| author | blanchet | 
| Fri, 01 Aug 2014 15:08:49 +0200 | |
| changeset 57838 | c21f2c52f54b | 
| parent 56225 | 00112abe9b25 | 
| child 58410 | 6d46ad54a2ab | 
| permissions | -rw-r--r-- | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28562diff
changeset | 1 | (* Title : HOL/NSA/HyperDef.thy | 
| 27468 | 2 | Author : Jacques D. Fleuriot | 
| 3 | Copyright : 1998 University of Cambridge | |
| 4 | Conversion to Isar and new proofs by Lawrence C Paulson, 2004 | |
| 5 | *) | |
| 6 | ||
| 7 | header{*Construction of Hyperreals Using Ultrafilters*}
 | |
| 8 | ||
| 9 | theory HyperDef | |
| 51525 | 10 | imports Complex_Main HyperNat | 
| 27468 | 11 | begin | 
| 12 | ||
| 42463 | 13 | type_synonym hypreal = "real star" | 
| 27468 | 14 | |
| 15 | abbreviation | |
| 16 | hypreal_of_real :: "real => real star" where | |
| 17 | "hypreal_of_real == star_of" | |
| 18 | ||
| 19 | abbreviation | |
| 20 | hypreal_of_hypnat :: "hypnat \<Rightarrow> hypreal" where | |
| 21 | "hypreal_of_hypnat \<equiv> of_hypnat" | |
| 22 | ||
| 23 | definition | |
| 24 | omega :: hypreal where | |
| 25 |    -- {*an infinite number @{text "= [<1,2,3,...>]"} *}
 | |
| 26 | "omega = star_n (\<lambda>n. real (Suc n))" | |
| 27 | ||
| 28 | definition | |
| 29 | epsilon :: hypreal where | |
| 30 |    -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *}
 | |
| 31 | "epsilon = star_n (\<lambda>n. inverse (real (Suc n)))" | |
| 32 | ||
| 33 | notation (xsymbols) | |
| 34 |   omega  ("\<omega>") and
 | |
| 35 |   epsilon  ("\<epsilon>")
 | |
| 36 | ||
| 37 | notation (HTML output) | |
| 38 |   omega  ("\<omega>") and
 | |
| 39 |   epsilon  ("\<epsilon>")
 | |
| 40 | ||
| 41 | ||
| 42 | subsection {* Real vector class instances *}
 | |
| 43 | ||
| 44 | instantiation star :: (scaleR) scaleR | |
| 45 | begin | |
| 46 | ||
| 47 | definition | |
| 37765 | 48 | star_scaleR_def [transfer_unfold]: "scaleR r \<equiv> *f* (scaleR r)" | 
| 27468 | 49 | |
| 50 | instance .. | |
| 51 | ||
| 52 | end | |
| 53 | ||
| 54 | lemma Standard_scaleR [simp]: "x \<in> Standard \<Longrightarrow> scaleR r x \<in> Standard" | |
| 55 | by (simp add: star_scaleR_def) | |
| 56 | ||
| 57 | lemma star_of_scaleR [simp]: "star_of (scaleR r x) = scaleR r (star_of x)" | |
| 58 | by transfer (rule refl) | |
| 59 | ||
| 60 | instance star :: (real_vector) real_vector | |
| 61 | proof | |
| 62 | fix a b :: real | |
| 63 | show "\<And>x y::'a star. scaleR a (x + y) = scaleR a x + scaleR a y" | |
| 64 | by transfer (rule scaleR_right_distrib) | |
| 65 | show "\<And>x::'a star. scaleR (a + b) x = scaleR a x + scaleR b x" | |
| 66 | by transfer (rule scaleR_left_distrib) | |
| 67 | show "\<And>x::'a star. scaleR a (scaleR b x) = scaleR (a * b) x" | |
| 68 | by transfer (rule scaleR_scaleR) | |
| 69 | show "\<And>x::'a star. scaleR 1 x = x" | |
| 70 | by transfer (rule scaleR_one) | |
| 71 | qed | |
| 72 | ||
| 73 | instance star :: (real_algebra) real_algebra | |
| 74 | proof | |
| 75 | fix a :: real | |
| 76 | show "\<And>x y::'a star. scaleR a x * y = scaleR a (x * y)" | |
| 77 | by transfer (rule mult_scaleR_left) | |
| 78 | show "\<And>x y::'a star. x * scaleR a y = scaleR a (x * y)" | |
