumr_iff [symmetric] summable_cos)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
459  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
460  | 
lemma STAR_cos_zero [simp]: "( *f* cos) 0 = 1"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
461  | 
by (simp add: starfun star_n_zero_num star_n_one_num)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
462  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
463  | 
lemma STAR_cos_Infinitesimal [simp]: "x \<in> Infinitesimal ==> ( *f* cos) x @= 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
464  | 
apply (case_tac "x = 0")  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
465  | 
apply (cut_tac [2] x = 0 in DERIV_cos)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
466  | 
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
467  | 
apply (drule bspec [where x = x])  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
468  | 
apply auto  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
469  | 
apply (drule approx_mult1 [where c = x])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
470  | 
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
471  | 
simp add: mult_assoc)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
472  | 
apply (rule approx_add_right_cancel [where d = "-1"], auto)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
473  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
474  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
475  | 
lemma STAR_tan_zero [simp]: "( *f* tan) 0 = 0"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
476  | 
by (simp add: starfun star_n_zero_num)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
477  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
478  | 
lemma STAR_tan_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* tan) x @= x"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
479  | 
apply (case_tac "x = 0")  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
480  | 
apply (cut_tac [2] x = 0 in DERIV_tan)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
481  | 
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
482  | 
apply (drule bspec [where x = x], auto)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
483  | 
apply (drule approx_mult1 [where c = x])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
484  | 
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
485  | 
simp add: mult_assoc)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
486  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
487  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
488  | 
lemma STAR_sin_cos_Infinitesimal_mult:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
489  | 
"x \<in> Infinitesimal ==> ( *f* sin) x * ( *f* cos) x @= x"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
490  | 
apply (insert approx_mult_HFinite [of "( *f* sin) x" _ "( *f* cos) x" 1])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
491  | 
apply (simp add: Infinitesimal_subset_HFinite [THEN subsetD])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
492  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
493  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
494  | 
lemma HFinite_pi: "hypreal_of_real pi \<in> HFinite"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
495  | 
by simp  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
496  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
497  | 
(* lemmas *)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
498  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
499  | 
lemma lemma_split_hypreal_of_real:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
500  | 
"N \<in> HNatInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
501  | 
==> hypreal_of_real a =  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
502  | 
hypreal_of_hypnat N * (inverse(hypreal_of_hypnat N) * hypreal_of_real a)"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
503  | 
by (simp add: mult_assoc [symmetric] HNatInfinite_not_eq_zero)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
504  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
505  | 
lemma STAR_sin_Infinitesimal_divide:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
506  | 
"[|x \<in> Infinitesimal; x \<noteq> 0 |] ==> ( *f* sin) x/x @= 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
507  | 
apply (cut_tac x = 0 in DERIV_sin)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
508  | 
apply (simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
509  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
510  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
511  | 
(*------------------------------------------------------------------------*)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
512  | 
(* sin* (1/n) * 1/(1/n) @= 1 for n = oo *)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
513  | 
(*------------------------------------------------------------------------*)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
514  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
515  | 
lemma lemma_sin_pi:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
516  | 
"n \<in> HNatInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
517  | 
