author | wenzelm |
Mon, 28 Aug 2000 20:30:47 +0200 | |
changeset 9704 | c2f2f70bbb60 |
parent 9703 | bf65780eed02 |
child 9711 | 75df6a20b0b3 |
permissions | -rw-r--r-- |
7135 | 1 |
|
7167 | 2 |
\chapter{Generic Tools and Packages}\label{ch:gen-tools} |
3 |
||
8517 | 4 |
\section{Axiomatic Type Classes}\label{sec:axclass} |
7167 | 5 |
|
8904 | 6 |
%FIXME |
7 |
% - qualified names |
|
8 |
% - class intro rules; |
|
9 |
% - class axioms; |
|
10 |
||
8517 | 11 |
\indexisarcmd{axclass}\indexisarcmd{instance}\indexisarmeth{intro-classes} |
7167 | 12 |
\begin{matharray}{rcl} |
8517 | 13 |
\isarcmd{axclass} & : & \isartrans{theory}{theory} \\ |
14 |
\isarcmd{instance} & : & \isartrans{theory}{proof(prove)} \\ |
|
15 |
intro_classes & : & \isarmeth \\ |
|
7167 | 16 |
\end{matharray} |
17 |
||
8517 | 18 |
Axiomatic type classes are provided by Isabelle/Pure as a \emph{definitional} |
19 |
interface to type classes (cf.~\S\ref{sec:classes}). Thus any object logic |
|
8547 | 20 |
may make use of this light-weight mechanism of abstract theories |
8901 | 21 |
\cite{Wenzel:1997:TPHOL}. There is also a tutorial on using axiomatic type |
22 |
classes in isabelle \cite{isabelle-axclass} that is part of the standard |
|
23 |
Isabelle documentation. |
|
8517 | 24 |
|
7167 | 25 |
\begin{rail} |
8517 | 26 |
'axclass' classdecl (axmdecl prop comment? +) |
27 |
; |
|
28 |
'instance' (nameref '<' nameref | nameref '::' simplearity) comment? |
|
7167 | 29 |
; |
30 |
\end{rail} |
|
31 |
||
32 |
\begin{descr} |
|
8517 | 33 |
\item [$\isarkeyword{axclass}~c < \vec c~axms$] defines an axiomatic type |
34 |
class as the intersection of existing classes, with additional axioms |
|
35 |
holding. Class axioms may not contain more than one type variable. The |
|
36 |
class axioms (with implicit sort constraints added) are bound to the given |
|
37 |
names. Furthermore a class introduction rule is generated, which is |
|
38 |
employed by method $intro_classes$ to support instantiation proofs of this |
|
39 |
class. |
|
9614 | 40 |
|
8517 | 41 |
\item [$\isarkeyword{instance}~c@1 < c@2$ and $\isarkeyword{instance}~t :: |
8547 | 42 |
(\vec s)c$] setup a goal stating a class relation or type arity. The proof |
43 |
would usually proceed by $intro_classes$, and then establish the |
|
8517 | 44 |
characteristic theorems of the type classes involved. After finishing the |
45 |
proof, the theory will be augmented by a type signature declaration |
|
46 |
corresponding to the resulting theorem. |
|
47 |
\item [$intro_classes$] repeatedly expands all class introduction rules of |
|
48 |
this theory. |
|
7167 | 49 |
\end{descr} |
50 |
||
7315 | 51 |
|
52 |
\section{Calculational proof}\label{sec:calculation} |
|
53 |
||
8619 | 54 |
\indexisarcmd{also}\indexisarcmd{finally} |
55 |
\indexisarcmd{moreover}\indexisarcmd{ultimately} |
|
9606 | 56 |
\indexisarcmd{print-trans-rules}\indexisaratt{trans} |
7315 | 57 |
\begin{matharray}{rcl} |
58 |
\isarcmd{also} & : & \isartrans{proof(state)}{proof(state)} \\ |
|
59 |
\isarcmd{finally} & : & \isartrans{proof(state)}{proof(chain)} \\ |
|
8619 | 60 |
\isarcmd{moreover} & : & \isartrans{proof(state)}{proof(state)} \\ |
61 |
\isarcmd{ultimately} & : & \isartrans{proof(state)}{proof(chain)} \\ |
|
9606 | 62 |
\isarcmd{print_trans_rules} & : & \isarkeep{theory~|~proof} \\ |
7315 | 63 |
trans & : & \isaratt \\ |
64 |
\end{matharray} |
|
65 |
||
66 |
Calculational proof is forward reasoning with implicit application of |
|
67 |
transitivity rules (such those of $=$, $\le$, $<$). Isabelle/Isar maintains |
|
7391 | 68 |
an auxiliary register $calculation$\indexisarthm{calculation} for accumulating |
7897 | 69 |
results obtained by transitivity composed with the current result. Command |
70 |
$\ALSO$ updates $calculation$ involving $this$, while $\FINALLY$ exhibits the |
|
71 |
final $calculation$ by forward chaining towards the next goal statement. Both |
|
72 |
commands require valid current facts, i.e.\ may occur only after commands that |
|
73 |
produce theorems such as $\ASSUMENAME$, $\NOTENAME$, or some finished proof of |
|
8619 | 74 |
$\HAVENAME$, $\SHOWNAME$ etc. The $\MOREOVER$ and $\ULTIMATELY$ commands are |
75 |
similar to $\ALSO$ and $\FINALLY$, but only collect further results in |
|
76 |
$calculation$ without applying any rules yet. |
|
7315 | 77 |
|
78 |
Also note that the automatic term abbreviation ``$\dots$'' has its canonical |
|
8619 | 79 |
application with calculational proofs. It refers to the argument\footnote{The |
80 |
argument of a curried infix expression is its right-hand side.} of the |
|
81 |
preceding statement. |
|
7315 | 82 |
|
83 |
Isabelle/Isar calculations are implicitly subject to block structure in the |
|
84 |
sense that new threads of calculational reasoning are commenced for any new |
|
85 |
block (as opened by a local goal, for example). This means that, apart from |
|
86 |
being able to nest calculations, there is no separate \emph{begin-calculation} |
|
87 |
command required. |
|
88 |
||
8619 | 89 |
\medskip |