| 79 | by transfer (rule mult_scaleR_right) | |
| 80 | qed | |
| 81 | ||
| 82 | instance star :: (real_algebra_1) real_algebra_1 .. | |
| 83 | ||
| 84 | instance star :: (real_div_algebra) real_div_algebra .. | |
| 85 | ||
| 27553 | 86 | instance star :: (field_char_0) field_char_0 .. | 
| 87 | ||
| 27468 | 88 | instance star :: (real_field) real_field .. | 
| 89 | ||
| 90 | lemma star_of_real_def [transfer_unfold]: "of_real r = star_of (of_real r)" | |
| 91 | by (unfold of_real_def, transfer, rule refl) | |
| 92 | ||
| 93 | lemma Standard_of_real [simp]: "of_real r \<in> Standard" | |
| 94 | by (simp add: star_of_real_def) | |
| 95 | ||
| 96 | lemma star_of_of_real [simp]: "star_of (of_real r) = of_real r" | |
| 97 | by transfer (rule refl) | |
| 98 | ||
| 99 | lemma of_real_eq_star_of [simp]: "of_real = star_of" | |
| 100 | proof | |
| 101 | fix r :: real | |
| 102 | show "of_real r = star_of r" | |
| 103 | by transfer simp | |
| 104 | qed | |
| 105 | ||
| 106 | lemma Reals_eq_Standard: "(Reals :: hypreal set) = Standard" | |
| 107 | by (simp add: Reals_def Standard_def) | |
| 108 | ||
| 109 | ||
| 110 | subsection {* Injection from @{typ hypreal} *}
 | |
| 111 | ||
| 112 | definition | |
| 113 | of_hypreal :: "hypreal \<Rightarrow> 'a::real_algebra_1 star" where | |
| 37765 | 114 | [transfer_unfold]: "of_hypreal = *f* of_real" | 
| 27468 | 115 | |
| 116 | lemma Standard_of_hypreal [simp]: | |
| 117 | "r \<in> Standard \<Longrightarrow> of_hypreal r \<in> Standard" | |
| 118 | by (simp add: of_hypreal_def) | |
| 119 | ||
| 120 | lemma of_hypreal_0 [simp]: "of_hypreal 0 = 0" | |
| 121 | by transfer (rule of_real_0) | |
| 122 | ||
| 123 | lemma of_hypreal_1 [simp]: "of_hypreal 1 = 1" | |
| 124 | by transfer (rule of_real_1) | |
| 125 | ||
| 126 | lemma of_hypreal_add [simp]: | |
| 127 | "\<And>x y. of_hypreal (x + y) = of_hypreal x + of_hypreal y" | |
| 128 | by transfer (rule of_real_add) | |
| 129 | ||
| 130 | lemma of_hypreal_minus [simp]: "\<And>x. of_hypreal (- x) = - of_hypreal x" | |
| 131 | by transfer (rule of_real_minus) | |
| 132 | ||
| 133 | lemma of_hypreal_diff [simp]: | |
| 134 | "\<And>x y. of_hypreal (x - y) = of_hypreal x - of_hypreal y" | |
| 135 | by transfer (rule of_real_diff) | |
| 136 | ||
| 137 | lemma of_hypreal_mult [simp]: | |
| 138 | "\<And>x y. of_hypreal (x * y) = of_hypreal x * of_hypreal y" | |
| 139 | by transfer (rule of_real_mult) | |
| 140 | ||
| 141 | lemma of_hypreal_inverse [simp]: | |
| 142 | "\<And>x. of_hypreal (inverse x) = | |
| 36409 | 143 |    inverse (of_hypreal x :: 'a::{real_div_algebra, division_ring_inverse_zero} star)"
 | 
| 27468 | 144 | by transfer (rule of_real_inverse) | 
| 145 | ||
| 146 | lemma of_hypreal_divide [simp]: | |
| 147 | "\<And>x y. of_hypreal (x / y) = | |
| 36409 | 148 |    (of_hypreal x / of_hypreal y :: 'a::{real_field, field_inverse_zero} star)"
 | 
| 27468 | 149 | by transfer (rule of_real_divide) | 
| 150 | ||
| 151 | lemma of_hypreal_eq_iff [simp]: | |
| 152 | "\<And>x y. (of_hypreal x = of_hypreal y) = (x = y)" | |
| 153 | by transfer (rule of_real_eq_iff) | |
| 154 | ||
| 155 | lemma of_hypreal_eq_0_iff [simp]: | |
| 156 | "\<And>x. (of_hypreal x = 0) = (x = 0)" | |