==> ( *f* sin) (inverse (hypreal_of_hypnat n))/(inverse (hypreal_of_hypnat n)) @= 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
518  | 
apply (rule STAR_sin_Infinitesimal_divide)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
519  | 
apply (auto simp add: HNatInfinite_not_eq_zero)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
520  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
521  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
522  | 
lemma STAR_sin_inverse_HNatInfinite:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
523  | 
"n \<in> HNatInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
524  | 
==> ( *f* sin) (inverse (hypreal_of_hypnat n)) * hypreal_of_hypnat n @= 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
525  | 
apply (frule lemma_sin_pi)  | 
| 
14430
 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 
paulson 
parents: 
14420 
diff
changeset
 | 
526  | 
apply (simp add: divide_inverse)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
527  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
528  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
529  | 
lemma Infinitesimal_pi_divide_HNatInfinite:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
530  | 
"N \<in> HNatInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
531  | 
==> hypreal_of_real pi/(hypreal_of_hypnat N) \<in> Infinitesimal"  | 
| 
14430
 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 
paulson 
parents: 
14420 
diff
changeset
 | 
532  | 
apply (simp add: divide_inverse)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
533  | 
apply (auto intro: Infinitesimal_HFinite_mult2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
534  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
535  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
536  | 
lemma pi_divide_HNatInfinite_not_zero [simp]:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
537  | 
"N \<in> HNatInfinite ==> hypreal_of_real pi/(hypreal_of_hypnat N) \<noteq> 0"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
538  | 
by (simp add: HNatInfinite_not_eq_zero)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
539  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
540  | 
lemma STAR_sin_pi_divide_HNatInfinite_approx_pi:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
541  | 
"n \<in> HNatInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
542  | 
==> ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) * hypreal_of_hypnat n  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
543  | 
@= hypreal_of_real pi"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
544  | 
apply (frule STAR_sin_Infinitesimal_divide  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
545  | 
[OF Infinitesimal_pi_divide_HNatInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
546  | 
pi_divide_HNatInfinite_not_zero])  | 
| 15539 | 547  | 
apply (auto)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
548  | 
apply (rule approx_SReal_mult_cancel [of "inverse (hypreal_of_real pi)"])  | 
| 
14430
 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 
paulson 
parents: 
14420 
diff
changeset
 | 
549  | 
apply (auto intro: SReal_inverse simp add: divide_inverse mult_ac)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
550  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
551  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
552  | 
lemma STAR_sin_pi_divide_HNatInfinite_approx_pi2:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
553  | 
"n \<in> HNatInfinite  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
554  | 
==> hypreal_of_hypnat n *  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
555  | 
( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n))  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
556  | 
@= hypreal_of_real pi"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
557  | 
apply (rule mult_commute [THEN subst])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
558  | 
apply (erule STAR_sin_pi_divide_HNatInfinite_approx_pi)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
559  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
560  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
561  | 
lemma starfunNat_pi_divide_n_Infinitesimal:  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
562  | 
"N \<in> HNatInfinite ==> ( *f* (%x. pi / real x)) N \<in> Infinitesimal"  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
563  | 
by (auto intro!: Infinitesimal_HFinite_mult2  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
564  | 
simp add: starfun_mult [symmetric] divide_inverse  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
565  | 
starfun_inverse [symmetric] starfunNat_real_of_nat)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
566  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
567  | 
lemma STAR_sin_pi_divide_n_approx:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
568  | 
"N \<in> HNatInfinite ==>  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
569  | 
( *f* sin) (( *f* (%x. pi / real x)) N) @=  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
570  | 
hypreal_of_real pi/(hypreal_of_hypnat N)"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
571  | 