90 |
||
91 |
The Isar calculation proof commands may be defined as |
|
92 |
follows:\footnote{Internal bookkeeping such as proper handling of |
|
93 |
block-structure has been suppressed.} |
|
94 |
\begin{matharray}{rcl} |
|
95 |
\ALSO@0 & \equiv & \NOTE{calculation}{this} \\ |
|
9606 | 96 |
\ALSO@{n+1} & \equiv & \NOTE{calculation}{trans~[OF~calculation~this]} \\[0.5ex] |
8619 | 97 |
\FINALLY & \equiv & \ALSO~\FROM{calculation} \\ |
98 |
\MOREOVER & \equiv & \NOTE{calculation}{calculation~this} \\ |
|
99 |
\ULTIMATELY & \equiv & \MOREOVER~\FROM{calculation} \\ |
|
100 |
\end{matharray} |
|
101 |
||
7315 | 102 |
\begin{rail} |
103 |
('also' | 'finally') transrules? comment? |
|
104 |
; |
|
8619 | 105 |
('moreover' | 'ultimately') comment? |
106 |
; |
|
8507 | 107 |
'trans' (() | 'add' | 'del') |
7315 | 108 |
; |
109 |
||
110 |
transrules: '(' thmrefs ')' interest? |
|
111 |
; |
|
112 |
\end{rail} |
|
113 |
||
114 |
\begin{descr} |
|
8547 | 115 |
\item [$\ALSO~(\vec a)$] maintains the auxiliary $calculation$ register as |
7315 | 116 |
follows. The first occurrence of $\ALSO$ in some calculational thread |
7905 | 117 |
initializes $calculation$ by $this$. Any subsequent $\ALSO$ on the same |
7335 | 118 |
level of block-structure updates $calculation$ by some transitivity rule |
7458 | 119 |
applied to $calculation$ and $this$ (in that order). Transitivity rules are |
8547 | 120 |
picked from the current context plus those given as explicit arguments (the |
121 |
latter have precedence). |
|
9614 | 122 |
|
8547 | 123 |
\item [$\FINALLY~(\vec a)$] maintaining $calculation$ in the same way as |
7315 | 124 |
$\ALSO$, and concludes the current calculational thread. The final result |
125 |
is exhibited as fact for forward chaining towards the next goal. Basically, |
|
7987 | 126 |
$\FINALLY$ just abbreviates $\ALSO~\FROM{calculation}$. Note that |
127 |
``$\FINALLY~\SHOW{}{\Var{thesis}}~\DOT$'' and |
|
128 |
``$\FINALLY~\HAVE{}{\phi}~\DOT$'' are typical idioms for concluding |
|
129 |
calculational proofs. |
|
9614 | 130 |
|
8619 | 131 |
\item [$\MOREOVER$ and $\ULTIMATELY$] are analogous to $\ALSO$ and $\FINALLY$, |
132 |
but collect results only, without applying rules. |
|
9614 | 133 |
|
9606 | 134 |
\item [$\isarkeyword{print_trans_rules}$] prints the list of transitivity |
135 |
rules declared in the current context. |
|
9614 | 136 |
|
8547 | 137 |
\item [$trans$] declares theorems as transitivity rules. |
9614 | 138 |
|
7315 | 139 |
\end{descr} |
140 |
||
141 |
||
8483 | 142 |
\section{Named local contexts (cases)}\label{sec:cases} |
143 |
||
144 |
\indexisarcmd{case}\indexisarcmd{print-cases} |
|
145 |
\indexisaratt{case-names}\indexisaratt{params} |
|
146 |
\begin{matharray}{rcl} |
|
147 |
\isarcmd{case} & : & \isartrans{proof(state)}{proof(state)} \\ |
|
8517 | 148 |
\isarcmd{print_cases}^* & : & \isarkeep{proof} \\ |
8483 | 149 |
case_names & : & \isaratt \\ |
150 |
params & : & \isaratt \\ |
|
151 |
\end{matharray} |
|
152 |
||
153 |
Basically, Isar proof contexts are built up explicitly using commands like |
|
154 |
$\FIXNAME$, $\ASSUMENAME$ etc.\ (see \S\ref{sec:proof-context}). In typical |
|
155 |
verification tasks this can become hard to manage, though. In particular, a |
|
156 |
large number of local contexts may emerge from case analysis or induction over |
|
157 |
inductive sets and types. |
|
158 |
||
159 |
\medskip |
|
160 |
||
161 |
The $\CASENAME$ command provides a shorthand to refer to certain parts of |
|
162 |
logical context symbolically. Proof methods may provide an environment of |
|
8507 | 163 |
named ``cases'' of the form $c\colon \vec x, \vec \phi$. Then the effect of |
164 |
$\CASE{c}$ is exactly the same as $\FIX{\vec x}~\ASSUME{c}{\vec\phi}$. |
|
8483 | 165 |
|
166 |
It is important to note that $\CASENAME$ does \emph{not} provide any means to |
|
167 |
peek at the current goal state, which is treated as strictly non-observable in |
|
168 |
Isar! Instead, the cases considered here usually emerge in a canonical way |
|
169 |
from certain pieces of specification that appear in the theory somewhere else |
|
170 |
(e.g.\ in an inductive definition, or recursive function). See also |
|
171 |
\S\ref{sec:induct-method} for more details of how this works in HOL. |
|
172 |
||
173 |
\medskip |
|
174 |
||
175 |
Named cases may be exhibited in the current proof context only if both the |
|
8547 | 176 |
proof method and the rules involved support this. Case names and parameters |
177 |
of basic rules may be declared by hand as well, by using appropriate |
|
178 |
attributes. Thus variant versions of rules that have been derived manually |
|
179 |
may be used in advanced case analysis later. |
|
8483 | 180 |
|
181 |
\railalias{casenames}{case\_names} |
|
182 |
\railterm{casenames} |
|
183 |
||
184 |
\begin{rail} |
|
185 |
'case' nameref attributes? |
|
186 |
; |
|
187 |
casenames (name + ) |
|
188 |
; |
|
189 |
'params' ((name * ) + 'and') |
|
190 |
; |
|
191 |
\end{rail} |
|
8547 | 192 |
%FIXME bug in rail |