| 157 | by transfer (rule of_real_eq_0_iff) | |
| 158 | ||
| 159 | ||
| 160 | subsection{*Properties of @{term starrel}*}
 | |
| 161 | ||
| 162 | lemma lemma_starrel_refl [simp]: "x \<in> starrel `` {x}"
 | |
| 163 | by (simp add: starrel_def) | |
| 164 | ||
| 165 | lemma starrel_in_hypreal [simp]: "starrel``{x}:star"
 | |
| 166 | by (simp add: star_def starrel_def quotient_def, blast) | |
| 167 | ||
| 168 | declare Abs_star_inject [simp] Abs_star_inverse [simp] | |
| 169 | declare equiv_starrel [THEN eq_equiv_class_iff, simp] | |
| 170 | ||
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 171 | subsection{*@{term hypreal_of_real}:
 | 
| 27468 | 172 |             the Injection from @{typ real} to @{typ hypreal}*}
 | 
| 173 | ||
| 174 | lemma inj_star_of: "inj star_of" | |
| 175 | by (rule inj_onI, simp) | |
| 176 | ||
| 177 | lemma mem_Rep_star_iff: "(X \<in> Rep_star x) = (x = star_n X)" | |
| 178 | by (cases x, simp add: star_n_def) | |
| 179 | ||
| 180 | lemma Rep_star_star_n_iff [simp]: | |
| 181 |   "(X \<in> Rep_star (star_n Y)) = ({n. Y n = X n} \<in> \<U>)"
 | |
| 182 | by (simp add: star_n_def) | |
| 183 | ||
| 184 | lemma Rep_star_star_n: "X \<in> Rep_star (star_n X)" | |
| 185 | by simp | |
| 186 | ||
| 187 | subsection{* Properties of @{term star_n} *}
 | |
| 188 | ||
| 189 | lemma star_n_add: | |
| 190 | "star_n X + star_n Y = star_n (%n. X n + Y n)" | |
| 191 | by (simp only: star_add_def starfun2_star_n) | |
| 192 | ||
| 193 | lemma star_n_minus: | |
| 194 | "- star_n X = star_n (%n. -(X n))" | |
| 195 | by (simp only: star_minus_def starfun_star_n) | |
| 196 | ||
| 197 | lemma star_n_diff: | |
| 198 | "star_n X - star_n Y = star_n (%n. X n - Y n)" | |
| 199 | by (simp only: star_diff_def starfun2_star_n) | |
| 200 | ||
| 201 | lemma star_n_mult: | |
| 202 | "star_n X * star_n Y = star_n (%n. X n * Y n)" | |
| 203 | by (simp only: star_mult_def starfun2_star_n) | |
| 204 | ||
| 205 | lemma star_n_inverse: | |
| 206 | "inverse (star_n X) = star_n (%n. inverse(X n))" | |
| 207 | by (simp only: star_inverse_def starfun_star_n) | |
| 208 | ||
| 209 | lemma star_n_le: | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 210 | "star_n X \<le> star_n Y = | 
| 27468 | 211 |        ({n. X n \<le> Y n} \<in> FreeUltrafilterNat)"
 | 
| 212 | by (simp only: star_le_def starP2_star_n) | |
| 213 | ||
| 214 | lemma star_n_less: | |
| 215 |       "star_n X < star_n Y = ({n. X n < Y n} \<in> FreeUltrafilterNat)"
 | |
| 216 | by (simp only: star_less_def starP2_star_n) | |
| 217 | ||
| 218 | lemma star_n_zero_num: "0 = star_n (%n. 0)" | |
| 219 | by (simp only: star_zero_def star_of_def) | |
| 220 | ||
| 221 | lemma star_n_one_num: "1 = star_n (%n. 1)" | |
| 222 | by (simp only: star_one_def star_of_def) | |
| 223 | ||
| 224 | lemma star_n_abs: | |
| 225 | "abs (star_n X) = star_n (%n. abs (X n))" | |
| 226 | by (simp only: star_abs_def starfun_star_n) | |
| 227 | ||
| 228 | lemma hypreal_omega_gt_zero [simp]: "0 < omega" | |
| 229 | by (simp add: omega_def star_n_zero_num star_n_less) | |
| 230 | ||
| 231 | subsection{*Existence of Infinite Hyperreal Number*}
 | |
| 232 | ||
| 233 | text{*Existence of infinite number not corresponding to any real number.