apply (simp add: starfunNat_real_of_nat [symmetric])  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
572  | 
apply (rule STAR_sin_Infinitesimal)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
573  | 
apply (simp add: divide_inverse)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
574  | 
apply (rule Infinitesimal_HFinite_mult2)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
575  | 
apply (subst starfun_inverse)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
576  | 
apply (erule starfunNat_inverse_real_of_nat_Infinitesimal)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
577  | 
apply simp  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
578  | 
done  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
579  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
580  | 
lemma NSLIMSEQ_sin_pi: "(%n. real n * sin (pi / real n)) ----NS> pi"  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
581  | 
apply (auto simp add: NSLIMSEQ_def starfun_mult [symmetric] starfunNat_real_of_nat)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
582  | 
apply (rule_tac f1 = sin in starfun_o2 [THEN subst])  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
583  | 
apply (auto simp add: starfun_mult [symmetric] starfunNat_real_of_nat divide_inverse)  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
584  | 
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
585  | 
apply (auto dest: STAR_sin_pi_divide_HNatInfinite_approx_pi  | 
| 
14430
 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 
paulson 
parents: 
14420 
diff
changeset
 | 
586  | 
simp add: starfunNat_real_of_nat mult_commute divide_inverse)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
587  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
588  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
589  | 
lemma NSLIMSEQ_cos_one: "(%n. cos (pi / real n))----NS> 1"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
590  | 
apply (simp add: NSLIMSEQ_def, auto)  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
591  | 
apply (rule_tac f1 = cos in starfun_o2 [THEN subst])  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
592  | 
apply (rule STAR_cos_Infinitesimal)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
593  | 
apply (auto intro!: Infinitesimal_HFinite_mult2  | 
| 
17318
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
594  | 
simp add: starfun_mult [symmetric] divide_inverse  | 
| 
 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 
huffman 
parents: 
17299 
diff
changeset
 | 
595  | 
starfun_inverse [symmetric] starfunNat_real_of_nat)  | 
| 
14420
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
596  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
597  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
598  | 
lemma NSLIMSEQ_sin_cos_pi:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
599  | 
"(%n. real n * sin (pi / real n) * cos (pi / real n)) ----NS> pi"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
600  | 
by (insert NSLIMSEQ_mult [OF NSLIMSEQ_sin_pi NSLIMSEQ_cos_one], simp)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
601  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
602  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
603  | 
text{*A familiar approximation to @{term "cos x"} when @{term x} is small*}
 | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
604  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
605  | 
lemma STAR_cos_Infinitesimal_approx:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
606  | 
"x \<in> Infinitesimal ==> ( *f* cos) x @= 1 - x ^ 2"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
607  | 
apply (rule STAR_cos_Infinitesimal [THEN approx_trans])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
608  | 
apply (auto simp add: Infinitesimal_approx_minus [symmetric]  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
609  | 
diff_minus add_assoc [symmetric] numeral_2_eq_2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
610  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
611  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
612  | 
lemma STAR_cos_Infinitesimal_approx2:  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
613  | 
"x \<in> Infinitesimal ==> ( *f* cos) x @= 1 - (x ^ 2)/2"  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
614  | 
apply (rule STAR_cos_Infinitesimal [THEN approx_trans])  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
615  | 
apply (auto intro: Infinitesimal_SReal_divide  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
616  | 
simp add: Infinitesimal_approx_minus [symmetric] numeral_2_eq_2)  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
617  | 
done  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
618  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
619  | 
ML  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
620  | 
{*
 | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
621  | 
val STAR_sqrt_zero = thm "STAR_sqrt_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
622  | 
val STAR_sqrt_one = thm "STAR_sqrt_one";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
623  | 
val hypreal_sqrt_pow2_iff = thm "hypreal_sqrt_pow2_iff";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