8483 | 193 |
|
194 |
\begin{descr} |
|
8507 | 195 |
\item [$\CASE{c}$] invokes a named local context $c\colon \vec x, \vec \phi$, |
8547 | 196 |
as provided by an appropriate proof method (such as $cases$ and $induct$ in |
197 |
Isabelle/HOL, see \S\ref{sec:induct-method}). The command $\CASE{c}$ |
|
198 |
abbreviates $\FIX{\vec x}~\ASSUME{c}{\vec\phi}$. |
|
8483 | 199 |
\item [$\isarkeyword{print_cases}$] prints all local contexts of the current |
8547 | 200 |
state, using Isar proof language notation. This is a diagnostic command; |
201 |
$undo$ does not apply. |
|
8483 | 202 |
\item [$case_names~\vec c$] declares names for the local contexts of premises |
8547 | 203 |
of some theorem; $\vec c$ refers to the \emph{suffix} of the list premises. |
8483 | 204 |
\item [$params~\vec p@1 \dots \vec p@n$] renames the innermost parameters of |
8547 | 205 |
premises $1, \dots, n$ of some theorem. An empty list of names may be given |
206 |
to skip positions, leaving the present parameters unchanged. |
|
9614 | 207 |
|
208 |
Note that the default usage of case rules does \emph{not} directly expose |
|
209 |
parameters to the proof context (see also \S\ref{sec:induct-method-proper}). |
|
8483 | 210 |
\end{descr} |
211 |
||
212 |
||
9614 | 213 |
\section{Generalized existence}\label{sec:obtain} |
7135 | 214 |
|
8517 | 215 |
\indexisarcmd{obtain} |
7135 | 216 |
\begin{matharray}{rcl} |
9480 | 217 |
\isarcmd{obtain} & : & \isartrans{proof(state)}{proof(prove)} \\ |
8517 | 218 |
\end{matharray} |
219 |
||
9480 | 220 |
Generalized existence means that additional elements with certain properties |
221 |
may introduced in the current context. Technically, the $\OBTAINNAME$ |
|
222 |
language element is like a declaration of $\FIXNAME$ and $\ASSUMENAME$ (see |
|
223 |
also see \S\ref{sec:proof-context}), together with a soundness proof of its |
|
224 |
additional claim. According to the nature of existential reasoning, |
|
225 |
assumptions get eliminated from any result exported from the context later, |
|
226 |
provided that the corresponding parameters do \emph{not} occur in the |
|
227 |
conclusion. |
|
8517 | 228 |
|
229 |
\begin{rail} |
|
230 |
'obtain' (vars + 'and') comment? \\ 'where' (assm comment? + 'and') |
|
231 |
; |
|
232 |
\end{rail} |
|
233 |
||
9480 | 234 |
$\OBTAINNAME$ is defined as a derived Isar command as follows, where $\vec b$ |
235 |
shall refer to (optional) facts indicated for forward chaining. |
|
8517 | 236 |
\begin{matharray}{l} |
9480 | 237 |
\langle facts~\vec b\rangle \\ |
238 |
\OBTAIN{\vec x}{a}{\vec \phi}~~\langle proof\rangle \equiv {} \\[1ex] |
|
239 |
\quad \BG \\ |
|
240 |
\qquad \FIX{thesis} \\ |
|
241 |
\qquad \ASSUME{that [simp, intro]}{\All{\vec x} \vec\phi \Imp thesis} \\ |
|
242 |
\qquad \FROM{\vec b}~\HAVE{}{thesis}~~\langle proof\rangle \\ |
|
243 |
\quad \EN \\ |
|
9606 | 244 |
\quad \FIX{\vec x}~\ASSUMENAME^{\ast}~{a}~{\vec\phi} \\ |
7135 | 245 |
\end{matharray} |
246 |
||
8517 | 247 |
Typically, the soundness proof is relatively straight-forward, often just by |
248 |
canonical automated tools such as $\BY{simp}$ (see \S\ref{sec:simp}) or |
|
9480 | 249 |
$\BY{blast}$ (see \S\ref{sec:classical-auto}). Accordingly, the ``$that$'' |
250 |
reduction above is declared as simplification and introduction rule. |
|
8517 | 251 |
|
252 |
\medskip |
|
253 |
||
254 |
In a sense, $\OBTAINNAME$ represents at the level of Isar proofs what would be |
|
255 |
meta-logical existential quantifiers and conjunctions. This concept has a |
|
256 |
broad range of useful applications, ranging from plain elimination (or even |
|
257 |
introduction) of object-level existentials and conjunctions, to elimination |
|
258 |
over results of symbolic evaluation of recursive definitions, for example. |
|
9480 | 259 |
Also note that $\OBTAINNAME$ without parameters acts much like $\HAVENAME$, |
260 |
where the result is treated as an assumption. |
|
8517 | 261 |
|
262 |
||
263 |
\section{Miscellaneous methods and attributes} |
|
264 |
||
9606 | 265 |
\indexisarmeth{unfold}\indexisarmeth{fold}\indexisarmeth{insert} |
8517 | 266 |
\indexisarmeth{erule}\indexisarmeth{drule}\indexisarmeth{frule} |
267 |
\indexisarmeth{fail}\indexisarmeth{succeed} |
|
268 |
\begin{matharray}{rcl} |
|
269 |
unfold & : & \isarmeth \\ |
|
270 |
fold & : & \isarmeth \\[0.5ex] |
|
9606 | 271 |
insert^* & : & \isarmeth \\[0.5ex] |
8517 | 272 |
erule^* & : & \isarmeth \\ |
273 |
drule^* & : & \isarmeth \\ |
|
274 |
frule^* & : & \isarmeth \\[0.5ex] |
|
275 |
succeed & : & \isarmeth \\ |
|
276 |
fail & : & \isarmeth \\ |
|
277 |
\end{matharray} |
|
7135 | 278 |
|
279 |
\begin{rail} |
|
9606 | 280 |
('fold' | 'unfold' | 'insert' | 'erule' | 'drule' | 'frule') thmrefs |
7135 | 281 |
; |
282 |
\end{rail} |
|
283 |
||
7167 | 284 |
\begin{descr} |
8547 | 285 |
\item [$unfold~\vec a$ and $fold~\vec a$] expand and fold back again the given |
8517 | 286 |
meta-level definitions throughout all goals; any facts provided are inserted |
287 |
into the goal and subject to rewriting as well. |