 | |
| 234 | Use assumption that member @{term FreeUltrafilterNat} is not finite.*}
 | |
| 235 | ||
| 236 | ||
| 237 | text{*A few lemmas first*}
 | |
| 238 | ||
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 239 | lemma lemma_omega_empty_singleton_disj: "{n::nat. x = real n} = {} |
 | 
| 27468 | 240 |       (\<exists>y. {n::nat. x = real n} = {y})"
 | 
| 241 | by force | |
| 242 | ||
| 243 | lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
 | |
| 244 | by (cut_tac x = x in lemma_omega_empty_singleton_disj, auto) | |
| 245 | ||
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 246 | lemma not_ex_hypreal_of_real_eq_omega: | 
| 27468 | 247 | "~ (\<exists>x. hypreal_of_real x = omega)" | 
| 248 | apply (simp add: omega_def) | |
| 249 | apply (simp add: star_of_def star_n_eq_iff) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 250 | apply (auto simp add: real_of_nat_Suc diff_eq_eq [symmetric] | 
| 27468 | 251 | lemma_finite_omega_set [THEN FreeUltrafilterNat.finite]) | 
| 252 | done | |
| 253 | ||
| 254 | lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> omega" | |
| 255 | by (insert not_ex_hypreal_of_real_eq_omega, auto) | |
| 256 | ||
| 257 | text{*Existence of infinitesimal number also not corresponding to any
 | |
| 258 | real number*} | |
| 259 | ||
| 260 | lemma lemma_epsilon_empty_singleton_disj: | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 261 |      "{n::nat. x = inverse(real(Suc n))} = {} |
 | 
| 27468 | 262 |       (\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})"
 | 
| 263 | by auto | |
| 264 | ||
| 265 | lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
 | |
| 266 | by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto) | |
| 267 | ||
| 268 | lemma not_ex_hypreal_of_real_eq_epsilon: "~ (\<exists>x. hypreal_of_real x = epsilon)" | |
| 269 | by (auto simp add: epsilon_def star_of_def star_n_eq_iff | |
| 270 | lemma_finite_epsilon_set [THEN FreeUltrafilterNat.finite]) | |
| 271 | ||
| 272 | lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> epsilon" | |
| 273 | by (insert not_ex_hypreal_of_real_eq_epsilon, auto) | |
| 274 | ||
| 275 | lemma hypreal_epsilon_not_zero: "epsilon \<noteq> 0" | |
| 276 | by (simp add: epsilon_def star_zero_def star_of_def star_n_eq_iff | |
| 277 | del: star_of_zero) | |
| 278 | ||
| 279 | lemma hypreal_epsilon_inverse_omega: "epsilon = inverse(omega)" | |
| 280 | by (simp add: epsilon_def omega_def star_n_inverse) | |
| 281 | ||
| 282 | lemma hypreal_epsilon_gt_zero: "0 < epsilon" | |
| 283 | by (simp add: hypreal_epsilon_inverse_omega) | |
| 284 | ||
| 285 | subsection{*Absolute Value Function for the Hyperreals*}
 | |
| 286 | ||
| 287 | lemma hrabs_add_less: | |
| 288 | "[| abs x < r; abs y < s |] ==> abs(x+y) < r + (s::hypreal)" | |
| 289 | by (simp add: abs_if split: split_if_asm) | |
| 290 | ||
| 291 | lemma hrabs_less_gt_zero: "abs x < r ==> (0::hypreal) < r" | |
| 292 | by (blast intro!: order_le_less_trans abs_ge_zero) | |
| 293 | ||
| 294 | lemma hrabs_disj: "abs x = (x::'a::abs_if) | abs x = -x" | |
| 295 | by (simp add: abs_if) | |
| 296 | ||
| 297 | lemma hrabs_add_lemma_disj: "(y::hypreal) + - x + (y + - z) = abs (x + - z) ==> y = z | x = y" | |
| 298 | by (simp add: abs_if split add: split_if_asm) | |
| 299 | ||
| 300 | ||
| 301 | subsection{*Embedding the Naturals into the Hyperreals*}
 | |
| 302 | ||
| 303 | abbreviation | |
| 304 | hypreal_of_nat :: "nat => hypreal" where | |
| 305 | "hypreal_of_nat == of_nat" | |
| 306 | ||
| 307 | lemma SNat_eq: "Nats = {n. \<exists>N. n = hypreal_of_nat N}"
 | |
| 308 | by (simp add: Nats_def image_def) | |
