author | wenzelm |
Fri, 25 May 2018 22:48:37 +0200 | |
changeset 68277 | c2b227b8e361 |
parent 63583 | a39baba12732 |
child 69597 | ff784d5a5bfb |
permissions | -rw-r--r-- |
60450 | 1 |
(* Title: HOL/Isar_Examples/Structured_Statements.thy |
2 |
Author: Makarius |
|
3 |
*) |
|
4 |
||
5 |
section \<open>Structured statements within Isar proofs\<close> |
|
6 |
||
7 |
theory Structured_Statements |
|
63583 | 8 |
imports Main |
60450 | 9 |
begin |
10 |
||
60470 | 11 |
subsection \<open>Introduction steps\<close> |
12 |
||
60450 | 13 |
notepad |
14 |
begin |
|
60470 | 15 |
fix A B :: bool |
16 |
fix P :: "'a \<Rightarrow> bool" |
|
60450 | 17 |
|
60470 | 18 |
have "A \<longrightarrow> B" |
19 |
proof |
|
62314 | 20 |
show B if A using that \<proof> |
60470 | 21 |
qed |
22 |
||
23 |
have "\<not> A" |
|
24 |
proof |
|
62314 | 25 |
show False if A using that \<proof> |
60470 | 26 |
qed |
27 |
||
28 |
have "\<forall>x. P x" |
|
29 |
proof |
|
62314 | 30 |
show "P x" for x \<proof> |
60470 | 31 |
qed |
32 |
end |
|
33 |
||
34 |
||
35 |
subsection \<open>If-and-only-if\<close> |
|
36 |
||
37 |
notepad |
|
38 |
begin |
|
39 |
fix A B :: bool |
|
40 |
||
41 |
have "A \<longleftrightarrow> B" |
|
42 |
proof |
|
62314 | 43 |
show B if A \<proof> |
44 |
show A if B \<proof> |
|
60470 | 45 |
qed |
46 |
next |
|
60450 | 47 |
fix A B :: bool |
48 |
||
49 |
have iff_comm: "(A \<and> B) \<longleftrightarrow> (B \<and> A)" |
|
50 |
proof |
|
51 |
show "B \<and> A" if "A \<and> B" |
|
52 |
proof |
|
53 |
show B using that .. |
|
54 |
show A using that .. |
|
55 |
qed |
|
56 |
show "A \<and> B" if "B \<and> A" |
|
57 |
proof |
|
58 |
show A using that .. |
|
59 |
show B using that .. |
|
60 |
qed |
|
61 |
qed |
|
62 |
||
63 |
text \<open>Alternative proof, avoiding redundant copy of symmetric argument.\<close> |
|
64 |
have iff_comm: "(A \<and> B) \<longleftrightarrow> (B \<and> A)" |
|
65 |
proof |
|
66 |
show "B \<and> A" if "A \<and> B" for A B |
|
67 |
proof |
|
68 |
show B using that .. |
|
69 |
show A using that .. |
|
70 |
qed |
|
71 |
then show "A \<and> B" if "B \<and> A" |
|
72 |
by this (rule that) |
|
73 |
qed |
|
60470 | 74 |
end |
60450 | 75 |
|
60470 | 76 |
|
77 |
subsection \<open>Elimination and cases\<close> |
|
78 |
||
79 |
notepad |
|
80 |
begin |
|
81 |
fix A B C D :: bool |
|
82 |
assume *: "A \<or> B \<or> C \<or> D" |
|
83 |
||
84 |
consider (a) A | (b) B | (c) C | (d) D |
|
85 |
using * by blast |
|
86 |
then have something |
|
87 |
proof cases |
|
88 |
case a thm \<open>A\<close> |
|
62314 | 89 |
then show ?thesis \<proof> |
60470 | 90 |
next |
91 |
case b thm \<open>B\<close> |
|
62314 | 92 |
then show ?thesis \<proof> |
60470 | 93 |
next |
94 |
case c thm \<open>C\<close> |
|
62314 | 95 |
then show ?thesis \<proof> |
60470 | 96 |
next |
97 |
case d thm \<open>D\<close> |
|
62314 | 98 |
then show ?thesis \<proof> |
60470 | 99 |
qed |
100 |
next |
|
101 |
fix A :: "'a \<Rightarrow> bool" |
|
102 |
fix B :: "'b \<Rightarrow> 'c \<Rightarrow> bool" |
|
103 |
assume *: "(\<exists>x. A x) \<or> (\<exists>y z. B y z)" |
|
104 |
||
105 |
consider (a) x where "A x" | (b) y z where "B y z" |
|
106 |
using * by blast |
|
107 |
then have something |
|
108 |
proof cases |
|
109 |
case a thm \<open>A x\<close> |
|
62314 | 110 |
then show ?thesis \<proof> |
60470 | 111 |
next |
112 |
case b thm \<open>B y z\<close> |
|
62314 | 113 |
then show ?thesis \<proof> |
60470 | 114 |
qed |
115 |
end |
|
116 |
||
117 |
||
118 |
subsection \<open>Induction\<close> |
|
119 |
||
120 |
notepad |
|
121 |
begin |
|
122 |
fix P :: "nat \<Rightarrow> bool" |
|
123 |
fix n :: nat |
|
124 |
||
125 |
have "P n" |
|
126 |
proof (induct n) |
|
62314 | 127 |
show "P 0" \<proof> |
60470 | 128 |
show "P (Suc n)" if "P n" for n thm \<open>P n\<close> |
62314 | 129 |
using that \<proof> |
60470 | 130 |
qed |
60450 | 131 |
end |
132 |
||
60555
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
133 |
|
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
134 |
subsection \<open>Suffices-to-show\<close> |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
135 |
|
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
136 |
notepad |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
137 |
begin |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
138 |
fix A B C |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
139 |
assume r: "A \<Longrightarrow> B \<Longrightarrow> C" |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
140 |
|
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
141 |
have C |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
142 |
proof - |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
143 |
show ?thesis when A (is ?A) and B (is ?B) |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
144 |
using that by (rule r) |
62314 | 145 |
show ?A \<proof> |
146 |
show ?B \<proof> |
|
60555
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
147 |
qed |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
148 |
next |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
149 |
fix a :: 'a |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
150 |
fix A :: "'a \<Rightarrow> bool" |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
151 |
fix C |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
152 |
|
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
153 |
have C |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
154 |
proof - |
61799 | 155 |
show ?thesis when "A x" (is ?A) for x :: 'a \<comment> \<open>abstract @{term x}\<close> |
62314 | 156 |
using that \<proof> |
61799 | 157 |
show "?A a" \<comment> \<open>concrete @{term a}\<close> |
62314 | 158 |
\<proof> |
60555
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
159 |
qed |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
160 |
end |
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
161 |
|
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
60470
diff
changeset
|
162 |
end |