|
8547 | 288 |
\item [$erule~\vec a$, $drule~\vec a$, and $frule~\vec a$] are similar to the |
289 |
basic $rule$ method (see \S\ref{sec:pure-meth-att}), but apply rules by |
|
8517 | 290 |
elim-resolution, destruct-resolution, and forward-resolution, respectively |
291 |
\cite{isabelle-ref}. These are improper method, mainly for experimentation |
|
292 |
and emulating tactic scripts. |
|
9614 | 293 |
|
8517 | 294 |
Different modes of basic rule application are usually expressed in Isar at |
295 |
the proof language level, rather than via implicit proof state |
|
8547 | 296 |
manipulations. For example, a proper single-step elimination would be done |
8517 | 297 |
using the basic $rule$ method, with forward chaining of current facts. |
9606 | 298 |
\item [$insert~\vec a$] inserts theorems as facts into all goals of the proof |
299 |
state. Note that current facts indicated for forward chaining are ignored. |
|
8517 | 300 |
\item [$succeed$] yields a single (unchanged) result; it is the identity of |
301 |
the ``\texttt{,}'' method combinator (cf.\ \S\ref{sec:syn-meth}). |
|
302 |
\item [$fail$] yields an empty result sequence; it is the identity of the |
|
303 |
``\texttt{|}'' method combinator (cf.\ \S\ref{sec:syn-meth}). |
|
7167 | 304 |
\end{descr} |
7135 | 305 |
|
8517 | 306 |
|
307 |
\indexisaratt{standard} |
|
308 |
\indexisaratt{elimify} |
|
9232 | 309 |
\indexisaratt{no-vars} |
8517 | 310 |
|
9614 | 311 |
\indexisaratt{THEN}\indexisaratt{COMP} |
8517 | 312 |
\indexisaratt{where} |
313 |
\indexisaratt{tag}\indexisaratt{untag} |
|
314 |
\indexisaratt{export} |
|
315 |
\indexisaratt{unfold}\indexisaratt{fold} |
|
316 |
\begin{matharray}{rcl} |
|
317 |
tag & : & \isaratt \\ |
|
318 |
untag & : & \isaratt \\[0.5ex] |
|
9614 | 319 |
THEN & : & \isaratt \\ |
8517 | 320 |
COMP & : & \isaratt \\[0.5ex] |
321 |
where & : & \isaratt \\[0.5ex] |
|
322 |
unfold & : & \isaratt \\ |
|
323 |
fold & : & \isaratt \\[0.5ex] |
|
324 |
standard & : & \isaratt \\ |
|
325 |
elimify & : & \isaratt \\ |
|
9232 | 326 |
no_vars & : & \isaratt \\ |
8517 | 327 |
export^* & : & \isaratt \\ |
328 |
\end{matharray} |
|
329 |
||
330 |
\begin{rail} |
|
331 |
'tag' (nameref+) |
|
332 |
; |
|
333 |
'untag' name |
|
334 |
; |
|
9614 | 335 |
('THEN' | 'COMP') nat? thmref |
8517 | 336 |
; |
337 |
'where' (name '=' term * 'and') |
|
338 |
; |
|
339 |
('unfold' | 'fold') thmrefs |
|
340 |
; |
|
341 |
\end{rail} |
|
342 |
||
343 |
\begin{descr} |
|
344 |
\item [$tag~name~args$ and $untag~name$] add and remove $tags$ of some |
|
345 |
theorem. Tags may be any list of strings that serve as comment for some |
|
346 |
tools (e.g.\ $\LEMMANAME$ causes the tag ``$lemma$'' to be added to the |
|
347 |
result). The first string is considered the tag name, the rest its |
|
348 |
arguments. Note that untag removes any tags of the same name. |
|
9614 | 349 |
\item [$THEN~n~a$ and $COMP~n~a$] compose rules. $THEN$ resolves with the |
350 |
$n$-th premise of $a$; the $COMP$ version skips the automatic lifting |
|
8547 | 351 |
process that is normally intended (cf.\ \texttt{RS} and \texttt{COMP} in |
352 |
\cite[\S5]{isabelle-ref}). |
|
8517 | 353 |
\item [$where~\vec x = \vec t$] perform named instantiation of schematic |
9606 | 354 |
variables occurring in a theorem. Unlike instantiation tactics such as |
355 |
$rule_tac$ (see \S\ref{sec:tactic-commands}), actual schematic variables |
|
8517 | 356 |
have to be specified (e.g.\ $\Var{x@3}$). |
9614 | 357 |
|
8547 | 358 |
\item [$unfold~\vec a$ and $fold~\vec a$] expand and fold back again the given |
8517 | 359 |
meta-level definitions throughout a rule. |
9614 | 360 |
|
8517 | 361 |
\item [$standard$] puts a theorem into the standard form of object-rules, just |
362 |
as the ML function \texttt{standard} (see \cite[\S5]{isabelle-ref}). |
|
9614 | 363 |
|
8517 | 364 |
\item [$elimify$] turns an destruction rule into an elimination, just as the |
365 |
ML function \texttt{make\_elim} (see \cite{isabelle-ref}). |
|
9614 | 366 |
|
9232 | 367 |
\item [$no_vars$] replaces schematic variables by free ones; this is mainly |
368 |
for tuning output of pretty printed theorems. |
|
9614 | 369 |
|
8517 | 370 |
\item [$export$] lifts a local result out of the current proof context, |
371 |
generalizing all fixed variables and discharging all assumptions. Note that |
|
8547 | 372 |
proper incremental export is already done as part of the basic Isar |
373 |
machinery. This attribute is mainly for experimentation. |
|
9614 | 374 |
|
8517 | 375 |
\end{descr} |
7135 | 376 |
|
377 |
||
9606 | 378 |
\section{Tactic emulations}\label{sec:tactics} |
379 |
||
380 |
The following improper proof methods emulate traditional tactics. These admit |
|
381 |
direct access to the goal state, which is normally considered harmful! In |
|
382 |
particular, this may involve both numbered goal addressing (default 1), and |
|
383 |
dynamic instantiation within the scope of some subgoal. |
|
384 |
||
385 |
\begin{warn} |
|
386 |