| 309 | ||
| 310 | (*------------------------------------------------------------*) | |
| 311 | (* naturals embedded in hyperreals *) | |
| 312 | (* is a hyperreal c.f. NS extension *) | |
| 313 | (*------------------------------------------------------------*) | |
| 314 | ||
| 315 | lemma hypreal_of_nat_eq: | |
| 316 | "hypreal_of_nat (n::nat) = hypreal_of_real (real n)" | |
| 317 | by (simp add: real_of_nat_def) | |
| 318 | ||
| 319 | lemma hypreal_of_nat: | |
| 320 | "hypreal_of_nat m = star_n (%n. real m)" | |
| 321 | apply (fold star_of_def) | |
| 322 | apply (simp add: real_of_nat_def) | |
| 323 | done | |
| 324 | ||
| 325 | (* | |
| 326 | FIXME: we should declare this, as for type int, but many proofs would break. | |
| 327 | It replaces x+-y by x-y. | |
| 328 | Addsimps [symmetric hypreal_diff_def] | |
| 329 | *) | |
| 330 | ||
| 31100 | 331 | declaration {*
 | 
| 332 |   K (Lin_Arith.add_inj_thms [@{thm star_of_le} RS iffD2,
 | |
| 333 |     @{thm star_of_less} RS iffD2, @{thm star_of_eq} RS iffD2]
 | |
| 334 |   #> Lin_Arith.add_simps [@{thm star_of_zero}, @{thm star_of_one},
 | |
| 55911 
d00023bd3554
remove simp rules made redundant by the replacement of neg_numeral with negated numerals
 huffman parents: 
54489diff
changeset | 335 |       @{thm star_of_numeral}, @{thm star_of_add},
 | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 336 |       @{thm star_of_minus}, @{thm star_of_diff}, @{thm star_of_mult}]
 | 
| 43595 | 337 |   #> Lin_Arith.add_inj_const (@{const_name "StarDef.star_of"}, @{typ "real \<Rightarrow> hypreal"}))
 | 
| 31100 | 338 | *} | 
| 27468 | 339 | |
| 43595 | 340 | simproc_setup fast_arith_hypreal ("(m::hypreal) < n" | "(m::hypreal) <= n" | "(m::hypreal) = n") =
 | 
| 341 |   {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (term_of ct) *}
 | |
| 342 | ||
| 27468 | 343 | |
| 344 | subsection {* Exponentials on the Hyperreals *}
 | |
| 345 | ||
| 346 | lemma hpowr_0 [simp]: "r ^ 0 = (1::hypreal)" | |
| 347 | by (rule power_0) | |
| 348 | ||
| 349 | lemma hpowr_Suc [simp]: "r ^ (Suc n) = (r::hypreal) * (r ^ n)" | |
| 350 | by (rule power_Suc) | |
| 351 | ||
| 352 | lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r" | |
| 353 | by simp | |
| 354 | ||
| 355 | lemma hrealpow_two_le [simp]: "(0::hypreal) \<le> r ^ Suc (Suc 0)" | |
| 356 | by (auto simp add: zero_le_mult_iff) | |
| 357 | ||
| 358 | lemma hrealpow_two_le_add_order [simp]: | |
| 359 | "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0)" | |
| 360 | by (simp only: hrealpow_two_le add_nonneg_nonneg) | |
| 361 | ||
| 362 | lemma hrealpow_two_le_add_order2 [simp]: | |
| 363 | "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)" | |
| 364 | by (simp only: hrealpow_two_le add_nonneg_nonneg) | |
| 365 | ||
| 366 | lemma hypreal_add_nonneg_eq_0_iff: | |
| 367 | "[| 0 \<le> x; 0 \<le> y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))" | |
| 368 | by arith | |
| 369 | ||
| 370 | ||
| 371 | text{*FIXME: DELETE THESE*}
 | |
| 372 | lemma hypreal_three_squares_add_zero_iff: | |
| 373 | "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))" | |
| 374 | apply (simp only: zero_le_square add_nonneg_nonneg hypreal_add_nonneg_eq_0_iff, auto) | |
| 375 | done | |
| 376 | ||
| 377 | lemma hrealpow_three_squares_add_zero_iff [simp]: | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 378 | "(x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = (0::hypreal)) = | 
| 27468 | 379 | (x = 0 & y = 0 & z = 0)" | 
| 380 | by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two) | |
| 381 | ||