624  | 
val hypreal_sqrt_gt_zero_pow2 = thm "hypreal_sqrt_gt_zero_pow2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
625  | 
val hypreal_sqrt_pow2_gt_zero = thm "hypreal_sqrt_pow2_gt_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
626  | 
val hypreal_sqrt_not_zero = thm "hypreal_sqrt_not_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
627  | 
val hypreal_inverse_sqrt_pow2 = thm "hypreal_inverse_sqrt_pow2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
628  | 
val hypreal_sqrt_mult_distrib = thm "hypreal_sqrt_mult_distrib";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
629  | 
val hypreal_sqrt_mult_distrib2 = thm "hypreal_sqrt_mult_distrib2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
630  | 
val hypreal_sqrt_approx_zero = thm "hypreal_sqrt_approx_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
631  | 
val hypreal_sqrt_approx_zero2 = thm "hypreal_sqrt_approx_zero2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
632  | 
val hypreal_sqrt_sum_squares = thm "hypreal_sqrt_sum_squares";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
633  | 
val hypreal_sqrt_sum_squares2 = thm "hypreal_sqrt_sum_squares2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
634  | 
val hypreal_sqrt_gt_zero = thm "hypreal_sqrt_gt_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
635  | 
val hypreal_sqrt_ge_zero = thm "hypreal_sqrt_ge_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
636  | 
val hypreal_sqrt_hrabs = thm "hypreal_sqrt_hrabs";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
637  | 
val hypreal_sqrt_hrabs2 = thm "hypreal_sqrt_hrabs2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
638  | 
val hypreal_sqrt_hyperpow_hrabs = thm "hypreal_sqrt_hyperpow_hrabs";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
639  | 
val star_sqrt_HFinite = thm "star_sqrt_HFinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
640  | 
val st_hypreal_sqrt = thm "st_hypreal_sqrt";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
641  | 
val hypreal_sqrt_sum_squares_ge1 = thm "hypreal_sqrt_sum_squares_ge1";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
642  | 
val HFinite_hypreal_sqrt = thm "HFinite_hypreal_sqrt";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
643  | 
val HFinite_hypreal_sqrt_imp_HFinite = thm "HFinite_hypreal_sqrt_imp_HFinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
644  | 
val HFinite_hypreal_sqrt_iff = thm "HFinite_hypreal_sqrt_iff";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
645  | 
val HFinite_sqrt_sum_squares = thm "HFinite_sqrt_sum_squares";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
646  | 
val Infinitesimal_hypreal_sqrt = thm "Infinitesimal_hypreal_sqrt";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
647  | 
val Infinitesimal_hypreal_sqrt_imp_Infinitesimal = thm "Infinitesimal_hypreal_sqrt_imp_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
648  | 
val Infinitesimal_hypreal_sqrt_iff = thm "Infinitesimal_hypreal_sqrt_iff";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
649  | 
val Infinitesimal_sqrt_sum_squares = thm "Infinitesimal_sqrt_sum_squares";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
650  | 
val HInfinite_hypreal_sqrt = thm "HInfinite_hypreal_sqrt";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
651  | 
val HInfinite_hypreal_sqrt_imp_HInfinite = thm "HInfinite_hypreal_sqrt_imp_HInfinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
652  | 
val HInfinite_hypreal_sqrt_iff = thm "HInfinite_hypreal_sqrt_iff";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
653  | 
val HInfinite_sqrt_sum_squares = thm "HInfinite_sqrt_sum_squares";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
654  | 
val HFinite_exp = thm "HFinite_exp";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
655  | 
val exphr_zero = thm "exphr_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
656  | 
val coshr_zero = thm "coshr_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
657  | 
val STAR_exp_zero_approx_one = thm "STAR_exp_zero_approx_one";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
658  | 
val STAR_exp_Infinitesimal = thm "STAR_exp_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
659  | 
val STAR_exp_epsilon = thm "STAR_exp_epsilon";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
660  | 
val STAR_exp_add = thm "STAR_exp_add";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
661  | 
val exphr_hypreal_of_real_exp_eq = thm "exphr_hypreal_of_real_exp_eq";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
662  | 
val starfun_exp_ge_add_one_self = thm "starfun_exp_ge_add_one_self";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
663  | 
val starfun_exp_HInfinite = thm "starfun_exp_HInfinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
664  | 
val starfun_exp_minus = thm "starfun_exp_minus";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
665  | 
val starfun_exp_Infinitesimal = thm "starfun_exp_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
666  | 
val starfun_exp_gt_one = thm "starfun_exp_gt_one";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
667  | 
val starfun_ln_exp = thm "starfun_ln_exp";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
668  | 