Dynamic instantiations are read and type-checked according to a subgoal of |
|
387 |
the current dynamic goal state, rather than the static proof context! In |
|
388 |
particular, locally fixed variables and term abbreviations may not be |
|
389 |
included in the term specifications. Thus schematic variables are left to |
|
390 |
be solved by unification with certain parts of the subgoal involved. |
|
391 |
\end{warn} |
|
392 |
||
393 |
Note that the tactic emulation proof methods in Isabelle/Isar are consistently |
|
394 |
named $foo_tac$. |
|
395 |
||
396 |
\indexisarmeth{rule-tac}\indexisarmeth{erule-tac} |
|
397 |
\indexisarmeth{drule-tac}\indexisarmeth{frule-tac} |
|
398 |
\indexisarmeth{cut-tac}\indexisarmeth{thin-tac} |
|
9642 | 399 |
\indexisarmeth{subgoal-tac}\indexisarmeth{rename-tac} |
9614 | 400 |
\indexisarmeth{rotate-tac}\indexisarmeth{tactic} |
9606 | 401 |
\begin{matharray}{rcl} |
402 |
rule_tac^* & : & \isarmeth \\ |
|
403 |
erule_tac^* & : & \isarmeth \\ |
|
404 |
drule_tac^* & : & \isarmeth \\ |
|
405 |
frule_tac^* & : & \isarmeth \\ |
|
406 |
cut_tac^* & : & \isarmeth \\ |
|
407 |
thin_tac^* & : & \isarmeth \\ |
|
408 |
subgoal_tac^* & : & \isarmeth \\ |
|
9614 | 409 |
rename_tac^* & : & \isarmeth \\ |
410 |
rotate_tac^* & : & \isarmeth \\ |
|
9606 | 411 |
tactic^* & : & \isarmeth \\ |
412 |
\end{matharray} |
|
413 |
||
414 |
\railalias{ruletac}{rule\_tac} |
|
415 |
\railterm{ruletac} |
|
416 |
||
417 |
\railalias{eruletac}{erule\_tac} |
|
418 |
\railterm{eruletac} |
|
419 |
||
420 |
\railalias{druletac}{drule\_tac} |
|
421 |
\railterm{druletac} |
|
422 |
||
423 |
\railalias{fruletac}{frule\_tac} |
|
424 |
\railterm{fruletac} |
|
425 |
||
426 |
\railalias{cuttac}{cut\_tac} |
|
427 |
\railterm{cuttac} |
|
428 |
||
429 |
\railalias{thintac}{thin\_tac} |
|
430 |
\railterm{thintac} |
|
431 |
||
432 |
\railalias{subgoaltac}{subgoal\_tac} |
|
433 |
\railterm{subgoaltac} |
|
434 |
||
9614 | 435 |
\railalias{renametac}{rename\_tac} |
436 |
\railterm{renametac} |
|
437 |
||
438 |
\railalias{rotatetac}{rotate\_tac} |
|
439 |
\railterm{rotatetac} |
|
440 |
||
9606 | 441 |
\begin{rail} |
442 |
( ruletac | eruletac | druletac | fruletac | cuttac | thintac ) goalspec? |
|
443 |
( insts thmref | thmrefs ) |
|
444 |
; |
|
445 |
subgoaltac goalspec? (prop +) |
|
446 |
; |
|
9614 | 447 |
renametac goalspec? (name +) |
448 |
; |
|
449 |
rotatetac goalspec? int? |
|
450 |
; |
|
9606 | 451 |
'tactic' text |
452 |
; |
|
453 |
||
454 |
insts: ((name '=' term) + 'and') 'in' |
|
455 |
; |
|
456 |
\end{rail} |
|
457 |
||
458 |
\begin{descr} |
|
459 |
\item [$rule_tac$ etc.] do resolution of rules with explicit instantiation. |
|
460 |
This works the same way as the ML tactics \texttt{res_inst_tac} etc. (see |
|
461 |
\cite[\S3]{isabelle-ref}). |
|
9614 | 462 |
|
9606 | 463 |
Note that multiple rules may be only given there is no instantiation. Then |
464 |
$rule_tac$ is the same as \texttt{resolve_tac} in ML (see |
|
465 |
\cite[\S3]{isabelle-ref}). |
|
466 |
\item [$cut_tac$] inserts facts into the proof state as assumption of a |
|
467 |
subgoal, see also \texttt{cut_facts_tac} in \cite[\S3]{isabelle-ref}. Note |
|
468 |
that the scope of schmatic variables is spread over the main goal statement. |
|
469 |
Instantiations may be given as well, see also ML tactic |
|
470 |
\texttt{cut_inst_tac} in \cite[\S3]{isabelle-ref}. |
|
471 |
\item [$thin_tac~\phi$] deletes the specified assumption from a subgoal; note |
|
472 |
that $\phi$ may contain schematic variables. See also \texttt{thin_tac} in |
|
473 |
\cite[\S3]{isabelle-ref}. |
|
474 |
\item [$subgoal_tac~\phi$] adds $\phi$ as an assumption to a subgoal. See |
|
475 |
also \texttt{subgoal_tac} and \texttt{subgoals_tac} in |
|
476 |
\cite[\S3]{isabelle-ref}. |
|
9614 | 477 |
\item [$rename_tac~\vec x$] renames parameters of a goal according to the list |
478 |
$\vec x$, which refers to the \emph{suffix} of variables. |
|
479 |
\item [$rotate_tac~n$] rotates the assumptions of a goal by $n$ positions: |
|
480 |
from right to left if $n$ is positive, and from left to right if $n$ is |
|
481 |
negative; the default value is $1$. See also \texttt{rotate_tac} in |
|
482 |
\cite[\S3]{isabelle-ref}. |
|
9606 | 483 |
\item [$tactic~text$] produces a proof method from any ML text of type |
484 |
\texttt{tactic}. Apart from the usual ML environment and the current |
|
485 |
implicit theory context, the ML code may refer to the following locally |
|
486 |
bound values: |
|
487 |
||
488 |
%%FIXME ttbox produces too much trailing space (why?) |
|
489 |
{\footnotesize\begin{verbatim} |
|
490 |
val ctxt : Proof.context |
|
491 |
val facts : thm list |
|
492 |
val thm : string -> thm |
|
493 |
val thms : string -> thm list |
|
494 |
\end{verbatim}} |
|
495 |
Here \texttt{ctxt} refers to the current proof context, \texttt{facts} |
|
496 |
indicates any current facts for forward-chaining, and |
|
497 |
\texttt{thm}~/~\texttt{thms} retrieve named facts (including global |
|
498 |
theorems) from the context. |
|
499 |
\end{descr} |
|
500 |