| 382 | (*FIXME: This and RealPow.abs_realpow_two should be replaced by an abstract | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 383 | result proved in Rings or Fields*) | 
| 27468 | 384 | lemma hrabs_hrealpow_two [simp]: | 
| 385 | "abs(x ^ Suc (Suc 0)) = (x::hypreal) ^ Suc (Suc 0)" | |
| 386 | by (simp add: abs_mult) | |
| 387 | ||
| 388 | lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n" | |
| 389 | by (insert power_increasing [of 0 n "2::hypreal"], simp) | |
| 390 | ||
| 391 | lemma two_hrealpow_gt [simp]: "hypreal_of_nat n < 2 ^ n" | |
| 392 | apply (induct n) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
47195diff
changeset | 393 | apply (auto simp add: distrib_right) | 
| 27468 | 394 | apply (cut_tac n = n in two_hrealpow_ge_one, arith) | 
| 395 | done | |
| 396 | ||
| 397 | lemma hrealpow: | |
| 398 | "star_n X ^ m = star_n (%n. (X n::real) ^ m)" | |
| 399 | apply (induct_tac "m") | |
| 400 | apply (auto simp add: star_n_one_num star_n_mult power_0) | |
| 401 | done | |
| 402 | ||
| 403 | lemma hrealpow_sum_square_expand: | |
| 404 | "(x + (y::hypreal)) ^ Suc (Suc 0) = | |
| 405 | x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
47195diff
changeset | 406 | by (simp add: distrib_left distrib_right) | 
| 27468 | 407 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 408 | lemma power_hypreal_of_real_numeral: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 409 | "(numeral v :: hypreal) ^ n = hypreal_of_real ((numeral v) ^ n)" | 
| 27468 | 410 | by simp | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 411 | declare power_hypreal_of_real_numeral [of _ "numeral w", simp] for w | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 412 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 413 | lemma power_hypreal_of_real_neg_numeral: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
51525diff
changeset | 414 | "(- numeral v :: hypreal) ^ n = hypreal_of_real ((- numeral v) ^ n)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 415 | by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45605diff
changeset | 416 | declare power_hypreal_of_real_neg_numeral [of _ "numeral w", simp] for w | 
| 27468 | 417 | (* | 
| 418 | lemma hrealpow_HFinite: | |
| 31017 | 419 |   fixes x :: "'a::{real_normed_algebra,power} star"
 | 
| 27468 | 420 | shows "x \<in> HFinite ==> x ^ n \<in> HFinite" | 
| 421 | apply (induct_tac "n") | |
| 422 | apply (auto simp add: power_Suc intro: HFinite_mult) | |
| 423 | done | |
| 424 | *) | |
| 425 | ||
| 426 | subsection{*Powers with Hypernatural Exponents*}
 | |
| 427 | ||
| 31001 | 428 | definition pow :: "['a::power star, nat star] \<Rightarrow> 'a star" (infixr "pow" 80) where | 
| 37765 | 429 | hyperpow_def [transfer_unfold]: "R pow N = ( *f2* op ^) R N" | 
| 27468 | 430 | (* hypernatural powers of hyperreals *) | 
| 431 | ||
| 432 | lemma Standard_hyperpow [simp]: | |
| 433 | "\<lbrakk>r \<in> Standard; n \<in> Standard\<rbrakk> \<Longrightarrow> r pow n \<in> Standard" | |
| 434 | unfolding hyperpow_def by simp | |
| 435 | ||
| 436 | lemma hyperpow: "star_n X pow star_n Y = star_n (%n. X n ^ Y n)" | |
| 437 | by (simp add: hyperpow_def starfun2_star_n) | |
| 438 | ||
| 439 | lemma hyperpow_zero [simp]: | |
| 31017 | 440 |   "\<And>n. (0::'a::{power,semiring_0} star) pow (n + (1::hypnat)) = 0"
 | 
| 27468 | 441 | by transfer simp | 
| 442 | ||
| 443 | lemma hyperpow_not_zero: | |
| 31017 | 444 |   "\<And>r n. r \<noteq> (0::'a::{field} star) ==> r pow n \<noteq> 0"
 | 
| 27468 | 445 | by transfer (rule field_power_not_zero) | 
| 446 | ||
| 447 | lemma hyperpow_inverse: | |
| 36409 | 448 | "\<And>r n. r \<noteq> (0::'a::field_inverse_zero star) | 