val starfun_exp_ln_iff = thm "starfun_exp_ln_iff";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
669  | 
val starfun_exp_ln_eq = thm "starfun_exp_ln_eq";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
670  | 
val starfun_ln_less_self = thm "starfun_ln_less_self";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
671  | 
val starfun_ln_ge_zero = thm "starfun_ln_ge_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
672  | 
val starfun_ln_gt_zero = thm "starfun_ln_gt_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
673  | 
val starfun_ln_not_eq_zero = thm "starfun_ln_not_eq_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
674  | 
val starfun_ln_HFinite = thm "starfun_ln_HFinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
675  | 
val starfun_ln_inverse = thm "starfun_ln_inverse";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
676  | 
val starfun_exp_HFinite = thm "starfun_exp_HFinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
677  | 
val starfun_exp_add_HFinite_Infinitesimal_approx = thm "starfun_exp_add_HFinite_Infinitesimal_approx";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
678  | 
val starfun_ln_HInfinite = thm "starfun_ln_HInfinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
679  | 
val starfun_exp_HInfinite_Infinitesimal_disj = thm "starfun_exp_HInfinite_Infinitesimal_disj";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
680  | 
val starfun_ln_HFinite_not_Infinitesimal = thm "starfun_ln_HFinite_not_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
681  | 
val starfun_ln_Infinitesimal_HInfinite = thm "starfun_ln_Infinitesimal_HInfinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
682  | 
val starfun_ln_less_zero = thm "starfun_ln_less_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
683  | 
val starfun_ln_Infinitesimal_less_zero = thm "starfun_ln_Infinitesimal_less_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
684  | 
val starfun_ln_HInfinite_gt_zero = thm "starfun_ln_HInfinite_gt_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
685  | 
val HFinite_sin = thm "HFinite_sin";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
686  | 
val STAR_sin_zero = thm "STAR_sin_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
687  | 
val STAR_sin_Infinitesimal = thm "STAR_sin_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
688  | 
val HFinite_cos = thm "HFinite_cos";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
689  | 
val STAR_cos_zero = thm "STAR_cos_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
690  | 
val STAR_cos_Infinitesimal = thm "STAR_cos_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
691  | 
val STAR_tan_zero = thm "STAR_tan_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
692  | 
val STAR_tan_Infinitesimal = thm "STAR_tan_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
693  | 
val STAR_sin_cos_Infinitesimal_mult = thm "STAR_sin_cos_Infinitesimal_mult";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
694  | 
val HFinite_pi = thm "HFinite_pi";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
695  | 
val lemma_split_hypreal_of_real = thm "lemma_split_hypreal_of_real";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
696  | 
val STAR_sin_Infinitesimal_divide = thm "STAR_sin_Infinitesimal_divide";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
697  | 
val lemma_sin_pi = thm "lemma_sin_pi";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
698  | 
val STAR_sin_inverse_HNatInfinite = thm "STAR_sin_inverse_HNatInfinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
699  | 
val Infinitesimal_pi_divide_HNatInfinite = thm "Infinitesimal_pi_divide_HNatInfinite";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
700  | 
val pi_divide_HNatInfinite_not_zero = thm "pi_divide_HNatInfinite_not_zero";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
701  | 
val STAR_sin_pi_divide_HNatInfinite_approx_pi = thm "STAR_sin_pi_divide_HNatInfinite_approx_pi";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
702  | 
val STAR_sin_pi_divide_HNatInfinite_approx_pi2 = thm "STAR_sin_pi_divide_HNatInfinite_approx_pi2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
703  | 
val starfunNat_pi_divide_n_Infinitesimal = thm "starfunNat_pi_divide_n_Infinitesimal";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
704  | 
val STAR_sin_pi_divide_n_approx = thm "STAR_sin_pi_divide_n_approx";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
705  | 
val NSLIMSEQ_sin_pi = thm "NSLIMSEQ_sin_pi";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
706  | 
val NSLIMSEQ_cos_one = thm "NSLIMSEQ_cos_one";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
707  | 
val NSLIMSEQ_sin_cos_pi = thm "NSLIMSEQ_sin_cos_pi";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
708  | 
val STAR_cos_Infinitesimal_approx = thm "STAR_cos_Infinitesimal_approx";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
709  | 
val STAR_cos_Infinitesimal_approx2 = thm "STAR_cos_Infinitesimal_approx2";  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
710  | 
*}  | 
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
711  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
712  | 
|
| 
 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 
paulson 
parents: 
13958 
diff
changeset
 | 
713  | 
end  |