||
501 |
||
9614 | 502 |
\section{The Simplifier}\label{sec:simplifier} |
7135 | 503 |
|
7321 | 504 |
\subsection{Simplification methods}\label{sec:simp} |
7315 | 505 |
|
8483 | 506 |
\indexisarmeth{simp}\indexisarmeth{simp-all} |
7315 | 507 |
\begin{matharray}{rcl} |
508 |
simp & : & \isarmeth \\ |
|
8483 | 509 |
simp_all & : & \isarmeth \\ |
7315 | 510 |
\end{matharray} |
511 |
||
8483 | 512 |
\railalias{simpall}{simp\_all} |
513 |
\railterm{simpall} |
|
514 |
||
8704 | 515 |
\railalias{noasm}{no\_asm} |
516 |
\railterm{noasm} |
|
517 |
||
518 |
\railalias{noasmsimp}{no\_asm\_simp} |
|
519 |
\railterm{noasmsimp} |
|
520 |
||
521 |
\railalias{noasmuse}{no\_asm\_use} |
|
522 |
\railterm{noasmuse} |
|
523 |
||
7315 | 524 |
\begin{rail} |
8706 | 525 |
('simp' | simpall) ('!' ?) opt? (simpmod * ) |
7315 | 526 |
; |
527 |
||
8811 | 528 |
opt: '(' (noasm | noasmsimp | noasmuse) ')' |
8704 | 529 |
; |
8483 | 530 |
simpmod: ('add' | 'del' | 'only' | 'split' (() | 'add' | 'del') | 'other') ':' thmrefs |
7315 | 531 |
; |
532 |
\end{rail} |
|
533 |
||
7321 | 534 |
\begin{descr} |
8547 | 535 |
\item [$simp$] invokes Isabelle's simplifier, after declaring additional rules |
8594 | 536 |
according to the arguments given. Note that the \railtterm{only} modifier |
8547 | 537 |
first removes all other rewrite rules, congruences, and looper tactics |
8594 | 538 |
(including splits), and then behaves like \railtterm{add}. |
9614 | 539 |
|
8594 | 540 |
The \railtterm{split} modifiers add or delete rules for the Splitter (see |
8483 | 541 |
also \cite{isabelle-ref}), the default is to add. This works only if the |
542 |
Simplifier method has been properly setup to include the Splitter (all major |
|
543 |
object logics such HOL, HOLCF, FOL, ZF do this already). |
|
9614 | 544 |
|
8594 | 545 |
The \railtterm{other} modifier ignores its arguments. Nevertheless, |
8547 | 546 |
additional kinds of rules may be declared by including appropriate |
547 |
attributes in the specification. |
|
8483 | 548 |
\item [$simp_all$] is similar to $simp$, but acts on all goals. |
7321 | 549 |
\end{descr} |
550 |
||
8704 | 551 |
By default, the Simplifier methods are based on \texttt{asm_full_simp_tac} |
8706 | 552 |
internally \cite[\S10]{isabelle-ref}, which means that assumptions are both |
553 |
simplified as well as used in simplifying the conclusion. In structured |
|
554 |
proofs this is usually quite well behaved in practice: just the local premises |
|
555 |
of the actual goal are involved, additional facts may inserted via explicit |
|
556 |
forward-chaining (using $\THEN$, $\FROMNAME$ etc.). The full context of |
|
557 |
assumptions is only included if the ``$!$'' (bang) argument is given, which |
|
558 |
should be used with some care, though. |
|
7321 | 559 |
|
8704 | 560 |
Additional Simplifier options may be specified to tune the behavior even |
9614 | 561 |
further: $(no_asm)$ means assumptions are ignored completely (cf.\ |
8811 | 562 |
\texttt{simp_tac}), $(no_asm_simp)$ means assumptions are used in the |
9614 | 563 |
simplification of the conclusion but are not themselves simplified (cf.\ |
8811 | 564 |
\texttt{asm_simp_tac}), and $(no_asm_use)$ means assumptions are simplified |
565 |
but are not used in the simplification of each other or the conclusion (cf. |
|
8704 | 566 |
\texttt{full_simp_tac}). |
567 |
||
568 |
\medskip |
|
569 |
||
570 |
The Splitter package is usually configured to work as part of the Simplifier. |
|
571 |
There is no separate $split$ method available. The effect of repeatedly |
|
572 |
applying \texttt{split_tac} can be simulated by |
|
573 |
$(simp~only\colon~split\colon~\vec a)$. |
|
8483 | 574 |
|
575 |
||
576 |
\subsection{Declaring rules} |
|
577 |
||
8667 | 578 |
\indexisarcmd{print-simpset} |
8638 | 579 |
\indexisaratt{simp}\indexisaratt{split}\indexisaratt{cong} |
7321 | 580 |
\begin{matharray}{rcl} |
8667 | 581 |
print_simpset & : & \isarkeep{theory~|~proof} \\ |
7321 | 582 |
simp & : & \isaratt \\ |
8483 | 583 |
split & : & \isaratt \\ |
8638 | 584 |
cong & : & \isaratt \\ |
7321 | 585 |
\end{matharray} |
586 |
||
587 |
\begin{rail} |
|
8638 | 588 |
('simp' | 'split' | 'cong') (() | 'add' | 'del') |
7321 | 589 |
; |
590 |
\end{rail} |
|
591 |
||
592 |
\begin{descr} |
|
8667 | 593 |
\item [$print_simpset$] prints the collection of rules declared to the |
594 |
Simplifier, which is also known as ``simpset'' internally |
|
595 |
\cite{isabelle-ref}. This is a diagnostic command; $undo$ does not apply. |
|
8547 | 596 |
\item [$simp$] declares simplification rules. |
597 |
\item [$split$] declares split rules. |
|
8638 | 598 |
\item [$cong$] declares congruence rules. |
7321 | 599 |
\end{descr} |
7319 | 600 |
|
7315 | 601 |
|
602 |
\subsection{Forward simplification} |
|
603 |
||
7391 | 604 |
\indexisaratt{simplify}\indexisaratt{asm-simplify} |
605 |
\indexisaratt{full-simplify}\indexisaratt{asm-full-simplify} |
|
7315 | 606 |
\begin{matharray}{rcl} |
607 |
simplify & : & \isaratt \\ |
|
608 |
asm_simplify & : & \isaratt \\ |