| 27468 | 449 | \<Longrightarrow> inverse (r pow n) = (inverse r) pow n" | 
| 450 | by transfer (rule power_inverse) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55911diff
changeset | 451 | |
| 27468 | 452 | lemma hyperpow_hrabs: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
31101diff
changeset | 453 |   "\<And>r n. abs (r::'a::{linordered_idom} star) pow n = abs (r pow n)"
 | 
| 27468 | 454 | by transfer (rule power_abs [symmetric]) | 
| 455 | ||
| 456 | lemma hyperpow_add: | |
| 31017 | 457 | "\<And>r n m. (r::'a::monoid_mult star) pow (n + m) = (r pow n) * (r pow m)" | 
| 27468 | 458 | by transfer (rule power_add) | 
| 459 | ||
| 460 | lemma hyperpow_one [simp]: | |
| 31001 | 461 | "\<And>r. (r::'a::monoid_mult star) pow (1::hypnat) = r" | 
| 27468 | 462 | by transfer (rule power_one_right) | 
| 463 | ||
| 464 | lemma hyperpow_two: | |
| 45542 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 465 | "\<And>r. (r::'a::monoid_mult star) pow (2::hypnat) = r * r" | 
| 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 466 | by transfer (rule power2_eq_square) | 
| 27468 | 467 | |
| 468 | lemma hyperpow_gt_zero: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
31101diff
changeset | 469 |   "\<And>r n. (0::'a::{linordered_semidom} star) < r \<Longrightarrow> 0 < r pow n"
 | 
| 27468 | 470 | by transfer (rule zero_less_power) | 
| 471 | ||
| 472 | lemma hyperpow_ge_zero: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
31101diff
changeset | 473 |   "\<And>r n. (0::'a::{linordered_semidom} star) \<le> r \<Longrightarrow> 0 \<le> r pow n"
 | 
| 27468 | 474 | by transfer (rule zero_le_power) | 
| 475 | ||
| 476 | lemma hyperpow_le: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
31101diff
changeset | 477 |   "\<And>x y n. \<lbrakk>(0::'a::{linordered_semidom} star) < x; x \<le> y\<rbrakk>
 | 
| 27468 | 478 | \<Longrightarrow> x pow n \<le> y pow n" | 
| 479 | by transfer (rule power_mono [OF _ order_less_imp_le]) | |
| 480 | ||
| 481 | lemma hyperpow_eq_one [simp]: | |
| 31017 | 482 | "\<And>n. 1 pow n = (1::'a::monoid_mult star)" | 
| 27468 | 483 | by transfer (rule power_one) | 
| 484 | ||
| 55911 
d00023bd3554
remove simp rules made redundant by the replacement of neg_numeral with negated numerals
 huffman parents: 
54489diff
changeset | 485 | lemma hrabs_hyperpow_minus [simp]: | 
| 
d00023bd3554
remove simp rules made redundant by the replacement of neg_numeral with negated numerals
 huffman parents: 
54489diff
changeset | 486 |   "\<And>(a::'a::{linordered_idom} star) n. abs((-a) pow n) = abs (a pow n)"
 | 
| 
d00023bd3554
remove simp rules made redundant by the replacement of neg_numeral with negated numerals
 huffman parents: 
54489diff
changeset | 487 | by transfer (rule abs_power_minus) | 
| 27468 | 488 | |
| 489 | lemma hyperpow_mult: | |
| 31017 | 490 |   "\<And>r s n. (r * s::'a::{comm_monoid_mult} star) pow n
 | 
| 27468 | 491 | = (r pow n) * (s pow n)" | 
| 492 | by transfer (rule power_mult_distrib) | |
| 493 | ||
| 494 | lemma hyperpow_two_le [simp]: | |
| 45542 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 495 |   "\<And>r. (0::'a::{monoid_mult,linordered_ring_strict} star) \<le> r pow 2"
 | 
| 27468 | 496 | by (auto simp add: hyperpow_two zero_le_mult_iff) | 
| 497 | ||
| 498 | lemma hrabs_hyperpow_two [simp]: | |
| 45542 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 499 | "abs(x pow 2) = | 
| 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 500 |    (x::'a::{monoid_mult,linordered_ring_strict} star) pow 2"
 | 
| 27468 | 501 | by (simp only: abs_of_nonneg hyperpow_two_le) | 
| 502 | ||
