| 
60237
 | 
     1  | 
(*  Title:      HOL/Quotient_Examples/Lifting_Code_Dt_Test.thy
  | 
| 
 | 
     2  | 
    Author:     Ondrej Kuncar, TU Muenchen
  | 
| 
 | 
     3  | 
    Copyright   2015
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
Miscellaneous lift_definition(code_dt) definitions (for testing purposes).
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Lifting_Code_Dt_Test
  | 
| 
 | 
     9  | 
imports Main
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
(* basic examples *)
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
typedef bool2 = "{x. x}" by auto
 | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
setup_lifting type_definition_bool2
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
lift_definition(code_dt) f1 :: "bool2 option" is "Some True" by simp
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
lift_definition(code_dt) f2 :: "bool2 list" is "[True]" by simp
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
lift_definition(code_dt) f3 :: "bool2 \<times> int" is "(True, 42)" by simp
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lift_definition(code_dt) f4 :: "int + bool2" is "Inr True" by simp
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
lift_definition(code_dt) f5 :: "'a \<Rightarrow> (bool2 \<times> 'a) option" is "\<lambda>x. Some (True, x)" by simp
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
(* ugly (i.e., sensitive to rewriting done in my tactics) definition of T *)
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
typedef 'a T = "{ x::'a. \<forall>(y::'a) z::'a. \<exists>(w::'a). (z = z) \<and> eq_onp top y y 
 | 
| 
 | 
    31  | 
  \<or> rel_prod (eq_onp top) (eq_onp top) (x, y) (x, y) \<longrightarrow> pred_prod top top (w, w) }"
  | 
| 
 | 
    32  | 
  by auto
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
setup_lifting type_definition_T
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
lift_definition(code_dt) f6 :: "bool T option" is "Some True" by simp
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
lift_definition(code_dt) f7 :: "(bool T \<times> int) option" is "Some (True, 42)" by simp
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
lift_definition(code_dt) f8 :: "bool T \<Rightarrow> int \<Rightarrow> (bool T \<times> int) option" 
  | 
| 
 | 
    41  | 
  is "\<lambda>x y. if x then Some (x, y) else None" by simp
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lift_definition(code_dt) f9 :: "nat \<Rightarrow> ((bool T \<times> int) option) list \<times> nat" 
  | 
| 
 | 
    44  | 
  is "\<lambda>x. ([Some (True, 42)], x)" by simp
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
(* complicated nested datatypes *)
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
(* stolen from Datatype_Examples *)
  | 
| 
 | 
    49  | 
datatype 'a tree = Empty | Node 'a "'a tree list"
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
datatype 'a ttree = TEmpty | TNode 'a "'a ttree list tree"
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
datatype 'a tttree = TEmpty | TNode 'a "'a tttree list ttree list tree"
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
lift_definition(code_dt) f10 :: "int \<Rightarrow> int T tree" is "\<lambda>i. Node i [Node i Nil, Empty]" by simp
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lift_definition(code_dt) f11 :: "int \<Rightarrow> int T ttree" 
  | 
| 
 | 
    58  | 
  is "\<lambda>i. ttree.TNode i (Node [ttree.TNode i Empty] [])" by simp
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lift_definition(code_dt) f12 :: "int \<Rightarrow> int T tttree" is "\<lambda>i. tttree.TNode i Empty" by simp
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
(* Phantom type variables *)
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
datatype 'a phantom = PH1 | PH2 
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
datatype ('a, 'b) phantom2 = PH21 'a | PH22 "'a option"
 | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
lift_definition(code_dt) f13 :: "int \<Rightarrow> int T phantom" is "\<lambda>i. PH1" by auto
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
lift_definition(code_dt) f14 :: "int \<Rightarrow> (int T, nat T) phantom2" is "\<lambda>i. PH22 (Some i)" by auto
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
(* Mutual datatypes *)
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
datatype 'a M1 = Empty 'a | CM "'a M2"
  | 
| 
 | 
    75  | 
and 'a M2 = CM2 "'a M1"
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
lift_definition(code_dt) f15 :: "int \<Rightarrow> int T M1" is "\<lambda>i. Empty i" by auto
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
(* Codatatypes *)
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
codatatype 'a stream = S 'a "'a stream"
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
primcorec 
  | 
| 
 | 
    84  | 
  sconst :: "'a \<Rightarrow> 'a stream" where
  | 
| 
 | 
    85  | 
  "sconst a = S a (sconst a)"
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
lift_definition(code_dt) f16 :: "int \<Rightarrow> int T stream" is "\<lambda>i. sconst i"  unfolding pred_stream_def
  | 
| 
 | 
    88  | 
by auto
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
(* Sort constraints *)
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
datatype ('a::finite, 'b::finite) F = F 'a | F2 'b
 | 
| 
 | 
    93  | 
  | 
| 
61169
 | 
    94  | 
instance T :: (finite) finite by standard (transfer, auto)
  | 
| 
60237
 | 
    95  | 
  | 
| 
 | 
    96  | 
lift_definition(code_dt) f17 :: "bool \<Rightarrow> (bool T, 'b::finite) F" is "\<lambda>b. F b" by auto
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
export_code f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 
  | 
| 
 | 
    99  | 
  checking SML OCaml? Haskell? Scala? 
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
end
  |