|
609 |
full_simplify & : & \isaratt \\ |
|
610 |
asm_full_simplify & : & \isaratt \\ |
|
611 |
\end{matharray} |
|
612 |
||
7321 | 613 |
These attributes provide forward rules for simplification, which should be |
8547 | 614 |
used only very rarely. There are no separate options for declaring |
7905 | 615 |
simplification rules locally. |
616 |
||
617 |
See the ML functions of the same name in \cite[\S10]{isabelle-ref} for more |
|
618 |
information. |
|
7315 | 619 |
|
620 |
||
9614 | 621 |
\section{Basic equational reasoning} |
622 |
||
9703 | 623 |
\indexisarmeth{subst}\indexisarmeth{hypsubst}\indexisarmeth{split}\indexisaratt{symmetric} |
9614 | 624 |
\begin{matharray}{rcl} |
625 |
subst & : & \isarmeth \\ |
|
626 |
hypsubst^* & : & \isarmeth \\ |
|
9703 | 627 |
split & : & \isarmeth \\ |
9614 | 628 |
symmetric & : & \isaratt \\ |
629 |
\end{matharray} |
|
630 |
||
631 |
\begin{rail} |
|
632 |
'subst' thmref |
|
633 |
; |
|
9703 | 634 |
'split' thmrefs |
635 |
; |
|
9614 | 636 |
\end{rail} |
637 |
||
638 |
These methods and attributes provide basic facilities for equational reasoning |
|
639 |
that are intended for specialized applications only. Normally, single step |
|
640 |
reasoning would be performed by calculation (see \S\ref{sec:calculation}), |
|
641 |
while the Simplifier is the canonical tool for automated normalization (see |
|
642 |
\S\ref{sec:simplifier}). |
|
643 |
||
644 |
\begin{descr} |
|
645 |
\item [$subst~thm$] performs a single substitution step using rule $thm$, |
|
646 |
which may be either a meta or object equality. |
|
647 |
\item [$hypsubst$] performs substitution using some assumption. |
|
9703 | 648 |
\item [$split~thms$] performs single-step case splitting using rules $thms$. |
649 |
Note that the $simp$ method already involves repeated application of split |
|
650 |
rules as declared in the current context (see \S\ref{sec:simp}). |
|
9614 | 651 |
\item [$symmetric$] applies the symmetry rule of meta or object equality. |
652 |
\end{descr} |
|
653 |
||
654 |
||
7135 | 655 |
\section{The Classical Reasoner} |
656 |
||
7335 | 657 |
\subsection{Basic methods}\label{sec:classical-basic} |
7321 | 658 |
|
7974 | 659 |
\indexisarmeth{rule}\indexisarmeth{intro} |
660 |
\indexisarmeth{elim}\indexisarmeth{default}\indexisarmeth{contradiction} |
|
7321 | 661 |
\begin{matharray}{rcl} |
662 |
rule & : & \isarmeth \\ |
|
663 |
intro & : & \isarmeth \\ |
|
664 |
elim & : & \isarmeth \\ |
|
665 |
contradiction & : & \isarmeth \\ |
|
666 |
\end{matharray} |
|
667 |
||
668 |
\begin{rail} |
|
8547 | 669 |
('rule' | 'intro' | 'elim') thmrefs? |
7321 | 670 |
; |
671 |
\end{rail} |
|
672 |
||
673 |
\begin{descr} |
|
7466 | 674 |
\item [$rule$] as offered by the classical reasoner is a refinement over the |
8517 | 675 |
primitive one (see \S\ref{sec:pure-meth-att}). In case that no rules are |
7466 | 676 |
provided as arguments, it automatically determines elimination and |
7321 | 677 |
introduction rules from the context (see also \S\ref{sec:classical-mod}). |
8517 | 678 |
This is made the default method for basic proof steps, such as $\PROOFNAME$ |
679 |
and ``$\DDOT$'' (two dots), see also \S\ref{sec:proof-steps} and |
|
680 |
\S\ref{sec:pure-meth-att}. |
|
9614 | 681 |
|
7466 | 682 |
\item [$intro$ and $elim$] repeatedly refine some goal by intro- or |
7905 | 683 |
elim-resolution, after having inserted any facts. Omitting the arguments |
8547 | 684 |
refers to any suitable rules declared in the context, otherwise only the |
685 |
explicitly given ones may be applied. The latter form admits better control |
|
686 |
of what actually happens, thus it is very appropriate as an initial method |
|
687 |
for $\PROOFNAME$ that splits up certain connectives of the goal, before |
|
688 |
entering the actual sub-proof. |
|
9614 | 689 |
|
7466 | 690 |
\item [$contradiction$] solves some goal by contradiction, deriving any result |
691 |
from both $\neg A$ and $A$. Facts, which are guaranteed to participate, may |
|
692 |
appear in either order. |
|
7321 | 693 |
\end{descr} |
694 |
||
695 |
||
7981 | 696 |
\subsection{Automated methods}\label{sec:classical-auto} |
7315 | 697 |
|
9438 | 698 |
\indexisarmeth{blast}\indexisarmeth{fast}\indexisarmeth{best}\indexisarmeth{clarify} |
7321 | 699 |
\begin{matharray}{rcl} |
700 |
blast & : & \isarmeth \\ |
|
701 |
fast & : & \isarmeth \\ |
|
702 |
best & : & \isarmeth \\ |
|
9438 | 703 |
clarify & : & \isarmeth \\ |
7321 | 704 |
\end{matharray} |
705 |
||
706 |
\begin{rail} |
|
7905 | 707 |
'blast' ('!' ?) nat? (clamod * ) |
7321 | 708 |
; |
9438 | 709 |
('fast' | 'best' | 'clarify') ('!' ?) (clamod * ) |
7321 | 710 |
; |
711 |
||
9408 | 712 |
clamod: (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del') ':' thmrefs |
7321 | 713 |
; |
714 |
\end{rail} |
|
715 |
||
716 |
\begin{descr} |
|
717 |
\item [$blast$] refers to the classical tableau prover (see \texttt{blast_tac} |
|
7335 | 718 |
in \cite[\S11]{isabelle-ref}). The optional argument specifies a |
9606 | 719 |