| 503 | lemma hyperpow_two_hrabs [simp]: | |
| 45542 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 504 |   "abs(x::'a::{linordered_idom} star) pow 2 = x pow 2"
 | 
| 27468 | 505 | by (simp add: hyperpow_hrabs) | 
| 506 | ||
| 507 | text{*The precondition could be weakened to @{term "0\<le>x"}*}
 | |
| 508 | lemma hypreal_mult_less_mono: | |
| 509 | "[| u<v; x<y; (0::hypreal) < v; 0 < x |] ==> u*x < v* y" | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 510 | by (simp add: mult_strict_mono order_less_imp_le) | 
| 27468 | 511 | |
| 512 | lemma hyperpow_two_gt_one: | |
| 45542 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 513 |   "\<And>r::'a::{linordered_semidom} star. 1 < r \<Longrightarrow> 1 < r pow 2"
 | 
| 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 514 | by transfer simp | 
| 27468 | 515 | |
| 516 | lemma hyperpow_two_ge_one: | |
| 45542 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 517 |   "\<And>r::'a::{linordered_semidom} star. 1 \<le> r \<Longrightarrow> 1 \<le> r pow 2"
 | 
| 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 518 | by transfer (rule one_le_power) | 
| 27468 | 519 | |
| 520 | lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n" | |
| 521 | apply (rule_tac y = "1 pow n" in order_trans) | |
| 522 | apply (rule_tac [2] hyperpow_le, auto) | |
| 523 | done | |
| 524 | ||
| 525 | lemma hyperpow_minus_one2 [simp]: | |
| 45542 
4849dbe6e310
HOL-NSA: add number_semiring instance, reformulate several lemmas using '2' instead of '1+1'
 huffman parents: 
43595diff
changeset | 526 | "\<And>n. -1 pow (2*n) = (1::hypreal)" | 
| 47195 
836bf25fb70f
remove duplicate lemmas power_m1_{even,odd} in favor of power_minus1_{even,odd}
 huffman parents: 
47108diff
changeset | 527 | by transfer (rule power_minus1_even) | 
| 27468 | 528 | |
| 529 | lemma hyperpow_less_le: | |
| 530 | "!!r n N. [|(0::hypreal) \<le> r; r \<le> 1; n < N|] ==> r pow N \<le> r pow n" | |
| 531 | by transfer (rule power_decreasing [OF order_less_imp_le]) | |
| 532 | ||
| 533 | lemma hyperpow_SHNat_le: | |
| 534 | "[| 0 \<le> r; r \<le> (1::hypreal); N \<in> HNatInfinite |] | |
| 535 | ==> ALL n: Nats. r pow N \<le> r pow n" | |
| 536 | by (auto intro!: hyperpow_less_le simp add: HNatInfinite_iff) | |
| 537 | ||
| 538 | lemma hyperpow_realpow: | |
| 539 | "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)" | |
| 540 | by transfer (rule refl) | |
| 541 | ||
| 542 | lemma hyperpow_SReal [simp]: | |
| 543 | "(hypreal_of_real r) pow (hypnat_of_nat n) \<in> Reals" | |
| 544 | by (simp add: Reals_eq_Standard) | |
| 545 | ||
| 546 | lemma hyperpow_zero_HNatInfinite [simp]: | |
| 547 | "N \<in> HNatInfinite ==> (0::hypreal) pow N = 0" | |
| 548 | by (drule HNatInfinite_is_Suc, auto) | |
| 549 | ||
| 550 | lemma hyperpow_le_le: | |
| 551 | "[| (0::hypreal) \<le> r; r \<le> 1; n \<le> N |] ==> r pow N \<le> r pow n" | |
| 552 | apply (drule order_le_less [of n, THEN iffD1]) | |
| 553 | apply (auto intro: hyperpow_less_le) | |
| 554 | done | |
| 555 | ||
| 556 | lemma hyperpow_Suc_le_self2: | |
| 557 | "[| (0::hypreal) \<le> r; r < 1 |] ==> r pow (n + (1::hypnat)) \<le> r" | |
| 558 | apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le) | |
| 559 | apply auto | |
| 560 | done | |
| 561 | ||
| 562 | lemma hyperpow_hypnat_of_nat: "\<And>x. x pow hypnat_of_nat n = x ^ n" | |
| 563 | by transfer (rule refl) | |
| 564 | ||
| 565 | lemma of_hypreal_hyperpow: | |
| 566 | "\<And>x n. of_hypreal (x pow n) = | |
| 31017 | 567 |    (of_hypreal x::'a::{real_algebra_1} star) pow n"
 | 
| 27468 | 568 | by transfer (rule of_real_power) | 
| 569 | ||
| 570 | end |