user-supplied search bound (default 20). Note that $blast$ is the only |
720 |
classical proof procedure in Isabelle that can handle actual object-logic |
|
721 |
rules as local assumptions ($fast$ etc.\ would just ignore non-atomic |
|
722 |
facts). |
|
9438 | 723 |
\item [$fast$, $best$, and $clarify$] refer to the generic classical reasoner. |
724 |
See \texttt{fast_tac}, \texttt{best_tac}, and \texttt{clarify_tac} in |
|
725 |
\cite[\S11]{isabelle-ref} for more information. |
|
7321 | 726 |
\end{descr} |
727 |
||
728 |
Any of above methods support additional modifiers of the context of classical |
|
8517 | 729 |
rules. Their semantics is analogous to the attributes given in |
8547 | 730 |
\S\ref{sec:classical-mod}. Facts provided by forward chaining are |
731 |
inserted\footnote{These methods usually cannot make proper use of actual rules |
|
732 |
inserted that way, though.} into the goal before doing the search. The |
|
733 |
``!''~argument causes the full context of assumptions to be included as well. |
|
734 |
This is slightly less hazardous than for the Simplifier (see |
|
735 |
\S\ref{sec:simp}). |
|
7321 | 736 |
|
7315 | 737 |
|
7981 | 738 |
\subsection{Combined automated methods} |
7315 | 739 |
|
9606 | 740 |
\indexisarmeth{auto}\indexisarmeth{force} |
741 |
\indexisarmeth{clarsimp}\indexisarmeth{fastsimp} |
|
7321 | 742 |
\begin{matharray}{rcl} |
9606 | 743 |
auto & : & \isarmeth \\ |
7321 | 744 |
force & : & \isarmeth \\ |
9438 | 745 |
clarsimp & : & \isarmeth \\ |
9606 | 746 |
fastsimp & : & \isarmeth \\ |
7321 | 747 |
\end{matharray} |
748 |
||
749 |
\begin{rail} |
|
9606 | 750 |
('auto' | 'force' | 'clarsimp' | 'fastsimp') ('!' ?) (clasimpmod * ) |
7321 | 751 |
; |
7315 | 752 |
|
8483 | 753 |
clasimpmod: ('simp' (() | 'add' | 'del' | 'only') | 'other' | |
754 |
('split' (() | 'add' | 'del')) | |
|
9408 | 755 |
(('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del')) ':' thmrefs |
7321 | 756 |
\end{rail} |
7315 | 757 |
|
7321 | 758 |
\begin{descr} |
9606 | 759 |
\item [$auto$, $force$, $clarsimp$, $fastsimp$] provide access to Isabelle's |
760 |
combined simplification and classical reasoning tactics. These correspond |
|
761 |
to \texttt{auto_tac}, \texttt{force_tac}, \texttt{clarsimp_tac}, and |
|
762 |
\texttt{fast_tac} (with the Simplifier added as wrapper), see |
|
763 |
\cite[\S11]{isabelle-ref} for more information. The modifier arguments |
|
764 |
correspond to those given in \S\ref{sec:simp} and |
|
765 |
\S\ref{sec:classical-auto}. Just note that the ones related to the |
|
766 |
Simplifier are prefixed by \railtterm{simp} here. |
|
9614 | 767 |
|
7987 | 768 |
Facts provided by forward chaining are inserted into the goal before doing |
769 |
the search. The ``!''~argument causes the full context of assumptions to be |
|
770 |
included as well. |
|
7321 | 771 |
\end{descr} |
772 |
||
7987 | 773 |
|
8483 | 774 |
\subsection{Declaring rules}\label{sec:classical-mod} |
7135 | 775 |
|
8667 | 776 |
\indexisarcmd{print-claset} |
7391 | 777 |
\indexisaratt{intro}\indexisaratt{elim}\indexisaratt{dest} |
778 |
\indexisaratt{iff}\indexisaratt{delrule} |
|
7321 | 779 |
\begin{matharray}{rcl} |
8667 | 780 |
print_claset & : & \isarkeep{theory~|~proof} \\ |
7321 | 781 |
intro & : & \isaratt \\ |
782 |
elim & : & \isaratt \\ |
|
783 |
dest & : & \isaratt \\ |
|
7391 | 784 |
iff & : & \isaratt \\ |
7321 | 785 |
delrule & : & \isaratt \\ |
786 |
\end{matharray} |
|
7135 | 787 |
|
7321 | 788 |
\begin{rail} |
9408 | 789 |
('intro' | 'elim' | 'dest') ('!' | () | '?') |
7321 | 790 |
; |
8638 | 791 |
'iff' (() | 'add' | 'del') |
7321 | 792 |
\end{rail} |
7135 | 793 |
|
7321 | 794 |
\begin{descr} |
8667 | 795 |
\item [$print_claset$] prints the collection of rules declared to the |
796 |
Classical Reasoner, which is also known as ``simpset'' internally |
|
797 |
\cite{isabelle-ref}. This is a diagnostic command; $undo$ does not apply. |
|
8517 | 798 |
\item [$intro$, $elim$, and $dest$] declare introduction, elimination, and |
799 |
destruct rules, respectively. By default, rules are considered as |
|
9408 | 800 |
\emph{unsafe} (i.e.\ not applied blindly without backtracking), while a |
801 |
single ``!'' classifies as \emph{safe}, and ``?'' as \emph{extra} (i.e.\ not |
|
802 |
applied in the search-oriented automated methods, but only in single-step |
|
803 |
methods such as $rule$). |
|
9614 | 804 |
|
8547 | 805 |
\item [$iff$] declares equations both as rules for the Simplifier and |
806 |
Classical Reasoner. |
|
7391 | 807 |
|
7335 | 808 |
\item [$delrule$] deletes introduction or elimination rules from the context. |
809 |
Note that destruction rules would have to be turned into elimination rules |
|
7321 | 810 |
first, e.g.\ by using the $elimify$ attribute. |
811 |
\end{descr} |
|
7135 | 812 |
|
8203
2fcc6017cb72
intro/elim/dest attributes: changed ! / !! flags to ? / ??;
wenzelm
parents:
8195
diff
changeset
|
813 |
|
9614 | 814 |
%%% Local Variables: |
7135 | 815 |
%%% mode: latex |
816 |
%%% TeX-master: "isar-ref" |
|
9614 | 817 |
%%% End: |